This is a Validated Antibody Database (VAD) review about rabbit GAPDH, based on 299 published articles (read how Labome selects the articles), using GAPDH antibody in all methods. It is aimed to help Labome visitors find the most suited GAPDH antibody. Please note the number of articles fluctuates since newly identified citations are added and citations for discontinued catalog numbers are removed regularly.
GAPDH synonym: glyceraldehyde-3-phosphate dehydrogenase; peptidyl-cysteine S-nitrosylase GAPDH

Invitrogen
mouse monoclonal (6C5)
  • western blot; human; 1:150,000; loading ...; fig 1a
Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:150,000 (fig 1a). Sci Rep (2019) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:1000; loading ...; fig 2c
Invitrogen GAPDH antibody (Ambion, 4300) was used in western blot on human samples at 1:1000 (fig 2c). Biochem Pharmacol (2019) ncbi
mouse monoclonal (GA1R)
  • western blot; human; loading ...; fig 3d
Invitrogen GAPDH antibody (Invitrogen, MA5-15738) was used in western blot on human samples (fig 3d). PLoS Pathog (2018) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:5000; loading ...; fig s4g
Invitrogen GAPDH antibody (Life Technologies, AM43000) was used in western blot on mouse samples at 1:5000 (fig s4g). Nat Commun (2018) ncbi
mouse monoclonal (6C5)
  • other; human; loading ...; fig 4c
Invitrogen GAPDH antibody (Thermo Fisher Scientific, AM4300) was used in other on human samples (fig 4c). Cancer Cell (2018) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 1:1000; loading ...; fig 6h
  • western blot; mouse; 1:1000; loading ...; fig 6h
In order to study induction of cell death by low frequency magnetic fields, Invitrogen GAPDH antibody (Thermo Fisher Scientific, MA5-15738-BTIN) was used in western blot on human samples at 1:1000 (fig 6h) and in western blot on mouse samples at 1:1000 (fig 6h). Sci Rep (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; 1:5000; fig 9a
In order to investigate the effects of glutathione deficiency on lens homeostasis and cataractogenesis, Invitrogen GAPDH antibody (Thermo Fisher Scientific, MA5-15738) was used in western blot on mouse samples at 1:5000 (fig 9a). Invest Ophthalmol Vis Sci (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; loading ...; fig s1b
In order to report that the Myomixer-Myomaker interaction regulates myofiber formation during muscle development, Invitrogen GAPDH antibody (Thermo Fisher Scientific, MA5-15738) was used in western blot on mouse samples (fig s1b). Science (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; human; loading ...; fig 4e
In order to identify and study the allosteric pockets of SPAK and OSR1, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on human samples (fig 4e). ChemMedChem (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; baker's yeast; fig 1c
In order to describe the effects of 6-Bio using a preclinical model of Parkinson disease, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on baker's yeast samples (fig 1c). Autophagy (2017) ncbi
mouse monoclonal (6C5)
  • reverse phase protein lysate microarray; human; loading ...; fig 7a
In order to characterize the molecular identity of uterine carcinosarcomas., Invitrogen GAPDH antibody (Ambion, AM4300) was used in reverse phase protein lysate microarray on human samples (fig 7a). Cancer Cell (2017) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:5000; loading ...; fig 2a
In order to analyze the mechanistic relationship between sirtuin 2 and alpha-synuclein in Parkinson's disease, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:5000 (fig 2a). PLoS Biol (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; 1:10,000; loading ...; fig 4f
In order to study the interaction between Hap1 and Dcaf7, Invitrogen GAPDH antibody (Thermo Fisher, GA1R) was used in western blot on mouse samples at 1:10,000 (fig 4f). Proc Natl Acad Sci U S A (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 1:4000; loading ...; fig 1a
In order to determine the role of mitochondrial Cx40 in endothelial cells, Invitrogen GAPDH antibody (Thermo, MA5-15738) was used in western blot on human samples at 1:4000 (fig 1a). Am J Physiol Cell Physiol (2017) ncbi
mouse monoclonal (6C5)
  • reverse phase protein lysate microarray; human; loading ...; fig 3a
In order to describe the features of 228 primary cervical cancers, Invitrogen GAPDH antibody (Ambion, AM4300) was used in reverse phase protein lysate microarray on human samples (fig 3a). Nature (2017) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig s2b
In order to determine the role of p21-activated kinases in response to BRAF inhibitors, Invitrogen GAPDH antibody (Thermo Fisher Scientific, AM4300) was used in western blot on human samples (fig s2b). Mol Carcinog (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; human; loading ...
In order to distinguish the effects of the non-neutrophil-containing plasma fractions on human skeletal muscle myoblast differentiation, Invitrogen GAPDH antibody (Pierce, MA5-15738) was used in western blot on human samples . Am J Sports Med (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; 1:2000; loading ...; fig 1c
In order to discover a gene silencing mechanism in developing mammalian hearts regulated by the interaction of DNMT3B-mediated non-CpG methylation and REST binding, Invitrogen GAPDH antibody (Thermo Fisher, MA5-15738) was used in western blot on mouse samples at 1:2000 (fig 1c). Nucleic Acids Res (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; loading ...
In order to elucidate how calcium-dependent signaling contributes to colitis, Invitrogen GAPDH antibody (Pierce, MA5-15738) was used in western blot on mouse samples . Am J Physiol Gastrointest Liver Physiol (2017) ncbi
mouse monoclonal (6C5)
  • western blot; human; loading ...; fig 3a
In order to study circadian rhythmicity in cultured chondrocytes and determine the role of NR1D1 and BMAL1 in regulating chondrocyte functions, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on human samples (fig 3a). Osteoarthritis Cartilage (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; human; loading ...; fig 2b
In order to determine effect of oxyresveratrol on intestinal tight junctions through stimulation of trefoil factor 3 production in goblet cells, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on human samples (fig 2b). Biomed Pharmacother (2017) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; loading ...; fig 2e
In order to compare gene expression profiles of the embryonic stem cell- and adult progenitor-derived dendritic cells, Invitrogen GAPDH antibody (Thermo Fisher Scientific, AM4300) was used in western blot on mouse samples (fig 2e). J Immunol (2017) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:5000; loading ...; fig 6b
In order to report the effects of peroxisome proliferator-activated receptor beta/delta agonist on the acute phase response after brain injury, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on mouse samples at 1:5000 (fig 6b). Transl Res (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; loading ...; fig 5d
In order to elucidate how FoxO1 regulates mitochondrial uncoupling proteins, Invitrogen GAPDH antibody (Pierce, MA5-15738) was used in western blot on mouse samples (fig 5d). Cell Death Discov (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; loading ...; fig 4b
In order to report that stiffer pancreatic ductal adenocarcinoma cells are more invasive than more compliant cells, Invitrogen GAPDH antibody (ThermoFisher, MA5-15738) was used in western blot on human samples (fig 4b). Integr Biol (Camb) (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; loading ...; fig 2a
In order to discuss the contribution of IL-1beta and NLRP3 inflammasome activation to Kawasaki disease, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on mouse samples (fig 2a). J Immunol (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 2
In order to clarify the role of protein kinase C in the pathogenesis of RNA toxicity, Invitrogen GAPDH antibody (Ambion, 4300) was used in western blot on mouse samples (fig 2). PLoS ONE (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; loading ...; fig 5a
In order to report that Zfp407 overexpression improved glucose homeostasis, Invitrogen GAPDH antibody (Thermo Fischer, MA5-15738) was used in western blot on mouse samples (fig 5a). Am J Physiol Endocrinol Metab (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
In order to assess the responses of ALT- or telomerase-positive cell lines to VE-821 treatment, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 2). Front Oncol (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:4000; loading ...; fig 1a
In order to investigate how the interaction between desmin with the alpha beta crystallin contributes to cardiac health, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:4000 (fig 1a). J Cell Sci (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 6
In order to demonstrate that OTULIN is essential for preventing TNF-associated systemic inflammation in humans and mice, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 6). Cell (2016) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:1000; fig 2
In order to show that A2AR regulates GR function and contributes to age-related memory deficits, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on rat samples at 1:1000 (fig 2). Sci Rep (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 3
In order to examine the role of sirtuins during the transition from early to late sepsis in obese subjects with sepsis, Invitrogen GAPDH antibody (Invitrogen, AM4300) was used in western blot on mouse samples (fig 3). PLoS ONE (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; loading ...; fig 1b
In order to investigate the differentiation of mesenchymal stem cells into beige/brown adipocytes, Invitrogen GAPDH antibody (Thermo Fisher, MA5-15738) was used in western blot on human samples (fig 1b). Biochem Biophys Res Commun (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; fission yeast; fig 3
In order to generate and characterize recoded fluorescent proteins for three-color analysis in Schizosaccharomyces pombe, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on fission yeast samples (fig 3). PLoS ONE (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:2000; fig 1
In order to research differentiation of functional glutamatergic neurons from placenta-derived multipotent cells by knocking down of heat-shock protein 27, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:2000 (fig 1). Sci Rep (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 1:1500; fig 6
In order to characterize 3D-cultured prostate cancer cells' drug response and expression of drug-action associated proteins and the influence of matrices, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on human samples at 1:1500 (fig 6). PLoS ONE (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; fig 6
In order to study the involvement of the host protein ORP1L and interactions between the endoplasmic reticulum and the Coxiella burnetii parasitophorous vacuole, Invitrogen GAPDH antibody (ThermoFisher, MA5-15738) was used in western blot on human samples (fig 6). Cell Microbiol (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; human; fig 3
In order to study novel activities of human cytomegalovirus tegument protein pUL103 by study of protein-protein interactions, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on human samples (fig 3). J Virol (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:50,000; tbl 2
In order to analyze the reduction of renal fibrosis and inflammation after unilateral ureteral obstruction due to overexpression of the short endoglin isoform, Invitrogen GAPDH antibody (Ambion Applied Biosystems, AM4300) was used in western blot on mouse samples at 1:50,000 (tbl 2). Biochim Biophys Acta (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; fig 2
In order to study protection against ischemic myopathy in high fat fed mice by targeted expression of catalase to mitochondria, Invitrogen GAPDH antibody (Thermo Fisher Scientific, MA5-15738) was used in western blot on mouse samples (fig 2). Diabetes (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; fig 1
In order to learn suppression of autophagy and lipid droplet growth in adipocytes by FoxO1 antagonist, Invitrogen GAPDH antibody (Pierce, MA5-15738) was used in western blot on mouse samples (fig 1). Cell Cycle (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; 1:2000; fig 1c
In order to study the role of cytosolic Ca(2+)/calmodulin-dependent protein kinase II in the high-intensity endurance training that reduces cardiac dysfunction, Invitrogen GAPDH antibody (Thermo Fisher, MA5-15738) was used in western blot on mouse samples at 1:2000 (fig 1c). J Appl Physiol (1985) (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; Caenorhabditis elegans; 1:5000; fig 2
In order to study the lifespan extension of Caenorhabditis elegans by resveratrol and oxyresveratrol by SIR-2.1-dependence, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on Caenorhabditis elegans samples at 1:5000 (fig 2). Exp Biol Med (Maywood) (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 7
  • western blot; human; fig 1
In order to study suppression invasion by reduction of intracellular GTP pools via a microphthalmia-associated transcription factor, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 7) and in western blot on human samples (fig 1). Oncogene (2017) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 3
In order to study how Parkin is responsible for polyubiquitination of apurinic/apyrimidinic endonuclease 1, Invitrogen GAPDH antibody (Invitrogen, AM4300) was used in western blot on human samples (fig 3). Mol Carcinog (2017) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 8
  • western blot; cat; fig 1
In order to study disruption of the assembly of cytoplasmic stress granules and induction of G3BP1 cleavage by feline calicivirus infection, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 8) and in western blot on cat samples (fig 1). J Virol (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:50,000; fig 7
In order to study regulation by ADP-ribosylation of bone morphogenetic protein signaling, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:50,000 (fig 7). J Biol Chem (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; fig 4
In order to learn enhancement of RBM15 protein translation during megakaryocyte differentiation by the AS-RBM15 IncRNA, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on human samples (fig 4). EMBO Rep (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10,000; fig 1
In order to study kinase DYRK1A selective inhibition by targeting its folding process, Invitrogen GAPDH antibody (Thermo Fisher Scientific, AM4300) was used in western blot on human samples at 1:10,000 (fig 1). Nat Commun (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:1000; fig 5
In order to research suppression of obesity in leptin-deficient mice by Tbc1d1 deletion, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:1000 (fig 5). Int J Obes (Lond) (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:5000; fig 4
In order to study growth arrest-specific-2 upregulation in recurrent colorectal cancer and its susceptibility to chemotherapy in a model cell system, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on human samples at 1:5000 (fig 4). Biochim Biophys Acta (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:4000; fig 5
In order to assess the governing of the recruitment of ovarian pregranulosa cells and control of folliculogenesis in mice due to ADAM10-Notch signaling, Invitrogen GAPDH antibody (Life technologies, AM4300) was used in western blot on mouse samples at 1:4000 (fig 5). J Cell Sci (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 6
In order to determine the major role for alveolar epithelial type 1 cells in alveolar fluid clearance revealed by knockout mice, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on mouse samples (fig 6). Am J Respir Cell Mol Biol (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:3000; fig 2
In order to study the cause of progeroid disorder by a mutation abolishing the ZMPSTE24 cleavage site in prelamin A, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:3000 (fig 2). J Cell Sci (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 5
In order to analyze the binding of p300 with PIAS1 acting as a coactivator or corepressor of the transcription factor c-Myb dependent on SUMO-status, Invitrogen GAPDH antibody (Invitrogen, AM4300) was used in western blot on human samples (fig 5). Biochim Biophys Acta (2016) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:6000; fig 4c
In order to study how transcriptional regulation and Skp2-mediated degradation of p27Kip1 activates stem cell properties of muller glia through notch signaling, Invitrogen GAPDH antibody (Ambion, 4300) was used in western blot on rat samples at 1:6000 (fig 4c). PLoS ONE (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:20,000; fig 1
In order to elucidate the mechanism of corticotropin releasing hormone (Crh) and macroautophagy, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:20,000 (fig 1). Sci Rep (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human
In order to assess the effect of 11B3 loss on tumorigenesis, Invitrogen GAPDH antibody (ThermoFisher, MA5-15738-HRP) was used in western blot on human samples . Nature (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
In order to determine the regulation of von Hippel Lindau proteostasis and function by phosphorylation-dependent cleavage, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 2). Oncogene (2016) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:5000; fig 1b
In order to analyze FNDC5, produced in the stomach, and its role in body composition, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on rat samples at 1:5000 (fig 1b). Sci Rep (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; loading ...; fig 1a
In order to investigate gamma-interferon-inducible lysosomal thiol reductase expression in melanoma, Invitrogen GAPDH antibody (Thermo Scientific, GA1R) was used in western blot on human samples (fig 1a). Melanoma Res (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human
In order to discuss the findings of The Reproducibility Project: Cancer Biology, Invitrogen GAPDH antibody (Life Technologies, MA5-15738) was used in western blot on human samples . elife (2016) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:4000; fig 1
In order to investigate the rescue of seizure susceptibility and spine morphology in atypical febrile seizures by reducing premature KCC2 expression, Invitrogen GAPDH antibody (Applied Biosystems, AM4300) was used in western blot on rat samples at 1:4000 (fig 1). Neurobiol Dis (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 1
In order to analyze how p66Shc activation can occur by cJun N-terminal kinase (JNK) phosphorylation of serine 36, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 1). Sci Rep (2016) ncbi
mouse monoclonal (6C5)
  • western blot; barley; 1:1000; fig 3
In order to characterize inhibition and binding of the glyceraldehyde-3-phosphate dehydrogenase in barley aleurone due to diacylglycerol pyrophosphate, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on barley samples at 1:1000 (fig 3). Plant Physiol Biochem (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 1:1000; fig 1a
In order to determine which 2',5'-oligoadenylate synthetase regulates RNase L activation during viral infection, Invitrogen GAPDH antibody (Thermo Fisher, GA1R) was used in western blot on human samples at 1:1000 (fig 1a). Proc Natl Acad Sci U S A (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:5000; fig 1
In order to investigate impairment of autophagy flux and induction of cell death independent of necroptosis and apoptosis by dual PI-3 kinase/mTOR inhibition, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:5000 (fig 1). Oncotarget (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:15,000; fig 4
In order to characterize colorectal cancer and nuclear localization of YBX1 and uncoupling of EGFR-RAS signaling, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on human samples at 1:15,000 (fig 4). Oncogenesis (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 1:5000; fig 2
In order to determine reduction of osteo-inductive potential of human plasma derived extracellular vesicles by a decrease in vesicular galectin-3 levels that decreses with donor age, Invitrogen GAPDH antibody (Pierce, MA5-15738) was used in western blot on human samples at 1:5000 (fig 2). Aging (Albany NY) (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 8
In order to discuss the interaction between the HEAT-1 domain of eIF4G and c-terminal motif in norovirus VPG and its role in translation initiation, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 8). PLoS Pathog (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 4
In order to determine a therapeutic strategy to target the IRF4 network in multiple myeloma by using the bromodomain inhibition of the transcriptional coactivators CBP/EP300, Invitrogen GAPDH antibody (Life technologies, AM4300) was used in western blot on human samples (fig 4). elife (2016) ncbi
mouse monoclonal (6C5)
  • western blot; hamsters; fig 1
In order to study activation of SREBP2 that promotes hepatic long-chain Acyl-CoA synthetase 1 (ACSL1) expression in vivo and in vitro through a sterol regulatory element (SRE) motif of the ACSL-C promoter, Invitrogen GAPDH antibody (Thermo Fisher, AM4300) was used in western blot on hamsters samples (fig 1). J Biol Chem (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
In order to test if dying neutrophils release peptidyl arginine deiminase, which results in citrullination of antigens relevant to rheumatoid arthritis, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on human samples (fig 2). Arthritis Res Ther (2015) ncbi
mouse monoclonal (6C5)
  • western blot; rat; fig 1
In order to test the relationship between epithelial mesenchymal transition induced by transforming growth factor beta 1 is blocked by an antagonist of translation factor eIF4E, Invitrogen GAPDH antibody (Applied Biosystems, AM4300) was used in western blot on rat samples (fig 1). Sci Rep (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:5000; fig 3
In order to study a novel crizotinib-resistant solvent-front mutation in a patient with ROS1-rearranged lung cancer that is responsive to cabozantinib therapy, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:5000 (fig 3). Clin Cancer Res (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:20,000; fig 2
In order to assess the regulation of PLK1 and PCNT cleavage and mitotic exit via centriole separation, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on human samples at 1:20,000 (fig 2). Nat Commun (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 1
  • western blot; human; fig 1
In order to determine the requirement of mitochondrial ribosomal protein L12 for POLRMT stability and exists as two forms generated by alternative proteolysis during import, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 1) and in western blot on human samples (fig 1). J Biol Chem (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; fig 1
In order to report that PRMT1 regulates alternative RNA splicing by reducing RBM15, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on human samples (fig 1). elife (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
In order to analyze the transition from epithelial-mesenchymal induced by transforming growth factor beta, Invitrogen GAPDH antibody (Ambion, AM43000) was used in western blot on human samples (fig 2). Methods Mol Biol (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:1000; fig 7
In order to assess Losartan treatment on experimental glaucoma, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on mouse samples at 1:1000 (fig 7). PLoS ONE (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to identify molecular alterations in the normal mucosa in the proximity of adenomatous polyps and assess the modulating effect of butyrate, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples . BMJ Open Gastroenterol (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to investigate the role of FOXG1 in neuronal differentiation, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples . Hum Pathol (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to show that Grb7 recruits Syk to the stress granule, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples . J Biol Chem (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to study the role of gep oncogenes in ovarian cancer growth, Invitrogen GAPDH antibody (Life Technologies-Ambion, AM4300) was used in western blot on human samples . Genes Cancer (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10000
In order to study the role of the pericentriolar material disassembly in centriole separation during mitotic exit, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:10000. PLoS ONE (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to study molecular mechanisms used by B cells to control the source of peptides loaded onto class II molecules, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . J Biol Chem (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:5000
In order to discuss the sensitivity and selectivity of seven ROS1 and/or ALK inhibitors, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:5000. Proc Natl Acad Sci U S A (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
In order to assess negative regulation of the NF-kappaB-mediated signaling pathway through stabilization of Cactin by TRIM39, Invitrogen GAPDH antibody (Ambion, 6C5) was used in western blot on human samples (fig 2). Cell Mol Life Sci (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 1
In order to investigate how reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signaling, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 1). Nat Commun (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:4000
In order to study the rhythmic expression of intellectual disability genes in the mouse hippocampus, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:4000. Neuroscience (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; fig 6
In order to elucidate the mechanisms by which increased LMNB1 levels cause autosomal dominant leukodystrophy, Invitrogen GAPDH antibody (Pierce, MA515738) was used in western blot on mouse samples (fig 6). J Neurosci (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; 1:100; fig 2d
In order to compare cognitive and motor behaviors in various LRRK2 transgenic mice, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on mouse samples at 1:100 (fig 2d). Parkinsonism Relat Disord (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 1
In order to investigate how the interaction between protein kinase G and Orai1 contributes to cardiac hypertrophy, Invitrogen GAPDH antibody (Ambion, am4300) was used in western blot on human samples (fig 1). Stem Cells (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; baker's yeast; fig 6
In order to develop methods to study pseudouridylation of mRNA, Invitrogen GAPDH antibody (Pierce, MA5-15738) was used in western blot on baker's yeast samples (fig 6). Methods Enzymol (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:1000; fig 3
In order to study how regenerative progenitors can be turned into terminally differentiated skeletal muscle cells, Invitrogen GAPDH antibody (Invitrogen, AM4300) was used in western blot on mouse samples at 1:1000 (fig 3). Nat Commun (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 1:10,000; fig 1.a,b
In order to examine the role of the host unfolded protein response during L. pneumophila infection, Invitrogen GAPDH antibody (Thermo, MA5-15738) was used in western blot on human samples at 1:10,000 (fig 1.a,b). Nat Commun (2015) ncbi
mouse monoclonal (6C5)
  • western blot; rat
In order to describe a strategy of dual SILAC labeling astrocytic cultures for in silico exclusion of unlabeled proteins from serum or neurons used for stimulation, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on rat samples . J Proteome Res (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; human
In order to investigate the mechanisms of cell cycle regulation by the small isoform of JADE1, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on human samples . Cell Cycle (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; human; fig 4
In order to investigate alterations in surface protein expression associated with the 11q13 amplicon, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on human samples (fig 4). J Proteome Res (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; 1:5000; fig s3
In order to investigate the role of nebulin in muscle cells using transgenic mice, Invitrogen GAPDH antibody (ThermoScientific, GA1R) was used in western blot on mouse samples at 1:5000 (fig s3). Hum Mol Genet (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:50000
In order to show that tamoxifen prevents myofibroblast differentiation, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:50000. J Cell Physiol (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:1000; fig 4d
In order to elucidate the function of TRIM29 in double stranded break repair, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:1000 (fig 4d). Nat Commun (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; Helicobacter pylori; 1:5000
Invitrogen GAPDH antibody (Thermo Fisher Scientific, GA1R) was used in western blot on Helicobacter pylori samples at 1:5000. Int J Mol Med (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to demonstrate that TRIM29 regulates the p63 pathway in cervical cancer cells, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples . Biochim Biophys Acta (2015) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:20000
In order to study the role of Neuregulin1/ErbB system during peripheral nerve degeneration and regeneration, Invitrogen GAPDH antibody (ThermoFischer Scientific, 4300) was used in western blot on rat samples at 1:20000. Eur J Neurosci (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 1
In order to investigate the role of RIPK1 in response to endoplasmic reticulum stress, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 1). Autophagy (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to study the effect of CD137 on HPV positive head and neck squamous cell carcinoma tumor clearance, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on mouse samples . Vaccines (Basel) (2014) ncbi
mouse monoclonal (GA1R)
  • western blot; fission yeast
In order to characterize histone sprocket arginine residue mutants in yeast, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on fission yeast samples . Genetics (2015) ncbi
mouse monoclonal (6C5)
  • immunocytochemistry; dog
In order to study the role of MAL, a tetraspanning protein, in primary cilium formation, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in immunocytochemistry on dog samples . J Cell Sci (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:15000
In order to examine the effect of resveratrol treatment on microvascular inflammation in obese septic mice, Invitrogen GAPDH antibody (Invitrogen, AM4300) was used in western blot on human samples at 1:15000. Obesity (Silver Spring) (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; human
Invitrogen GAPDH antibody (Thermo Scientific, GA1R) was used in western blot on human samples . J Virol (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to study the contribution of filamin B on the invasiveness of cancer, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples . Cell Struct Funct (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; human
Invitrogen GAPDH antibody (Thermo Fisher Scientific, GA1R) was used in western blot on human samples . Cell Mol Life Sci (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; loading ...; fig 1b
In order to use native elongating transcript sequencing in human cells to globally map strand-specific RNA polymerase II density at nucleotide resolution, Invitrogen GAPDH antibody (Applied Biosystems, 6C5) was used in western blot on human samples (fig 1b). Cell (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to identify the mechanism of metformin on dystrophic muscle, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on mouse samples . Muscle Nerve (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; rat; fig 1
In order to test if acute pharmacological activation of AKT induces cardioprotection, Invitrogen GAPDH antibody (Pierce, MA5-15738) was used in western blot on rat samples (fig 1). J Transl Med (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 6
In order to investigate the effects of nicotinamide adenine dinucleotide phosphate reduced oxidase 4 in liver tissues from patients with NASH and mice with steatohepatitis, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on mouse samples (fig 6). Gastroenterology (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:16,000; fig 2
  • western blot; mouse; 1:16,000; fig 5
In order to test if PTHrP contributes to adipogenic regulation, obesity, and insulin resistance, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:16,000 (fig 2) and in western blot on mouse samples at 1:16,000 (fig 5). J Clin Endocrinol Metab (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:40,000; fig 2a
In order to examine an immunoblot-analysis workflow for accuracy and precision, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:40,000 (fig 2a). Sci Signal (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human
Invitrogen GAPDH antibody (Applied Biosystems, 6C5) was used in western blot on human samples . Mol Cell Biol (2015) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:4000
In order to test the effects of calcitriol treatment in a puromycin induced proteinuric nephropathy model, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on rat samples at 1:4000. Mol Med Rep (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse
Invitrogen GAPDH antibody (Thermo Scientific, GA1R) was used in western blot on mouse samples . Infect Immun (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:20000; fig 1
In order to investigate the mechanisms downstream of STAT3 signaling that regulate inflammation, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:20000 (fig 1). Sci Rep (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:2000; fig 1
In order to elucidate the mechanism by which estradiol regulates progesterone production in the corpus luteum, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:2000 (fig 1). Mol Endocrinol (2015) ncbi
mouse monoclonal (6C5)
  • western blot; common platanna; 1:5000
In order to determine the role of NOL11 in vertebrate ribosome biogenesis and craniofacial development, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on common platanna samples at 1:5000. PLoS Genet (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to study the effects of compressive stress on cellular functions, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . PLoS ONE (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; chicken
Invitrogen GAPDH antibody (Thermo Scientific, GA1R) was used in western blot on chicken samples . Virus Res (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 3
In order to test if lys methylation of Pdx1 by Set7/9 affects Pdx1 transcriptional activity, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 3). J Biol Chem (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human
  • western blot; mouse
In order to show that FKBP12 and FKBP51 levels determine the responsiveness of a cell line or tissue to rapamycin, Invitrogen GAPDH antibody (Ambion Austin, AM4300) was used in western blot on human samples and in western blot on mouse samples . Aging Cell (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; fig 4
In order to assess the effects of TNBS- and DSS-induced colitis on renal Ncx1 expression, Invitrogen GAPDH antibody (Pierce, MA5-15738) was used in western blot on mouse samples (fig 4). J Biol Chem (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig s2
In order to analyze the antiviral innate immune response due to mitochondrial DNA stress, Invitrogen GAPDH antibody (Ambion, 6C5) was used in western blot on mouse samples (fig s2). Nature (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; scFv
In order to generate safer genetically modified organisms that are dependent on synthetic metabolites, Invitrogen GAPDH antibody (Thermo, MA5-15738) was used in western blot on scFv samples . Nature (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse
In order to study the effects of Tamoxifen administration on obesity, Invitrogen GAPDH antibody (Thermo Fisher Scientific, MA5-15738) was used in western blot on mouse samples . Cell Death Dis (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 1:3000; fig 1,2,3,4
In order to study targeting of Ubc13 and ZEB1 by miR-2015 that acts as a tumour radiosensitizer, Invitrogen GAPDH antibody (Thermo, MA5-15738) was used in western blot on human samples at 1:3000 (fig 1,2,3,4). Nat Commun (2014) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 25 ng/ml; fig 4
In order to investigate TRiC-mediated protein folding in the telomerase pathway, Invitrogen GAPDH antibody (Thermo, MA5-15738) was used in western blot on human samples at 25 ng/ml (fig 4). Cell (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:20000
In order to assess the best reference to use as a loading control for Western blotting of human skeletal muscle in applied physiology, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on human samples at 1:20000. J Appl Physiol (1985) (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 1
In order to study autophagy in Mycobacterium tuberculosis-infected patients, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 1). Autophagy (2014) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:2000; fig 3
In order to analyze the modification of the location of potassium channel KCNQ5 in auditory brainstem neurons due to loss of auditory activity, Invitrogen GAPDH antibody (Applied Biosystems, 6C5) was used in western blot on rat samples at 1:2000 (fig 3). J Neurosci Res (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 5
In order to study microRNAs in bone development, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 5). J Bone Miner Res (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to identify the role of obscurins during breast carcinogenesis, Invitrogen GAPDH antibody (Applied Biosystems, AM4300) was used in western blot on human samples . Oncogene (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10000
In order to investigate the sex-specific gene expression in human term placenta and its response to n-3 LCPUFA intervention, Invitrogen GAPDH antibody (Ambion Inc./Life Technologies, AM4300) was used in western blot on human samples at 1:10000. BMC Genomics (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to examine expression of the E7 protein in cervical cancer cell lines, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on human samples . Virus Genes (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:40,000; fig 1
In order to investigate the role of TGF-beta to renal fibrosis, Invitrogen GAPDH antibody (Invitrogen, AM4300) was used in western blot on mouse samples at 1:40,000 (fig 1). PLoS ONE (2014) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:5000
In order to determine the role of mohawk homeobox in ligament/tenogenic differentiation of bone marrow derived mesenchymal stem cells, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on rat samples at 1:5000. J Orthop Res (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 1:2000
Invitrogen GAPDH antibody (Sigma-Aldrich, MA5-15738) was used in western blot on human samples at 1:2000. Breast Cancer Res (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to examine the accumulation of polyubiquitin conjugates in PiZ mouse liver, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . PLoS ONE (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to study delta-9-tetrahydrocannabinol in St8sia2(-/-) mice, Invitrogen GAPDH antibody (Ambion Life Technologies, AM4300) was used in western blot on human samples . Behav Brain Res (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 0.2 ug/mL
In order to examine the fractalkine protein expression in mice retina, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on mouse samples at 0.2 ug/mL. PLoS ONE (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:2000
In order to study ceramide dysregulation in a chronic experimental autoimmune encephalomyelitis model, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:2000. Biochem Pharmacol (2014) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse
Invitrogen GAPDH antibody (Thermo Scientific, GA1R) was used in western blot on mouse samples . Front Physiol (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1 ug/ml; fig 6
In order to study the role of Pax6 in the maintenance and differentiation of adult neural stem cells and in adult neurogenesis, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1 ug/ml (fig 6). Stem Cells Dev (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:10,000; fig 1
In order to investigate how BRAF/MAPK activity regulates intestinal stem cell populations and contributes to colon cancer, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on mouse samples at 1:10,000 (fig 1). Oncogene (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; 1:3000; fig 4c
  • western blot; human; 1:3000; fig 1a
In order to show that the zinc finger E-box binding homeobox 1 regulates radiosensitivity and the DNA damage response in breast cancer cells, Invitrogen GAPDH antibody (Thermo, MA5-15738) was used in western blot on mouse samples at 1:3000 (fig 4c) and in western blot on human samples at 1:3000 (fig 1a). Nat Cell Biol (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:40000
In order to show that that PINK1 deficiency triggers hypoxia-inducible factor-1alpha, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on mouse samples at 1:40000. Nat Commun (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:2000; fig  2
In order to examine the role of P2Y6 receptors in pain processing, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:2000 (fig  2). Pharmacol Biochem Behav (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:15000
In order to investigate the effect of SIRT1 inhibition during sepsis, Invitrogen GAPDH antibody (Invitrogen, AM4300) was used in western blot on mouse samples at 1:15000. J Leukoc Biol (2014) ncbi
mouse monoclonal (GA1R)
  • western blot; rat
In order to examine the p.G2019S mutation in the leucine-rich repeat kinase 2 (LRRK2) and it's role in Parkinson's disease, Invitrogen GAPDH antibody (Thermo, MA5-15738) was used in western blot on rat samples . J Parkinsons Dis (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 2
In order to use a DDR2 knockout mouse to examine the contribution of DDR2 to heart structure and function, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 2). Am J Physiol Heart Circ Physiol (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 8
In order to identify the components of the norovirus translation initiation factor complex, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 8). J Biol Chem (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:5000; fig 3
In order to characterize a monoclonal anti-human c-kit antibody for inhibiting tumor growth, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on human samples at 1:5000 (fig 3). Cancer Biol Ther (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10000
In order to identify a hypomorphic variant of CCDC22 in patients with RSS/3C syndrome in an Austrian family, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:10000. Eur J Hum Genet (2015) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:20000
In order to study the role of UTP in Schwannoma cell migration in response to peripheral nerve injury and its mechanism, Invitrogen GAPDH antibody (Applied Biosystems, AM4300) was used in western blot on rat samples at 1:20000. PLoS ONE (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to confirm the role of argininosuccinate lyase deficiency from enterocytes in the pathogenesis of necrotizing enterocolitis, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . Am J Physiol Gastrointest Liver Physiol (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to study how RAS disrupts the circadian clock in cancer cells, Invitrogen GAPDH antibody (Ambion, Am4300) was used in western blot on human samples . PLoS Genet (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:10,000
In order to determine the in vivo functions of miR-142, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:10,000. elife (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to assess the cardiac phenotype in LAP1 depleted mice, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . Nucleus (2014) ncbi
mouse monoclonal (6C5)
  • western blot; hamsters
In order to investigate the use of peptides as carriers of short interfering RNA, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on hamsters samples . PLoS ONE (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to investigate how VHL-R167Q contributes to tumorigenesis, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples . Cancer Res (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
  • western blot; human
In order to examine the relationship between endoplasmic reticulum stress and autophagy in human and mouse hepatocytes during non-alcoholic fatty liver disease, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples and in western blot on human samples . Cell Death Dis (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to investigate how PRMT6 promotes ERalpha activity, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . Biochim Biophys Acta (2014) ncbi
mouse monoclonal (6C5)
  • immunocytochemistry; mouse; 1:1000
Invitrogen GAPDH antibody (Life Technologies, 6C5) was used in immunocytochemistry on mouse samples at 1:1000. J Bone Miner Res (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:2000
In order to correlate the expression of CD200 in various types of cancer with the responses to chemotherapy and radiation, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:2000. Head Neck (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to examine the role of the LIM homeodomain transcription factor Isl1 in pyloric development, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . BMC Biol (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:20000
In order to elucidate the mechanism for the role of Zscan4 in early mammalian embryogenesis, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:20000. PLoS ONE (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10000; fig 1d
In order to show that C9ORF72 regulates endosomal trafficking, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:10000 (fig 1d). Hum Mol Genet (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10000
In order to determine if NaAsO2 and hyperthermia alter cisplatin-induced G2 arrest and cause mitotic arrest and mitotic catastrophe, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:10000. Toxicol Sci (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10000
In order to determine the cellular function of Lyar, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:10000. Genes Cells (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:5000
In order to test if CDK-9 inhibition protects cartilage from the catabolic effects of proinflammatory cytokines, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:5000. Arthritis Rheumatol (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:4000
In order to characterize engineered human tendon tissue and how release of tensile strain changes matrix architecture, disturbs cell adhesions, and induces an inflammatory phenotype, Invitrogen GAPDH antibody (Invitrogen, AM4300) was used in western blot on human samples at 1:4000. PLoS ONE (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:5000; fig 2
In order to determine how a reversal of glioma stem cell phenotype occurs based on a cell-penetrating petide and the interaction between c-Src and connexin43, Invitrogen GAPDH antibody (Applied Biosystems, AM4300) was used in western blot on human samples at 1:5000 (fig 2). Cell Death Dis (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 1, 2
In order to demonstrate that p38MAPK activation elevates mitochondrial ROS levels, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 1, 2). Cell Commun Signal (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to suggest that detection of WIPI1 mRNA is a convenient method of monitoring autophagosome formation, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on human samples . Autophagy (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:500; fig 1
  • western blot; rat; 1:500; fig 1
In order to test if steroidogenic factor 1 is expressed in castration-resistant prostate cancer and determine if it stimulates aberrant steroidogenesis and fuels aggressive growth, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:500 (fig 1) and in western blot on rat samples at 1:500 (fig 1). Endocrinology (2014) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:5000; fig 2
In order to identify targets of miR-22 that contribute to heart failure, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on rat samples at 1:5000 (fig 2). PLoS ONE (2013) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to demonstrate that Ras signaling is important for enamel formation in individuals with Costello syndrome and present mouse model system to dissect the roles of the Ras effector pathways in vivo, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . Hum Mol Genet (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:40,000
In order to test if polyST deficiency results in a schizophrenia-like phenotype using knock out mice, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:40,000. Brain Struct Funct (2015) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:2000; fig 5
In order to characterize a rat model for long-term upper extremity overuse that causes increased serum and musculotendinous fibrogenic proteins followed by low-grade inflammation, Invitrogen GAPDH antibody (Invitrogen, AM4300) was used in western blot on rat samples at 1:2000 (fig 5). PLoS ONE (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:5000
In order to study the relationship between tumor protein D52 and ATM protein, Invitrogen GAPDH antibody (Life Technologies, 6C5) was used in western blot on human samples at 1:5000. Cell Cycle (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:4000; fig 4
In order to investigate the mechanism and function of trimethylated HSPA8, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:4000 (fig 4). J Biol Chem (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to study the phosphorylation of AKT1 and AKT2, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples . Oncogene (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:1000
In order to investigate the role of Tbc1d1 in insulin- and AICAR-stimulated glucose uptake in skeletal muscle, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:1000. Endocrinology (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:1000; fig 7
In order to study the interactions between heat shock protein 90 and conserved herpesvirus protein kinase, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:1000 (fig 7). J Virol (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 3
In order to identify protein interacting with C-kinase 1 as a binding partner of growth hormone-releasing hormone receptor, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 3). J Pharmacol Sci (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
In order to study targeting sEcad for treatment of breast cancer, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 2). Mol Carcinog (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to investigate the role of hepatocyte growth factor receptor, c-met in renoprotection, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . Kidney Int (2013) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:2000; fig 4
In order to examine the antidepressant effect of Yueju in mice, Invitrogen GAPDH antibody (Invitrogen, AM4300) was used in western blot on mouse samples at 1:2000 (fig 4). Evid Based Complement Alternat Med (2013) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 5
In order to describe a novel role for the tubular beta-catenin/MMP-7 axis in controlling the fate of interstitial fibroblasts via epithelial-mesenchymal communication, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 5). Sci Rep (2013) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:15000; fig 1
In order to study the mechanisms regulated by Gsk-3 that contribute to embryonic stem cell self-renewal, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:15000 (fig 1). PLoS ONE (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
In order to test if COMP binds to BMP-2 and test if COMP promotes the biological activity of BMP-2 with respect to osteogenesis, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 2). Bone (2013) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 5
In order to demonstrate that cycloheximide produces inhibin-like effects in gonadotropes by preventing de novo synthesis of ACVR2, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 5). Cell Signal (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:20000; fig 4
In order to study nonalcoholic steatohepatitis using rats, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on human samples at 1:20000 (fig 4). Toxicol Appl Pharmacol (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to examine the role of heat shock proteins in the biogenesis of KCNQ4 channels, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples . PLoS ONE (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:4000
In order to study the mechanism of the mitomycin C on urothelial carcinoma cells, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:4000. Urol Oncol (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to investigate the role of ROCK1 and ROCK2 in cell detachment, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . Cell Death Dis (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to describe the phenotype of seven patients with de novo deletions of chromosome 19p13.3, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples . Clin Genet (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:10000
In order to investigate the functions of KLK6 in oligodendrocyte lineage cell development and myelin protein production, Invitrogen GAPDH antibody (Life TechnologiesIncorporated, AM4300) was used in western blot on mouse samples at 1:10000. Neuroscience (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 1, 2
In order to study the roles of MAPK-related kinase and MKNK-1 in HCV replication and cellular entry, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 1, 2). J Virol (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:1000
In order to determine if mitochondrial DNA expression or content contribute to the mitochondrial dysfunction observed in schizophrenia, bipolar disorder, and major depressive disorder, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:1000. Am J Med Genet B Neuropsychiatr Genet (2013) ncbi
mouse monoclonal (6C5)
  • western blot; Asian tiger mosquito; 1:6000; fig 4
In order to identify host proteins involved in Dengue virus cell entry, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on Asian tiger mosquito samples at 1:6000 (fig 4). Arch Virol (2013) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:20000
In order to examine the role of UTP on N-cadherin expression in schwannoma cells, Invitrogen GAPDH antibody (Applied Biosystems, AM4300) was used in western blot on rat samples at 1:20000. Purinergic Signal (2013) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 1b
In order to characterize mice with reduced Reck-expression, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 1b). Biol Open (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 1
In order to study mechanisms of transcriptional regulation of miRNAs using esophageal squamous cell carcinoma, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 1). Biochem Biophys Res Commun (2013) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 5
In order to elucidate mechanisms that regulate P2rx7 gene expression, Invitrogen GAPDH antibody (Ambion, #AM4300) was used in western blot on mouse samples (fig 5). J Biol Chem (2012) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:3000; fig 4
In order to study gliosis during Purkinje and mitral cell death in the Purkinje Cell Degeneration mouse, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:3000 (fig 4). Glia (2013) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 0.2 ug/ml; fig 3
In order to study the role of AKAP7 in regulating calcium in mouse cardiomyocytes, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 0.2 ug/ml (fig 3). Proc Natl Acad Sci U S A (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
In order to study the role of AURKA, a negative regulator of autophagy, in breast cancer, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 2). Autophagy (2012) ncbi
mouse monoclonal (6C5)
  • western blot; rat; fig 8
In order to test if there is a transcytotic pathway of AQP2 trafficking between apical and basolateral membranes, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on rat samples (fig 8). Am J Physiol Cell Physiol (2013) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 6
In order to characterize mice carrying the human FMR1 premutation allele, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 6). Hum Mol Genet (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:3000
In order to study the role of caspases in cytokine-induced barrier breakdown during neuroinflammation, Invitrogen GAPDH antibody (Applied Biosystems, AM4300) was used in western blot on human samples at 1:3000. J Immunol (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10000; fig 4
In order to identify the roles of H19 gene via the miR-675 pathway in the pathogenesis of preeclampsia, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:10000 (fig 4). RNA Biol (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to exmaine the expression of unfolded protein response genes in endoplasmic reticulum stress, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on human samples . Cell Stress Chaperones (2013) ncbi
mouse monoclonal (6C5)
  • western blot; rat; fig 2
In order to study progesterone receptor membrane component in granulosa cells, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on rat samples (fig 2). Endocrinology (2012) ncbi
mouse monoclonal (6C5)
  • immunocytochemistry; mouse; 4 ug/ml; fig 3
In order to develop and use methods to directly assess maternal and embryonic products, Invitrogen GAPDH antibody (Ambion, AM4300) was used in immunocytochemistry on mouse samples at 4 ug/ml (fig 3). PLoS ONE (2012) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to test if H2AX phosphorylation is important in maintaining self-renewal of mouse embryonic stem cells, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . Stem Cells (2012) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 8
In order to characterize mice in which beta-catenin is absent in renal tubules, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 8). Kidney Int (2012) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 1
In order to elucidate the role of chromatin compaction in stem cell fate and function, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 1). PLoS Genet (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10000; fig 5
In order to assess the effects of nanoparticles on inflammation and cellular stress, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:10000 (fig 5). Toxicol Lett (2012) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:40000; fig 1
In order to identify STAT3-controlled effectors of the anti-inflammatory response, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:40000 (fig 1). Blood (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 1
In order to investigate the role of the BDNF-TrkB signaling in the development of CDDP resistance in HNSCC, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 1). PLoS ONE (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:4000; fig 3
In order to identify and validate reference proteins for data standardization, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:4000 (fig 3). PLoS ONE (2012) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:5000
In order to investigate factors that regulate excitatory and inhibitory neuron migration, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:5000. Nat Neurosci (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10000; fig 3
In order to determine the phenotype of the platelets in patients with idiopathic pulmonary arterial hypertension, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:10000 (fig 3). Am J Physiol Lung Cell Mol Physiol (2012) ncbi
mouse monoclonal (6C5)
  • immunohistochemistry; mouse; 1:200
In order to test if germ cell clusters in the mammalian gonad arise through incomplete cell divisions, Invitrogen GAPDH antibody (Zymed, AM4300) was used in immunohistochemistry on mouse samples at 1:200. Mech Dev (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 3
In order to elucidate the impact of H1 in ovarian cancer, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 3). Front Biosci (Landmark Ed) (2012) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to elucidate the link between IL-1beta and Alzheimer's disease pathogenesis, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . J Neuroimmune Pharmacol (2012) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 6
In order to study the response of the serotonergic centrifugal system after mitral cell loss using Purkinje cell degeneration mutant mice, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 6). Neuroscience (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to test if GRB2 contributes to controlling infection by retroviruses by affecting receptor function, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples . J Virol (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 5
In order to identify binding partners of Stau2 in dendritic cells, Invitrogen GAPDH antibody (Ambion, 6C5) was used in western blot on human samples (fig 5). BMC Mol Biol (2011) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10000; fig 4
  • western blot; mouse; 1:10000; fig 4
In order to examine Pitx2c expression in the left and right atrial tissue in adult murine and human atria, Invitrogen GAPDH antibody (Ambion, #AM4300) was used in western blot on human samples at 1:10000 (fig 4) and in western blot on mouse samples at 1:10000 (fig 4). PLoS ONE (2011) ncbi
mouse monoclonal (6C5)
  • immunohistochemistry; mouse; 1:1000; fig 1
In order to characterize mice lacking SCHAD (hadh(-/-)), Invitrogen GAPDH antibody (Ambion, AM4300) was used in immunohistochemistry on mouse samples at 1:1000 (fig 1). Endocrinology (2011) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig s3
In order to elucidate mechanism that regulate the integrity of adherens junctions, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig s3). PLoS ONE (2011) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:5000; fig 6
In order to determine the effect of NMDA or bicuculline treatment on miRNA expression in the hippocampal CA1 region of mice or rat neurons, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:5000 (fig 6). PLoS ONE (2011) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig s5
In order to characterize an APECED patient mutation, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig s5). Nucleic Acids Res (2011) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 3
In order to assess modulation of the TWEAK-Fn14 pathway as a therapeutic for oncology, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 3). MAbs (2011) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10,000; fig 1
In order to evaluate the prognostic significance of SATB1 expression in lung cancer, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:10,000 (fig 1). J Thorac Oncol (2011) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 6
In order to examine the varied penetrance and expressivity of the Twisted gastrulation mutation in mice, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 6). Dev Biol (2011) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 3
In order to study the effect of NS5A domain III on the production of hepatitis C virus, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 3). J Virol (2011) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 1
In order to determine the role that VOPP1 has in human squamous cell carcinoma, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 1). Lab Invest (2011) ncbi
mouse monoclonal (6C5)
  • western blot; human; 0.5 ug/ml; fig 4
In order to elucidate the mechanisms by which cholesterol regulates LRP-1 levels and function at the plasma membrane, Invitrogen GAPDH antibody (Ambion, clone 6C5) was used in western blot on human samples at 0.5 ug/ml (fig 4). FASEB J (2011) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:10,000; fig 5
In order to examine nestin expression in ventricular fibroblasts, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on rat samples at 1:10,000 (fig 5). J Cell Physiol (2012) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 7
In order to elucidate the role of PTP1B in liver regeneration, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 7). Am J Pathol (2011) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 7
In order to determine if PINCH1 translocates to the nucleus and regulates gene expression, Invitrogen GAPDH antibody (Ambion, 4300) was used in western blot on human samples (fig 7). PLoS ONE (2011) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:20,000; fig 5
In order to test the effect of ventricular load on cardiomyopathy, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:20,000 (fig 5). J Am Coll Cardiol (2011) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to study the role in Cdk regulation of the novel gene magoh identified in a genetic screen of a murine cell cycle mutant, Invitrogen GAPDH antibody (Ambion, 6C5) was used in western blot on mouse samples . Genes Cells (2011) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:5000; fig 1
In order to study the role of TLR3 in the Chlamydia-induced IFN-beta response using oviduct epithelial cells, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:5000 (fig 1). J Immunol (2010) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:15,000; fig 5
In order to investigate the effect of morphine on neuronal GIRK signaling , Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on rat samples at 1:15,000 (fig 5). J Neurosci (2010) ncbi
mouse monoclonal (6C5)
  • immunocytochemistry; human; fig 3
  • immunohistochemistry; human; fig 3
In order to use three rapid siRNA transfection techniques to silence endothelial genes in the human saphenous vein, Invitrogen GAPDH antibody (Ambion, AM4300) was used in immunocytochemistry on human samples (fig 3) and in immunohistochemistry on human samples (fig 3). J Vasc Surg (2010) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
In order to characterize parkin knockouts of Danio rerio, Invitrogen GAPDH antibody (Ambion, AM 4300) was used in western blot on human samples (fig 2). PLoS ONE (2010) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 1
  • western blot; rat; fig 1
In order to test if C-terminus of HSC70 interacting protein upregulation enhances neural survival, Invitrogen GAPDH antibody (Applied Biosystems/Ambion, AM4300) was used in western blot on mouse samples (fig 1) and in western blot on rat samples (fig 1). Antioxid Redox Signal (2011) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 1
In order to examine the T cell subset responses to Ca(2+) signals, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 1). J Immunol (2010) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 6
In order to report the redox-responsive molecular signals that drive senescence-associated matrix metalloproteinase-1 expression, Invitrogen GAPDH antibody (Ambion, 4300) was used in western blot on human samples (fig 6). J Cell Physiol (2010) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 0.5 ug/ml; fig 8
In order to study protein alterations that contribute to AQP8 regulation and trafficking, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 0.5 ug/ml (fig 8). J Proteomics (2010) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10,000; fig 1
In order to examine VEGF receptor expression in tumor cells, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:10,000 (fig 1). Clin Cancer Res (2010) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:5000; fig 5
In order to determine the role of E2F4 in bone development using mutant mice, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:5000 (fig 5). Cell Cycle (2010) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:1000; fig 3
In order to test if l-Ala-gamma-d-Glu-meso-DAP is transported into intestinal epithelial cells via PepT1, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:1000 (fig 3). Am J Physiol Gastrointest Liver Physiol (2010) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 5
In order to investigate the role of miR-137 in neuronal maturation, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 5). Stem Cells (2010) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 5
  • western blot; mouse; fig 5
In order to explore Smad3 interactions with CCCTC-binding factor, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 5) and in western blot on mouse samples (fig 5). J Biol Chem (2010) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:4000
In order to study the function of progesterone receptor membrane component-1 monomers and dimers, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on rat samples at 1:4000. Mol Cell Endocrinol (2010) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
In order to examine ChREBP expression during the acute phase response, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 2). Innate Immun (2011) ncbi
mouse monoclonal (6C5)
  • western blot; rat; fig 3
In order to test if basic fibroblast growth factor enhances axonal branching, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on rat samples (fig 3). Mol Biol Cell (2010) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 1
In order to investigate if microRNAs regulate CD98 expression during intestinal epithelial cell differentiation and inflammation, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 1). J Biol Chem (2010) ncbi
mouse monoclonal (6C5)
  • western blot; Caenorhabditis elegans; 1:2000; fig s1
In order to elucidate the function of ATAD3, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on Caenorhabditis elegans samples at 1:2000 (fig s1). PLoS ONE (2009) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to study the relationship between PTPN13 phosphatase activity and MAP kinase signaling, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples . Oncogene (2009) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to test if the -144/-135 Sp element influences basal HKalpha2 gene transcription in murine inner medullary collecting duct cells, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . Am J Physiol Renal Physiol (2009) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 3
In order to investigate the contribution of reactive oxygen species to the age-dependent increase in collagenase, Invitrogen GAPDH antibody (Ambion, 4300) was used in western blot on mouse samples (fig 3). Exp Gerontol (2009) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to elucidate the neurodevelopmental influences of Met activation, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . J Comp Neurol (2009) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
In order to test if mammalian target of rapamycin inhibitor everolimus attenuates neointimal hyperplasia, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 2). Eur J Cardiothorac Surg (2009) ncbi
mouse monoclonal (6C5)
  • western blot; African green monkey; fig 5
In order to isolate and identify the huntingtin gene of the common marmoset (Callithrix jacchus), Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on African green monkey samples (fig 5). Gene (2009) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:4000
In order to study Silurus asotus lectin-induced heat shock protein 70 expression, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:4000. Biochim Biophys Acta (2009) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to perform a genome-wide linkage scan for endurance training-induced changes in stroke volume, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . Physiol Genomics (2009) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 7
In order to report that the BAR domain of ASAP1 is a protein binding site for FIP3, Invitrogen GAPDH antibody (Affinity BioReagents, 6C5) was used in western blot on human samples (fig 7). Mol Biol Cell (2008) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1 ug/ml; fig 1
In order to determine the contribution of TRIM32 to carcinogenesis, Invitrogen GAPDH antibody (Ambion, 6C5) was used in western blot on human samples at 1 ug/ml (fig 1). Cancer Res (2008) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to identify the molecular pathways that promote survival and apoptosis of UACC903 and UACC903(+6) cell lines, respectively, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples . Apoptosis (2008) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to explore whether retinoic acid promotes differentiation of human SH-SY5Y neuroblastoma cells by modulating Cdh1, Invitrogen GAPDH antibody (Ambion, 6C5) was used in western blot on human samples . Oncogene (2008) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to elucidate how RAF controls cell survival, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . Mol Cell Biol (2008) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 4
In order to analyze the effect of bone morphogenetic proteins on PTEN, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 4). Cancer Biol Ther (2007) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to identify genes upregulated in RANKL-stimulated osteoclast precursor cells, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . Bone (2008) ncbi
mouse monoclonal (6C5)
  • western blot; common platanna; 1:1000
In order to investigate the role of thyroid hormone receptors in apoptosis, Invitrogen GAPDH antibody (ambion, AM4300) was used in western blot on common platanna samples at 1:1000. Apoptosis (2007) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 1
In order to study the involvement of LMO4 in mesenchymal-epithelial signaling, Invitrogen GAPDH antibody (Ambion, 4300) was used in western blot on human samples (fig 1). Oncogene (2006) ncbi
Bio-Rad
mouse monoclonal (4G5)
  • western blot; human; 1:50,000; fig 7
Bio-Rad GAPDH antibody (ABD Serotec, MCA4740) was used in western blot on human samples at 1:50,000 (fig 7). Nat Commun (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:1000; fig 7
Bio-Rad GAPDH antibody (Bio-Rad, MCA4739) was used in western blot on human samples at 1:1000 (fig 7). PLoS ONE (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:2000; fig 2
Bio-Rad GAPDH antibody (ABD Serotec, MCA4739) was used in western blot on mouse samples at 1:2000 (fig 2). Nat Commun (2016) ncbi
mouse monoclonal (4G5)
  • western blot; human; fig 5c
Bio-Rad GAPDH antibody (AbD Serotec, MCA4740) was used in western blot on human samples (fig 5c). Nucleic Acids Res (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 6
In order to study the role of Rpn10 and Rpn13 in recognition of cellular homeostasis and ubiquitinated protein, Bio-Rad GAPDH antibody (AbD Serotec, MCA4739) was used in western blot on mouse samples (fig 6). PLoS Genet (2015) ncbi
mouse monoclonal (4G5)
  • western blot; human
In order to study OGR1-mediated, pH-dependent signaling pathways in intestinal epithelial cells, Bio-Rad GAPDH antibody (AbD Serotec, MCA4740) was used in western blot on human samples . Am J Physiol Gastrointest Liver Physiol (2015) ncbi
mouse monoclonal (4G5)
  • immunocytochemistry; human
Bio-Rad GAPDH antibody (AbD Serotech, 4G5) was used in immunocytochemistry on human samples . Eur J Cell Biol (2014) ncbi
GeneTex
mouse monoclonal (6C5)
  • western blot; human; fig 1
In order to report that heat shock protein-90alpha allows cancer cells to survive hypoxia, GeneTex GAPDH antibody (Genetex, GTX28245) was used in western blot on human samples (fig 1). Sci Rep (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to elucidate a role for heat shock proteins in ischemia, GeneTex GAPDH antibody (Genetex, GTX28245) was used in western blot on human samples . J Cell Sci (2015) ncbi
Articles Reviewed
  1. Rangel L, Bernabé Rubio M, Fernández Barrera J, Casares Arias J, Millan J, Alonso M, et al. Caveolin-1α regulates primary cilium length by controlling RhoA GTPase activity. Sci Rep. 2019;9:1116 pubmed publisher
  2. Mooney M, Geerts D, Kort E, Bachmann A. Anti-tumor effect of sulfasalazine in neuroblastoma. Biochem Pharmacol. 2019;162:237-249 pubmed publisher
  3. Leoz M, Kukanja P, Luo Z, Huang F, Cary D, Peterlin B, et al. HEXIM1-Tat chimera inhibits HIV-1 replication. PLoS Pathog. 2018;14:e1007402 pubmed publisher
  4. Luisier R, Tyzack G, Hall C, Mitchell J, Devine H, Taha D, et al. Intron retention and nuclear loss of SFPQ are molecular hallmarks of ALS. Nat Commun. 2018;9:2010 pubmed publisher
  5. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed publisher
  6. Xu Y, Wang Y, Yao A, Xu Z, Dou H, Shen S, et al. Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling Pathway. Sci Rep. 2017;7:11776 pubmed publisher
  7. Whitson J, Zhang X, Medvedovic M, Chen J, Wei Z, Monnier V, et al. Transcriptome of the GSH-Depleted Lens Reveals Changes in Detoxification and EMT Signaling Genes, Transport Systems, and Lipid Homeostasis. Invest Ophthalmol Vis Sci. 2017;58:2666-2684 pubmed publisher
  8. Bi P, Ramirez Martinez A, Li H, Cannavino J, McAnally J, Shelton J, et al. Control of muscle formation by the fusogenic micropeptide myomixer. Science. 2017;356:323-327 pubmed publisher
  9. AlAmri M, Kadri H, Alderwick L, Simpkins N, Mehellou Y. Rafoxanide and Closantel Inhibit SPAK and OSR1 Kinases by Binding to a Highly Conserved Allosteric Site on Their C-terminal Domains. ChemMedChem. 2017;12:639-645 pubmed publisher
  10. Suresh S, Chavalmane A, Dj V, Yarreiphang H, Rai S, Paul A, et al. A novel autophagy modulator 6-Bio ameliorates SNCA/?-synuclein toxicity. Autophagy. 2017;13:1221-1234 pubmed publisher
  11. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed publisher
  12. de Oliveira R, Vicente Miranda H, Francelle L, Pinho R, Szego E, Martinho R, et al. The mechanism of sirtuin 2-mediated exacerbation of alpha-synuclein toxicity in models of Parkinson disease. PLoS Biol. 2017;15:e2000374 pubmed publisher
  13. Xiang J, Yang S, Xin N, Gaertig M, Reeves R, Li S, et al. DYRK1A regulates Hap1-Dcaf7/WDR68 binding with implication for delayed growth in Down syndrome. Proc Natl Acad Sci U S A. 2017;114:E1224-E1233 pubmed publisher
  14. Guo R, Si R, Scott B, Makino A. Mitochondrial connexin40 regulates mitochondrial calcium uptake in coronary endothelial cells. Am J Physiol Cell Physiol. 2017;312:C398-C406 pubmed publisher
  15. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed publisher
  16. Babagana M, Johnson S, Slabodkin H, Bshara W, Morrison C, Kandel E. P21-activated kinase 1 regulates resistance to BRAF inhibition in human cancer cells. Mol Carcinog. 2017;56:1515-1525 pubmed publisher
  17. Miroshnychenko O, Chang W, Dragoo J. The Use of Platelet-Rich and Platelet-Poor Plasma to Enhance Differentiation of Skeletal Myoblasts: Implications for the Use of Autologous Blood Products for Muscle Regeneration. Am J Sports Med. 2017;45:945-953 pubmed publisher
  18. Zhang D, Wu B, Wang P, Wang Y, Lu P, Nechiporuk T, et al. Non-CpG methylation by DNMT3B facilitates REST binding and gene silencing in developing mouse hearts. Nucleic Acids Res. 2017;45:3102-3115 pubmed publisher
  19. Radhakrishnan V, Gilpatrick M, Parsa N, Kiela P, Ghishan F. Expression of Cav1.3 calcium channel in the human and mouse colon: posttranscriptional inhibition by IFN?. Am J Physiol Gastrointest Liver Physiol. 2017;312:G77-G84 pubmed publisher
  20. Akagi R, Akatsu Y, Fisch K, Alvarez Garcia O, Teramura T, Muramatsu Y, et al. Dysregulated circadian rhythm pathway in human osteoarthritis: NR1D1 and BMAL1 suppression alters TGF-? signaling in chondrocytes. Osteoarthritis Cartilage. 2017;25:943-951 pubmed publisher
  21. Hwang D, Jo H, Hwang S, Kim J, Kim I, Lim Y. Conditioned medium from LS 174T goblet cells treated with oxyresveratrol strengthens tight junctions in Caco-2 cells. Biomed Pharmacother. 2017;85:280-286 pubmed publisher
  22. Takács E, Boto P, Simo E, Csuth T, Toth B, Raveh Amit H, et al. Immunogenic Dendritic Cell Generation from Pluripotent Stem Cells by Ectopic Expression of Runx3. J Immunol. 2017;198:239-248 pubmed
  23. Chehaibi K, le Maire L, Bradoni S, Escolà J, Blanco Vaca F, Slimane M. Effect of PPAR-β/δ agonist GW0742 treatment in the acute phase response and blood-brain barrier permeability following brain injury. Transl Res. 2017;182:27-48 pubmed publisher
  24. Liu L, Tao Z, Zheng L, Brooke J, Smith C, Liu D, et al. FoxO1 interacts with transcription factor EB and differentially regulates mitochondrial uncoupling proteins via autophagy in adipocytes. Cell Death Discov. 2016;2:16066 pubmed
  25. Nguyen A, Nyberg K, Scott M, Welsh A, Nguyen A, Wu N, et al. Stiffness of pancreatic cancer cells is associated with increased invasive potential. Integr Biol (Camb). 2016;8:1232-1245 pubmed
  26. Alphonse M, Duong T, Shumitzu C, Hoang T, McCrindle B, Franco A, et al. Inositol-Triphosphate 3-Kinase C Mediates Inflammasome Activation and Treatment Response in Kawasaki Disease. J Immunol. 2016;197:3481-3489 pubmed
  27. Kim Y, Yadava R, Mandal M, Mahadevan K, Yu Q, Leitges M, et al. Disease Phenotypes in a Mouse Model of RNA Toxicity Are Independent of Protein Kinase Cα and Protein Kinase Cβ. PLoS ONE. 2016;11:e0163325 pubmed publisher
  28. Charrier A, Wang L, Stephenson E, Ghanta S, Ko C, Croniger C, et al. Zinc finger protein 407 overexpression upregulates PPAR target gene expression and improves glucose homeostasis in mice. Am J Physiol Endocrinol Metab. 2016;311:E869-E880 pubmed publisher
  29. Deeg K, Chung I, Bauer C, Rippe K. Cancer Cells with Alternative Lengthening of Telomeres Do Not Display a General Hypersensitivity to ATR Inhibition. Front Oncol. 2016;6:186 pubmed publisher
  30. Diokmetzidou A, Soumaka E, Kloukina I, Tsikitis M, Makridakis M, Varela A, et al. Desmin and ?B-crystallin interplay in the maintenance of mitochondrial homeostasis and cardiomyocyte survival. J Cell Sci. 2016;129:3705-3720 pubmed
  31. Damgaard R, Walker J, Marco Casanova P, Morgan N, Titheradge H, Elliott P, et al. The Deubiquitinase OTULIN Is an Essential Negative Regulator of Inflammation and Autoimmunity. Cell. 2016;166:1215-1230.e20 pubmed publisher
  32. Batalha V, Ferreira D, Coelho J, Valadas J, Gomes R, Temido Ferreira M, et al. The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function. Sci Rep. 2016;6:31493 pubmed publisher
  33. Wang X, Buechler N, Martin A, Wells J, Yoza B, McCall C, et al. Sirtuin-2 Regulates Sepsis Inflammation in ob/ob Mice. PLoS ONE. 2016;11:e0160431 pubmed publisher
  34. Wang Y, Lin S, Hsieh P, Hung S. Concomitant beige adipocyte differentiation upon induction of mesenchymal stem cells into brown adipocytes. Biochem Biophys Res Commun. 2016;478:689-95 pubmed publisher
  35. Al Sady B, Greenstein R, El Samad H, Braun S, Madhani H. Sensitive and Quantitative Three-Color Protein Imaging in Fission Yeast Using Spectrally Diverse, Recoded Fluorescent Proteins with Experimentally-Characterized In Vivo Maturation Kinetics. PLoS ONE. 2016;11:e0159292 pubmed publisher
  36. Cheng Y, Huang C, Lee Y, Tien L, Ku W, Chien R, et al. Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells. Sci Rep. 2016;6:30314 pubmed publisher
  37. Pagliuso A, Valente C, Giordano L, Filograna A, Li G, Circolo D, et al. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase ?. Nat Commun. 2016;7:12148 pubmed publisher
  38. Edmondson R, Adcock A, Yang L. Influence of Matrices on 3D-Cultured Prostate Cancer Cells' Drug Response and Expression of Drug-Action Associated Proteins. PLoS ONE. 2016;11:e0158116 pubmed publisher
  39. Justis A, Hansen B, Beare P, King K, Heinzen R, Gilk S. Interactions between the Coxiella burnetii parasitophorous vacuole and the endoplasmic reticulum involve the host protein ORP1L. Cell Microbiol. 2017;19: pubmed publisher
  40. Choi H, Jin S, Kwon J, Kim J, Jeong J, Kim J, et al. Characterization of Mammalian ADAM2 and Its Absence from Human Sperm. PLoS ONE. 2016;11:e0158321 pubmed publisher
  41. Ortiz D, Glassbrook J, Pellett P. Protein-Protein Interactions Suggest Novel Activities of Human Cytomegalovirus Tegument Protein pUL103. J Virol. 2016;90:7798-810 pubmed publisher
  42. Gautheron J, Vucur M, Schneider A, Severi I, Roderburg C, Roy S, et al. The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance. Nat Commun. 2016;7:11869 pubmed publisher
  43. Muñoz Félix J, Pérez Roque L, Núñez Gómez E, Oujo B, Arevalo M, Ruiz Remolina L, et al. Overexpression of the short endoglin isoform reduces renal fibrosis and inflammation after unilateral ureteral obstruction. Biochim Biophys Acta. 2016;1862:1801-14 pubmed publisher
  44. Ryan T, Schmidt C, Green T, Spangenburg E, Neufer P, McClung J. Targeted Expression of Catalase to Mitochondria Protects Against Ischemic Myopathy in High-Fat Diet-Fed Mice. Diabetes. 2016;65:2553-68 pubmed publisher
  45. Liu L, Zheng L, Zou P, Brooke J, Smith C, Long Y, et al. FoxO1 antagonist suppresses autophagy and lipid droplet growth in adipocytes. Cell Cycle. 2016;15:2033-41 pubmed publisher
  46. Høydal M, Stølen T, Kettlewell S, Maier L, Brown J, Sowa T, et al. Exercise training reverses myocardial dysfunction induced by CaMKII?C overexpression by restoring Ca2+ homeostasis. J Appl Physiol (1985). 2016;121:212-20 pubmed publisher
  47. Lee J, Kwon G, Park J, Kim J, Lim Y. Brief Communication: SIR-2.1-dependent lifespan extension of Caenorhabditis elegans by oxyresveratrol and resveratrol. Exp Biol Med (Maywood). 2016;241:1757-63 pubmed publisher
  48. Bianchi Smiraglia A, Bagati A, Fink E, Moparthy S, Wawrzyniak J, Marvin E, et al. Microphthalmia-associated transcription factor suppresses invasion by reducing intracellular GTP pools. Oncogene. 2017;36:84-96 pubmed publisher
  49. Scott T, Wicker C, Suganya R, Dhar B, Pittman T, Horbinski C, et al. Polyubiquitination of apurinic/apyrimidinic endonuclease 1 by Parkin. Mol Carcinog. 2017;56:325-336 pubmed publisher
  50. Humoud M, Doyle N, Royall E, Willcocks M, Sorgeloos F, van Kuppeveld F, et al. Feline Calicivirus Infection Disrupts Assembly of Cytoplasmic Stress Granules and Induces G3BP1 Cleavage. J Virol. 2016;90:6489-6501 pubmed publisher
  51. Watanabe Y, Papoutsoglou P, Maturi V, Tsubakihara Y, Hottiger M, Heldin C, et al. Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation. J Biol Chem. 2016;291:12706-23 pubmed publisher
  52. Tran N, Su H, Khodadadi Jamayran A, Lin S, Zhang L, Zhou D, et al. The AS-RBM15 lncRNA enhances RBM15 protein translation during megakaryocyte differentiation. EMBO Rep. 2016;17:887-900 pubmed publisher
  53. Kii I, Sumida Y, Goto T, Sonamoto R, Okuno Y, Yoshida S, et al. Selective inhibition of the kinase DYRK1A by targeting its folding process. Nat Commun. 2016;7:11391 pubmed publisher
  54. Dokas J, Chadt A, Joost H, Al Hasani H. Tbc1d1 deletion suppresses obesity in leptin-deficient mice. Int J Obes (Lond). 2016;40:1242-9 pubmed publisher
  55. Huang C, Lee C, Yang S, Chien C, Huang C, Yang R, et al. Upregulation of the growth arrest-specific-2 in recurrent colorectal cancers, and its susceptibility to chemotherapy in a model cell system. Biochim Biophys Acta. 2016;1862:1345-53 pubmed publisher
  56. Feng L, Wang Y, Cai H, Sun G, Niu W, Xin Q, et al. ADAM10-Notch signaling governs the recruitment of ovarian pregranulosa cells and controls folliculogenesis in mice. J Cell Sci. 2016;129:2202-12 pubmed publisher
  57. Flodby P, Kim Y, Beard L, Gao D, Ji Y, Kage H, et al. Knockout Mice Reveal a Major Role for Alveolar Epithelial Type I Cells in Alveolar Fluid Clearance. Am J Respir Cell Mol Biol. 2016;55:395-406 pubmed publisher
  58. Wang Y, Lichter Konecki U, Anyane Yeboa K, Shaw J, Lu J, Ostlund C, et al. A mutation abolishing the ZMPSTE24 cleavage site in prelamin A causes a progeroid disorder. J Cell Sci. 2016;129:1975-80 pubmed publisher
  59. Ledsaak M, Bengtsen M, Molværsmyr A, Fuglerud B, Matre V, Eskeland R, et al. PIAS1 binds p300 and behaves as a coactivator or corepressor of the transcription factor c-Myb dependent on SUMO-status. Biochim Biophys Acta. 2016;1859:705-18 pubmed publisher
  60. Del Debbio C, Mir Q, Parameswaran S, Mathews S, Xia X, Zheng L, et al. Notch Signaling Activates Stem Cell Properties of Müller Glia through Transcriptional Regulation and Skp2-mediated Degradation of p27Kip1. PLoS ONE. 2016;11:e0152025 pubmed publisher
  61. Giannogonas P, Apostolou A, Manousopoulou A, Theocharis S, Macari S, Psarras S, et al. Identification of a novel interaction between corticotropin releasing hormone (Crh) and macroautophagy. Sci Rep. 2016;6:23342 pubmed publisher
  62. Liu Y, Chen C, Xu Z, Scuoppo C, Rillahan C, Gao J, et al. Deletions linked to TP53 loss drive cancer through p53-independent mechanisms. Nature. 2016;531:471-475 pubmed publisher
  63. German P, Bai S, Liu X, Sun M, Zhou L, Kalra S, et al. Phosphorylation-dependent cleavage regulates von Hippel Lindau proteostasis and function. Oncogene. 2016;35:4973-80 pubmed publisher
  64. Barja Fernández S, Folgueira C, Castelao C, Al Massadi O, Bravo S, Garcia Caballero T, et al. FNDC5 is produced in the stomach and associated to body composition. Sci Rep. 2016;6:23067 pubmed publisher
  65. Nguyen J, Bernert R, In K, Kang P, Sebastiao N, Hu C, et al. Gamma-interferon-inducible lysosomal thiol reductase is upregulated in human melanoma. Melanoma Res. 2016;26:125-37 pubmed publisher
  66. Haven B, Heilig E, Donham C, Settles M, Vasilevsky N, Owen K. Registered report: A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. elife. 2016;5: pubmed publisher
  67. Awad P, Sanon N, Chattopadhyaya B, Carriço J, Ouardouz M, Gagné J, et al. Reducing premature KCC2 expression rescues seizure susceptibility and spine morphology in atypical febrile seizures. Neurobiol Dis. 2016;91:10-20 pubmed publisher
  68. Khalid S, Drasche A, Thurner M, Hermann M, Ashraf M, Fresser F, et al. cJun N-terminal kinase (JNK) phosphorylation of serine 36 is critical for p66Shc activation. Sci Rep. 2016;6:20930 pubmed publisher
  69. Astorquiza P, Usorach J, Racagni G, Villasuso A. Diacylglycerol pyrophosphate binds and inhibits the glyceraldehyde-3-phosphate dehydrogenase in barley aleurone. Plant Physiol Biochem. 2016;101:88-95 pubmed publisher
  70. Li Y, Banerjee S, Wang Y, Goldstein S, Dong B, Gaughan C, et al. Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses. Proc Natl Acad Sci U S A. 2016;113:2241-6 pubmed publisher
  71. Dong H, Zou M, Bhatia A, Jayaprakash P, Hofman F, YING Q, et al. Breast Cancer MDA-MB-231 Cells Use Secreted Heat Shock Protein-90alpha (Hsp90α) to Survive a Hostile Hypoxic Environment. Sci Rep. 2016;6:20605 pubmed publisher
  72. Button R, Vincent J, Strang C, Luo S. Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis. Oncotarget. 2016;7:5157-75 pubmed publisher
  73. Roßner F, Gieseler C, Morkel M, Royer H, Rivera M, Bläker H, et al. Uncoupling of EGFR-RAS signaling and nuclear localization of YBX1 in colorectal cancer. Oncogenesis. 2016;5:e187 pubmed publisher
  74. Weilner S, Keider V, Winter M, Harreither E, Salzer B, Weiss F, et al. Vesicular Galectin-3 levels decrease with donor age and contribute to the reduced osteo-inductive potential of human plasma derived extracellular vesicles. Aging (Albany NY). 2016;8:16-33 pubmed
  75. Leen E, Sorgeloos F, Correia S, Chaudhry Y, Cannac F, Pastore C, et al. A Conserved Interaction between a C-Terminal Motif in Norovirus VPg and the HEAT-1 Domain of eIF4G Is Essential for Translation Initiation. PLoS Pathog. 2016;12:e1005379 pubmed publisher
  76. Conery A, Centore R, Neiss A, Keller P, Joshi S, Spillane K, et al. Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma. elife. 2016;5: pubmed publisher
  77. Singh A, Kan C, Dong B, Liu J. SREBP2 Activation Induces Hepatic Long-chain Acyl-CoA Synthetase 1 (ACSL1) Expression in Vivo and in Vitro through a Sterol Regulatory Element (SRE) Motif of the ACSL1 C-promoter. J Biol Chem. 2016;291:5373-84 pubmed publisher
  78. Baude A, Aaes T, Zhai B, Al Nakouzi N, Oo H, Daugaard M, et al. Hepatoma-derived growth factor-related protein 2 promotes DNA repair by homologous recombination. Nucleic Acids Res. 2016;44:2214-26 pubmed publisher
  79. Blachère N, Parveen S, Fak J, Frank M, Orange D. Inflammatory but not apoptotic death of granulocytes citrullinates fibrinogen. Arthritis Res Ther. 2015;17:369 pubmed publisher
  80. Smith K, Zhou B, Avdulov S, Benyumov A, Peterson M, Liu Y, et al. Transforming Growth Factor-β1 Induced Epithelial Mesenchymal Transition is blocked by a chemical antagonist of translation factor eIF4E. Sci Rep. 2015;5:18233 pubmed publisher
  81. Drilon A, Somwar R, Wagner J, Vellore N, Eide C, Zabriskie M, et al. A Novel Crizotinib-Resistant Solvent-Front Mutation Responsive to Cabozantinib Therapy in a Patient with ROS1-Rearranged Lung Cancer. Clin Cancer Res. 2016;22:2351-8 pubmed publisher
  82. Kim J, Lee K, Rhee K. PLK1 regulation of PCNT cleavage ensures fidelity of centriole separation during mitotic exit. Nat Commun. 2015;6:10076 pubmed publisher
  83. Nouws J, Goswami A, Bestwick M, McCann B, Surovtseva Y, Shadel G. Mitochondrial Ribosomal Protein L12 Is Required for POLRMT Stability and Exists as Two Forms Generated by Alternative Proteolysis during Import. J Biol Chem. 2016;291:989-97 pubmed publisher
  84. Zhang L, Tran N, Su H, Wang R, Lu Y, Tang H, et al. Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing. elife. 2015;4: pubmed publisher
  85. Valcourt U, Carthy J, Okita Y, Alcaraz L, Kato M, Thuault S, et al. Analysis of Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor β. Methods Mol Biol. 2016;1344:147-81 pubmed publisher
  86. Quigley H, Pitha I, Welsbie D, Nguyen C, Steinhart M, Nguyen T, et al. Losartan Treatment Protects Retinal Ganglion Cells and Alters Scleral Remodeling in Experimental Glaucoma. PLoS ONE. 2015;10:e0141137 pubmed publisher
  87. Evans C, Rosser R, Waby J, Noirel J, Lai D, Wright P, et al. Reduced keratin expression in colorectal neoplasia and associated fields is reversible by diet and resection. BMJ Open Gastroenterol. 2015;2:e000022 pubmed publisher
  88. Adesina A, Veo B, Courteau G, Mehta V, Wu X, Pang K, et al. FOXG1 expression shows correlation with neuronal differentiation in cerebellar development, aggressive phenotype in medulloblastomas, and survival in a xenograft model of medulloblastoma. Hum Pathol. 2015;46:1859-71 pubmed publisher
  89. Krisenko M, Higgins R, Ghosh S, Zhou Q, Trybula J, Wang W, et al. Syk Is Recruited to Stress Granules and Promotes Their Clearance through Autophagy. J Biol Chem. 2015;290:27803-15 pubmed publisher
  90. Ha J, Gomathinayagam R, Yan M, Jayaraman M, Ramesh R, Dhanasekaran D. Determinant role for the gep oncogenes, Gα12/13, in ovarian cancer cell proliferation and xenograft tumor growth. Genes Cancer. 2015;6:356-364 pubmed
  91. Seo M, Jang W, Rhee K. Integrity of the Pericentriolar Material Is Essential for Maintaining Centriole Association during M Phase. PLoS ONE. 2015;10:e0138905 pubmed publisher
  92. Barroso M, Tucker H, Drake L, Nichol K, Drake J. Antigen-B Cell Receptor Complexes Associate with Intracellular major histocompatibility complex (MHC) Class II Molecules. J Biol Chem. 2015;290:27101-12 pubmed publisher
  93. Davare M, Vellore N, Wagner J, Eide C, Goodman J, Drilon A, et al. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors. Proc Natl Acad Sci U S A. 2015;112:E5381-90 pubmed publisher
  94. Suzuki M, Watanabe M, Nakamaru Y, Takagi D, Takahashi H, Fukuda S, et al. TRIM39 negatively regulates the NFκB-mediated signaling pathway through stabilization of Cactin. Cell Mol Life Sci. 2016;73:1085-101 pubmed publisher
  95. Zhao Y, Londono P, Cao Y, Sharpe E, Proenza C, O Rourke R, et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun. 2015;6:8243 pubmed publisher
  96. Renaud J, Dumont F, Khelfaoui M, Foisset S, Letourneur F, Bienvenu T, et al. Identification of intellectual disability genes showing circadian clock-dependent expression in the mouse hippocampus. Neuroscience. 2015;308:11-50 pubmed publisher
  97. Rolyan H, Tyurina Y, Hernandez M, Amoscato A, Sparvero L, Nmezi B, et al. Defects of Lipid Synthesis Are Linked to the Age-Dependent Demyelination Caused by Lamin B1 Overexpression. J Neurosci. 2015;35:12002-17 pubmed publisher
  98. Volta M, Cataldi S, Beccano Kelly D, Munsie L, Tatarnikov I, Chou P, et al. Chronic and acute LRRK2 silencing has no long-term behavioral effects, whereas wild-type and mutant LRRK2 overexpression induce motor and cognitive deficits and altered regulation of dopamine release. Parkinsonism Relat Disord. 2015;21:1156-63 pubmed publisher
  99. Wang Y, Li Z, Zhang P, Poon E, Kong C, Boheler K, et al. Nitric Oxide-cGMP-PKG Pathway Acts on Orai1 to Inhibit the Hypertrophy of Human Embryonic Stem Cell-Derived Cardiomyocytes. Stem Cells. 2015;33:2973-84 pubmed publisher
  100. Wu G, Huang C, Yu Y. Pseudouridine in mRNA: Incorporation, Detection, and Recoding. Methods Enzymol. 2015;560:187-217 pubmed publisher
  101. Wang H, Lööf S, Borg P, Nader G, Blau H, Simon A. Turning terminally differentiated skeletal muscle cells into regenerative progenitors. Nat Commun. 2015;6:7916 pubmed publisher
  102. Hamazaki J, Hirayama S, Murata S. Redundant Roles of Rpn10 and Rpn13 in Recognition of Ubiquitinated Proteins and Cellular Homeostasis. PLoS Genet. 2015;11:e1005401 pubmed publisher
  103. Treacy Abarca S, Mukherjee S. Legionella suppresses the host unfolded protein response via multiple mechanisms. Nat Commun. 2015;6:7887 pubmed publisher
  104. de Vallière C, Vidal S, Clay I, Jurisic G, Tcymbarevich I, Lang S, et al. The pH-sensing receptor OGR1 improves barrier function of epithelial cells and inhibits migration in an acidic environment. Am J Physiol Gastrointest Liver Physiol. 2015;309:G475-90 pubmed publisher
  105. Stiess M, Wegehingel S, Nguyen C, Nickel W, Bradke F, Cambridge S. A Dual SILAC Proteomic Labeling Strategy for Quantifying Constitutive and Cell-Cell Induced Protein Secretion. J Proteome Res. 2015;14:3229-38 pubmed publisher
  106. Siriwardana N, Meyer R, Panchenko M. The novel function of JADE1S in cytokinesis of epithelial cells. Cell Cycle. 2015;14:2821-34 pubmed publisher
  107. Hoover H, Li J, Marchese J, Rothwell C, Borawoski J, Jeffery D, et al. Quantitative Proteomic Verification of Membrane Proteins as Potential Therapeutic Targets Located in the 11q13 Amplicon in Cancers. J Proteome Res. 2015;14:3670-9 pubmed publisher
  108. Li F, Buck D, De Winter J, Kolb J, Meng H, Birch C, et al. Nebulin deficiency in adult muscle causes sarcomere defects and muscle-type-dependent changes in trophicity: novel insights in nemaline myopathy. Hum Mol Genet. 2015;24:5219-33 pubmed publisher
  109. Carthy J, Sundqvist A, Heldin A, van Dam H, Kletsas D, Heldin C, et al. Tamoxifen Inhibits TGF-β-Mediated Activation of Myofibroblasts by Blocking Non-Smad Signaling Through ERK1/2. J Cell Physiol. 2015;230:3084-92 pubmed publisher
  110. Masuda Y, Takahashi H, Sato S, Tomomori Sato C, Saraf A, Washburn M, et al. TRIM29 regulates the assembly of DNA repair proteins into damaged chromatin. Nat Commun. 2015;6:7299 pubmed publisher
  111. Yuan Y, Wu Q, Cheng G, Liu X, Liu S, Luo J, et al. Recombinant human lactoferrin enhances the efficacy of triple therapy in mice infected with Helicobacter pylori. Int J Mol Med. 2015;36:363-8 pubmed publisher
  112. Masuda Y, Takahashi H, Hatakeyama S. TRIM29 regulates the p63-mediated pathway in cervical cancer cells. Biochim Biophys Acta. 2015;1853:2296-305 pubmed publisher
  113. Ronchi G, Haastert Talini K, Fornasari B, Perroteau I, Geuna S, Gambarotta G. The Neuregulin1/ErbB system is selectively regulated during peripheral nerve degeneration and regeneration. Eur J Neurosci. 2016;43:351-64 pubmed publisher
  114. Luan Q, Jin L, Jiang C, Tay K, Lai F, Liu X, et al. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy. Autophagy. 2015;11:975-94 pubmed publisher
  115. Lucido C, Vermeer P, Wieking B, Vermeer D, Lee J. CD137 enhancement of HPV positive head and neck squamous cell carcinoma tumor clearance. Vaccines (Basel). 2014;2:841-53 pubmed publisher
  116. Hodges A, Gallegos I, Laughery M, Meas R, Tran L, Wyrick J. Histone Sprocket Arginine Residues Are Important for Gene Expression, DNA Repair, and Cell Viability in Saccharomyces cerevisiae. Genetics. 2015;200:795-806 pubmed publisher
  117. Reales E, Bernabé Rubio M, Casares Arias J, Rentero C, Fernández Barrera J, Rangel L, et al. The MAL protein is crucial for proper membrane condensation at the ciliary base, which is required for primary cilium elongation. J Cell Sci. 2015;128:2261-70 pubmed publisher
  118. Wang X, Buechler N, Yoza B, McCall C, Vachharajani V. Resveratrol attenuates microvascular inflammation in sepsis via SIRT-1-Induced modulation of adhesion molecules in ob/ob mice. Obesity (Silver Spring). 2015;23:1209-17 pubmed publisher
  119. Wright J, Atwan Z, Morris S, Leppard K. The Human Adenovirus Type 5 L4 Promoter Is Negatively Regulated by TFII-I and L4-33K. J Virol. 2015;89:7053-63 pubmed publisher
  120. Iguchi Y, Ishihara S, Uchida Y, Tajima K, Mizutani T, Kawabata K, et al. Filamin B Enhances the Invasiveness of Cancer Cells into 3D Collagen Matrices. Cell Struct Funct. 2015;40:61-7 pubmed publisher
  121. Pasqualon T, Pruessmeyer J, Weidenfeld S, Babendreyer A, Groth E, Schumacher J, et al. A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation. Cell Mol Life Sci. 2015;72:3783-801 pubmed publisher
  122. Mayer A, Di Iulio J, Maleri S, Eser U, Vierstra J, Reynolds A, et al. Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell. 2015;161:541-554 pubmed publisher
  123. Ljubicic V, Jasmin B. Metformin increases peroxisome proliferator-activated receptor γ Co-activator-1α and utrophin a expression in dystrophic skeletal muscle. Muscle Nerve. 2015;52:139-42 pubmed publisher
  124. Moreira J, Wohlwend M, Alves M, Wisløff U, Bye A. A small molecule activator of AKT does not reduce ischemic injury of the rat heart. J Transl Med. 2015;13:76 pubmed publisher
  125. Bettaieb A, Jiang J, Sasaki Y, Chao T, Kiss Z, Chen X, et al. Hepatocyte Nicotinamide Adenine Dinucleotide Phosphate Reduced Oxidase 4 Regulates Stress Signaling, Fibrosis, and Insulin Sensitivity During Development of Steatohepatitis in Mice. Gastroenterology. 2015;149:468-80.e10 pubmed publisher
  126. Roca Rodríguez M, El Bekay R, Garrido Sanchez L, Gómez Serrano M, Coin Aragüez L, Oliva Olivera W, et al. Parathyroid Hormone-Related Protein, Human Adipose-Derived Stem Cells Adipogenic Capacity and Healthy Obesity. J Clin Endocrinol Metab. 2015;100:E826-35 pubmed publisher
  127. Janes K. An analysis of critical factors for quantitative immunoblotting. Sci Signal. 2015;8:rs2 pubmed publisher
  128. Tsukiyama T, Fukui A, Terai S, Fujioka Y, Shinada K, Takahashi H, et al. Molecular Role of RNF43 in Canonical and Noncanonical Wnt Signaling. Mol Cell Biol. 2015;35:2007-23 pubmed publisher
  129. Maquigussa E, Arnoni C, Pereira L, Boim M. Calcitriol ameliorates renal damage in a pre-established proteinuria model. Mol Med Rep. 2015;12:1009-15 pubmed publisher
  130. Richardson E, Shukla S, Sweet D, Wearsch P, Tsichlis P, Boom W, et al. Toll-like receptor 2-dependent extracellular signal-regulated kinase signaling in Mycobacterium tuberculosis-infected macrophages drives anti-inflammatory responses and inhibits Th1 polarization of responding T cells. Infect Immun. 2015;83:2242-54 pubmed publisher
  131. Hutchins A, Takahashi Y, Miranda Saavedra D. Genomic analysis of LPS-stimulated myeloid cells identifies a common pro-inflammatory response but divergent IL-10 anti-inflammatory responses. Sci Rep. 2015;5:9100 pubmed publisher
  132. Liu Y, Li Y, Zhang D, Liu J, Gou K, Cui S. Mitogen-Activated Protein Kinase 8 (MAP3K8) Mediates the Signaling Pathway of Estradiol Stimulating Progesterone Production Through G Protein-Coupled Receptor 30 (GPR30) in Mouse Corpus Luteum. Mol Endocrinol. 2015;29:703-15 pubmed publisher
  133. Griffin J, Sondalle S, del Viso F, Baserga S, Khokha M. The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus. PLoS Genet. 2015;11:e1005018 pubmed publisher
  134. Jayaprakash P, Dong H, Zou M, Bhatia A, O Brien K, Chen M, et al. Hsp90α and Hsp90β together operate a hypoxia and nutrient paucity stress-response mechanism during wound healing. J Cell Sci. 2015;128:1475-80 pubmed publisher
  135. Takemoto K, Ishihara S, Mizutani T, Kawabata K, Haga H. Compressive stress induces dephosphorylation of the myosin regulatory light chain via RhoA phosphorylation by the adenylyl cyclase/protein kinase A signaling pathway. PLoS ONE. 2015;10:e0117937 pubmed publisher
  136. Jarosinski K, Donovan K, Du G. Expression of fluorescent proteins within the repeat long region of the Marek's disease virus genome allows direct identification of infected cells while retaining full pathogenicity. Virus Res. 2015;201:50-60 pubmed publisher
  137. Maganti A, Maier B, Tersey S, Sampley M, Mosley A, Özcan S, et al. Transcriptional activity of the islet β cell factor Pdx1 is augmented by lysine methylation catalyzed by the methyltransferase Set7/9. J Biol Chem. 2015;290:9812-22 pubmed publisher
  138. Schreiber K, Ortiz D, Academia E, Anies A, Liao C, Kennedy B. Rapamycin-mediated mTORC2 inhibition is determined by the relative expression of FK506-binding proteins. Aging Cell. 2015;14:265-73 pubmed publisher
  139. Radhakrishnan V, Kojs P, Ramalingam R, Midura Kiela M, Angeli P, Kiela P, et al. Experimental colitis is associated with transcriptional inhibition of Na+/Ca2+ exchanger isoform 1 (NCX1) expression by interferon γ in the renal distal convoluted tubules. J Biol Chem. 2015;290:8964-74 pubmed publisher
  140. West A, Khoury Hanold W, Staron M, Tal M, Pineda C, Lang S, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015;520:553-7 pubmed publisher
  141. Mandell D, Lajoie M, Mee M, Takeuchi R, Kuznetsov G, Norville J, et al. Biocontainment of genetically modified organisms by synthetic protein design. Nature. 2015;518:55-60 pubmed publisher
  142. Liu L, Zou P, Zheng L, Linarelli L, Amarell S, Passaro A, et al. Tamoxifen reduces fat mass by boosting reactive oxygen species. Cell Death Dis. 2015;6:e1586 pubmed publisher
  143. Zhang P, Wang L, Rodriguez Aguayo C, Yuan Y, Debeb B, Chen D, et al. miR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nat Commun. 2014;5:5671 pubmed publisher
  144. Freund A, Zhong F, Venteicher A, Meng Z, Veenstra T, Frydman J, et al. Proteostatic control of telomerase function through TRiC-mediated folding of TCAB1. Cell. 2014;159:1389-403 pubmed publisher
  145. Vigelsø A, Dybboe R, Hansen C, Dela F, Helge J, Guadalupe Grau A. GAPDH and β-actin protein decreases with aging, making Stain-Free technology a superior loading control in Western blotting of human skeletal muscle. J Appl Physiol (1985). 2015;118:386-94 pubmed publisher
  146. Rovetta A, Peña D, Hernández Del Pino R, Recalde G, Pellegrini J, Bigi F, et al. IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis. Autophagy. 2014;10:2109-21 pubmed publisher
  147. Caminos E, Garcia Pino E, Juiz J. Loss of auditory activity modifies the location of potassium channel KCNQ5 in auditory brainstem neurons. J Neurosci Res. 2015;93:604-14 pubmed publisher
  148. Grünhagen J, Bhushan R, Degenkolbe E, Jäger M, Knaus P, Mundlos S, et al. MiR-497∼195 cluster microRNAs regulate osteoblast differentiation by targeting BMP signaling. J Bone Miner Res. 2015;30:796-808 pubmed publisher
  149. Shriver M, Stroka K, Vitolo M, Martin S, Huso D, Konstantopoulos K, et al. Loss of giant obscurins from breast epithelium promotes epithelial-to-mesenchymal transition, tumorigenicity and metastasis. Oncogene. 2015;34:4248-59 pubmed publisher
  150. Sedlmeier E, Brunner S, Much D, Pagel P, Ulbrich S, Meyer H, et al. Human placental transcriptome shows sexually dimorphic gene expression and responsiveness to maternal dietary n-3 long-chain polyunsaturated fatty acid intervention during pregnancy. BMC Genomics. 2014;15:941 pubmed publisher
  151. Kaiser A, Jenewein B, Pircher H, Rostek U, Jansen Dürr P, Zwerschke W. Analysis of human papillomavirus E7 protein status in C-33A cervical cancer cells. Virus Genes. 2015;50:12-21 pubmed publisher
  152. Oujo B, Muñoz Félix J, Arévalo M, Núñez Gómez E, Pérez Roque L, Pericacho M, et al. L-Endoglin overexpression increases renal fibrosis after unilateral ureteral obstruction. PLoS ONE. 2014;9:e110365 pubmed publisher
  153. Otabe K, Nakahara H, Hasegawa A, Matsukawa T, Ayabe F, Onizuka N, et al. Transcription factor Mohawk controls tenogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo. J Orthop Res. 2015;33:1-8 pubmed publisher
  154. Tan X, Peng J, Fu Y, An S, Rezaei K, Tabbara S, et al. miR-638 mediated regulation of BRCA1 affects DNA repair and sensitivity to UV and cisplatin in triple-negative breast cancer. Breast Cancer Res. 2014;16:435 pubmed publisher
  155. Haddock C, Blomenkamp K, Gautam M, James J, Mielcarska J, Gogol E, et al. PiZ mouse liver accumulates polyubiquitin conjugates that associate with catalytically active 26S proteasomes. PLoS ONE. 2014;9:e106371 pubmed publisher
  156. Tantra M, Kröcher T, Papiol S, Winkler D, Röckle I, Jatho J, et al. St8sia2 deficiency plus juvenile cannabis exposure in mice synergistically affect higher cognition in adulthood. Behav Brain Res. 2014;275:166-75 pubmed publisher
  157. Zieger M, Ahnelt P, Uhrin P. CX3CL1 (fractalkine) protein expression in normal and degenerating mouse retina: in vivo studies. PLoS ONE. 2014;9:e106562 pubmed publisher
  158. Eberle M, Ebel P, Wegner M, Männich J, Tafferner N, Ferreirós N, et al. Regulation of ceramide synthase 6 in a spontaneous experimental autoimmune encephalomyelitis model is sex dependent. Biochem Pharmacol. 2014;92:326-35 pubmed publisher
  159. García E, Machesky L, Jones G, Antón I. WIP is necessary for matrix invasion by breast cancer cells. Eur J Cell Biol. 2014;93:413-23 pubmed publisher
  160. Sarkar J, Simanian E, Tuggy S, Bartlett J, Snead M, Sugiyama T, et al. Comparison of two mouse ameloblast-like cell lines for enamel-specific gene expression. Front Physiol. 2014;5:277 pubmed publisher
  161. Curto G, Nieto Estévez V, Hurtado Chong A, Valero J, Gómez C, Alonso J, et al. Pax6 is essential for the maintenance and multi-lineage differentiation of neural stem cells, and for neuronal incorporation into the adult olfactory bulb. Stem Cells Dev. 2014;23:2813-30 pubmed publisher
  162. Riemer P, Sreekumar A, Reinke S, Rad R, Schäfer R, Sers C, et al. Transgenic expression of oncogenic BRAF induces loss of stem cells in the mouse intestine, which is antagonized by β-catenin activity. Oncogene. 2015;34:3164-75 pubmed publisher
  163. Zhang P, Wei Y, Wang L, Debeb B, Yuan Y, Zhang J, et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol. 2014;16:864-75 pubmed publisher
  164. Requejo Aguilar R, Lopez Fabuel I, Fernandez E, Martins L, Almeida A, Bolanos J. PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1. Nat Commun. 2014;5:4514 pubmed publisher
  165. Syhr K, Kallenborn Gerhardt W, Lu R, Olbrich K, Schmitz K, Männich J, et al. Lack of effect of a P2Y6 receptor antagonist on neuropathic pain behavior in mice. Pharmacol Biochem Behav. 2014;124:389-95 pubmed publisher
  166. Vachharajani V, Liu T, Brown C, Wang X, Buechler N, Wells J, et al. SIRT1 inhibition during the hypoinflammatory phenotype of sepsis enhances immunity and improves outcome. J Leukoc Biol. 2014;96:785-96 pubmed publisher
  167. Walker M, Volta M, Cataldi S, Dinelle K, Beccano Kelly D, Munsie L, et al. Behavioral deficits and striatal DA signaling in LRRK2 p.G2019S transgenic rats: a multimodal investigation including PET neuroimaging. J Parkinsons Dis. 2014;4:483-98 pubmed publisher
  168. Cowling R, Yeo S, Kim I, Park J, Gu Y, Dalton N, et al. Discoidin domain receptor 2 germline gene deletion leads to altered heart structure and function in the mouse. Am J Physiol Heart Circ Physiol. 2014;307:H773-81 pubmed publisher
  169. Chung L, Bailey D, Leen E, Emmott E, Chaudhry Y, Roberts L, et al. Norovirus translation requires an interaction between the C Terminus of the genome-linked viral protein VPg and eukaryotic translation initiation factor 4G. J Biol Chem. 2014;289:21738-50 pubmed publisher
  170. Lebron M, Brennan L, Damoci C, Prewett M, O Mahony M, Duignan I, et al. A human monoclonal antibody targeting the stem cell factor receptor (c-Kit) blocks tumor cell signaling and inhibits tumor growth. Cancer Biol Ther. 2014;15:1208-18 pubmed publisher
  171. Kolanczyk M, Krawitz P, Hecht J, Hupalowska A, Miaczynska M, Marschner K, et al. Missense variant in CCDC22 causes X-linked recessive intellectual disability with features of Ritscher-Schinzel/3C syndrome. Eur J Hum Genet. 2015;23:633-8 pubmed publisher
  172. Lamarca A, Gella A, Martiáñez T, Segura M, Figueiro Silva J, Grijota Martinez C, et al. Uridine 5'-triphosphate promotes in vitro Schwannoma cell migration through matrix metalloproteinase-2 activation. PLoS ONE. 2014;9:e98998 pubmed publisher
  173. Premkumar M, Sule G, Nagamani S, Chakkalakal S, Nordin A, Jain M, et al. Argininosuccinate lyase in enterocytes protects from development of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol. 2014;307:G347-54 pubmed publisher
  174. Relógio A, Thomas P, Medina Pérez P, Reischl S, Bervoets S, Gloc E, et al. Ras-mediated deregulation of the circadian clock in cancer. PLoS Genet. 2014;10:e1004338 pubmed publisher
  175. Chapnik E, Rivkin N, Mildner A, Beck G, Pasvolsky R, Metzl Raz E, et al. miR-142 orchestrates a network of actin cytoskeleton regulators during megakaryopoiesis. elife. 2014;3:e01964 pubmed publisher
  176. Shin J, Le Dour C, Sera F, Iwata S, Homma S, Joseph L, et al. Depletion of lamina-associated polypeptide 1 from cardiomyocytes causes cardiac dysfunction in mice. Nucleus. 2014;5:260-459 pubmed publisher
  177. Jafari M, Xu W, Pan R, Sweeting C, Karunaratne D, Chen P. Serum stability and physicochemical characterization of a novel amphipathic peptide C6M1 for siRNA delivery. PLoS ONE. 2014;9:e97797 pubmed publisher
  178. Ding Z, German P, Bai S, Reddy A, Liu X, Sun M, et al. Genetic and pharmacological strategies to refunctionalize the von Hippel Lindau R167Q mutant protein. Cancer Res. 2014;74:3127-36 pubmed publisher
  179. Gonzalez Rodriguez A, Mayoral R, Agra N, Valdecantos M, Pardo V, Miquilena Colina M, et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 2014;5:e1179 pubmed publisher
  180. Sun Y, Chung H, Woo A, Lin V. Protein arginine methyltransferase 6 enhances ligand-dependent and -independent activity of estrogen receptor ? via distinct mechanisms. Biochim Biophys Acta. 2014;1843:2067-78 pubmed publisher
  181. Patoine A, Gaumond M, Jaiswal P, Fassier F, Rauch F, Moffatt P. Topological mapping of BRIL reveals a type II orientation and effects of osteogenesis imperfecta mutations on its cellular destination. J Bone Miner Res. 2014;29:2004-16 pubmed publisher
  182. Jung Y, Vermeer P, Vermeer D, Lee S, Goh A, Ahn H, et al. CD200: association with cancer stem cell features and response to chemoradiation in head and neck squamous cell carcinoma. Head Neck. 2015;37:327-35 pubmed publisher
  183. Li Y, Pan J, Wei C, Chen J, Liu Y, Liu J, et al. LIM homeodomain transcription factor Isl1 directs normal pyloric development by targeting Gata3. BMC Biol. 2014;12:25 pubmed publisher
  184. Storm M, Kumpfmueller B, Bone H, Buchholz M, Sanchez Ripoll Y, Chaudhuri J, et al. Zscan4 is regulated by PI3-kinase and DNA-damaging agents and directly interacts with the transcriptional repressors LSD1 and CtBP2 in mouse embryonic stem cells. PLoS ONE. 2014;9:e89821 pubmed publisher
  185. Farg M, Sundaramoorthy V, Sultana J, Yang S, Atkinson R, Levina V, et al. C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol Genet. 2014;23:3579-95 pubmed publisher
  186. Muenyi C, Trivedi A, Helm C, States J. Cisplatin plus sodium arsenite and hyperthermia induces pseudo-G1 associated apoptotic cell death in ovarian cancer cells. Toxicol Sci. 2014;139:74-82 pubmed publisher
  187. Miyazawa N, Yoshikawa H, Magae S, Ishikawa H, Izumikawa K, Terukina G, et al. Human cell growth regulator Ly-1 antibody reactive homologue accelerates processing of preribosomal RNA. Genes Cells. 2014;19:273-86 pubmed publisher
  188. Yik J, Hu Z, Kumari R, Christiansen B, Haudenschild D. Cyclin-dependent kinase 9 inhibition protects cartilage from the catabolic effects of proinflammatory cytokines. Arthritis Rheumatol. 2014;66:1537-46 pubmed publisher
  189. Bayer M, Schjerling P, Herchenhan A, Zeltz C, Heinemeier K, Christensen L, et al. Release of tensile strain on engineered human tendon tissue disturbs cell adhesions, changes matrix architecture, and induces an inflammatory phenotype. PLoS ONE. 2014;9:e86078 pubmed publisher
  190. Gangoso E, Thirant C, Chneiweiss H, Medina J, Tabernero A. A cell-penetrating peptide based on the interaction between c-Src and connexin43 reverses glioma stem cell phenotype. Cell Death Dis. 2014;5:e1023 pubmed publisher
  191. Ashraf M, Ebner M, Wallner C, Haller M, Khalid S, Schwelberger H, et al. A p38MAPK/MK2 signaling pathway leading to redox stress, cell death and ischemia/reperfusion injury. Cell Commun Signal. 2014;12:6 pubmed publisher
  192. Tsuyuki S, Takabayashi M, Kawazu M, Kudo K, Watanabe A, Nagata Y, et al. Detection of WIPI1 mRNA as an indicator of autophagosome formation. Autophagy. 2014;10:497-513 pubmed publisher
  193. Lewis S, Hedman C, Ziegler T, Ricke W, Jorgensen J. Steroidogenic factor 1 promotes aggressive growth of castration-resistant prostate cancer cells by stimulating steroid synthesis and cell proliferation. Endocrinology. 2014;155:358-69 pubmed publisher
  194. Gurha P, Wang T, Larimore A, Sassi Y, Abreu Goodger C, Ramirez M, et al. microRNA-22 promotes heart failure through coordinate suppression of PPAR/ERR-nuclear hormone receptor transcription. PLoS ONE. 2013;8:e75882 pubmed publisher
  195. Goodwin A, Tidyman W, Jheon A, Sharir A, Zheng X, Charles C, et al. Abnormal Ras signaling in Costello syndrome (CS) negatively regulates enamel formation. Hum Mol Genet. 2014;23:682-92 pubmed publisher
  196. Kr cher T, Malinovskaja K, J rgenson M, Aonurm Helm A, Zharkovskaya T, Kalda A, et al. Schizophrenia-like phenotype of polysialyltransferase ST8SIA2-deficient mice. Brain Struct Funct. 2015;220:71-83 pubmed publisher
  197. Gao H, Fisher P, Lambi A, WADE C, Barr Gillespie A, Popoff S, et al. Increased serum and musculotendinous fibrogenic proteins following persistent low-grade inflammation in a rat model of long-term upper extremity overuse. PLoS ONE. 2013;8:e71875 pubmed publisher
  198. Chen Y, Kamili A, Hardy J, Groblewski G, Khanna K, Byrne J. Tumor protein D52 represents a negative regulator of ATM protein levels. Cell Cycle. 2013;12:3083-97 pubmed publisher
  199. Jakobsson M, Moen A, Bousset L, Egge Jacobsen W, Kernstock S, Melki R, et al. Identification and characterization of a novel human methyltransferase modulating Hsp70 protein function through lysine methylation. J Biol Chem. 2013;288:27752-63 pubmed publisher
  200. Guo H, Gao M, Lu Y, Liang J, Lorenzi P, Bai S, et al. Coordinate phosphorylation of multiple residues on single AKT1 and AKT2 molecules. Oncogene. 2014;33:3463-72 pubmed publisher
  201. Dokas J, Chadt A, Nolden T, Himmelbauer H, Zierath J, Joost H, et al. Conventional knockout of Tbc1d1 in mice impairs insulin- and AICAR-stimulated glucose uptake in skeletal muscle. Endocrinology. 2013;154:3502-14 pubmed publisher
  202. Sun X, Bristol J, Iwahori S, Hagemeier S, Meng Q, Barlow E, et al. Hsp90 inhibitor 17-DMAG decreases expression of conserved herpesvirus protein kinases and reduces virus production in Epstein-Barr virus-infected cells. J Virol. 2013;87:10126-38 pubmed publisher
  203. Katsushima Y, Sato T, Yamada C, Ito M, Suzuki Y, Ogawa E, et al. Interaction of PICK1 with C-terminus of growth hormone-releasing hormone receptor (GHRHR) modulates trafficking and signal transduction of human GHRHR. J Pharmacol Sci. 2013;122:193-204 pubmed
  204. Brouxhon S, Kyrkanides S, Teng X, O Banion M, Clarke R, Byers S, et al. Soluble-E-cadherin activates HER and IAP family members in HER2+ and TNBC human breast cancers. Mol Carcinog. 2014;53:893-906 pubmed publisher
  205. Zhou D, Tan R, Lin L, Zhou L, Liu Y. Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury. Kidney Int. 2013;84:509-20 pubmed publisher
  206. Xue W, Zhou X, Yi N, Jiang L, Tao W, Wu R, et al. Yueju pill rapidly induces antidepressant-like effects and acutely enhances BDNF expression in mouse brain. Evid Based Complement Alternat Med. 2013;2013:184367 pubmed publisher
  207. Zhou D, Tan R, Zhou L, Li Y, Liu Y. Kidney tubular ?-catenin signaling controls interstitial fibroblast fate via epithelial-mesenchymal communication. Sci Rep. 2013;3:1878 pubmed publisher
  208. Sanchez Ripoll Y, Bone H, Owen T, Guedes A, Abranches E, Kumpfmueller B, et al. Glycogen synthase kinase-3 inhibition enhances translation of pluripotency-associated transcription factors to contribute to maintenance of mouse embryonic stem cell self-renewal. PLoS ONE. 2013;8:e60148 pubmed publisher
  209. Ishida K, Acharya C, Christiansen B, Yik J, Dicesare P, Haudenschild D. Cartilage oligomeric matrix protein enhances osteogenesis by directly binding and activating bone morphogenetic protein-2. Bone. 2013;55:23-35 pubmed publisher
  210. Rejon C, Ho C, Wang Y, Zhou X, Bernard D, Hebert T. Cycloheximide inhibits follicle-stimulating hormone ? subunit transcription by blocking de novo synthesis of the labile activin type II receptor in gonadotrope cells. Cell Signal. 2013;25:1403-12 pubmed publisher
  211. Takeuchi Yorimoto A, Noto T, Yamada A, Miyamae Y, Oishi Y, Matsumoto M. Persistent fibrosis in the liver of choline-deficient and iron-supplemented L-amino acid-defined diet-induced nonalcoholic steatohepatitis rat due to continuing oxidative stress after choline supplementation. Toxicol Appl Pharmacol. 2013;268:264-77 pubmed publisher
  212. Gao Y, Yechikov S, Vazquez A, Chen D, Nie L. Distinct roles of molecular chaperones HSP90? and HSP90? in the biogenesis of KCNQ4 channels. PLoS ONE. 2013;8:e57282 pubmed publisher
  213. Chen S, Chung C, Cheng Y, Huang C, Ruaan R, Chen W, et al. Hydrostatic pressure enhances mitomycin C induced apoptosis in urothelial carcinoma cells. Urol Oncol. 2014;32:26.e17-24 pubmed publisher
  214. Shi J, Wu X, Surma M, Vemula S, Zhang L, Yang Y, et al. Distinct roles for ROCK1 and ROCK2 in the regulation of cell detachment. Cell Death Dis. 2013;4:e483 pubmed publisher
  215. Nowaczyk M, Thompson B, Zeesman S, Moog U, Sanchez Lara P, Magoulas P, et al. Deletion of MAP2K2/MEK2: a novel mechanism for a RASopathy?. Clin Genet. 2014;85:138-46 pubmed publisher
  216. Murakami K, Jiang Y, Tanaka T, Bando Y, Mitrovic B, Yoshida S. In vivo analysis of kallikrein-related peptidase 6 (KLK6) function in oligodendrocyte development and the expression of myelin proteins. Neuroscience. 2013;236:1-11 pubmed publisher
  217. Kim S, Ishida H, Yamane D, Yi M, Swinney D, Foung S, et al. Contrasting roles of mitogen-activated protein kinases in cellular entry and replication of hepatitis C virus: MKNK1 facilitates cell entry. J Virol. 2013;87:4214-24 pubmed publisher
  218. Torrell H, Montaña E, Abasolo N, Roig B, Gaviria A, Vilella E, et al. Mitochondrial DNA (mtDNA) in brain samples from patients with major psychiatric disorders: gene expression profiles, mtDNA content and presence of the mtDNA common deletion. Am J Med Genet B Neuropsychiatr Genet. 2013;162B:213-23 pubmed publisher
  219. Vega Almeida T, Salas Benito M, De Nova Ocampo M, del Angel R, Salas Benito J. Surface proteins of C6/36 cells involved in dengue virus 4 binding and entry. Arch Virol. 2013;158:1189-207 pubmed publisher
  220. Martiáñez T, Lamarca A, Casals N, Gella A. N-cadherin expression is regulated by UTP in schwannoma cells. Purinergic Signal. 2013;9:259-70 pubmed publisher
  221. Yamamoto M, Matsuzaki T, Takahashi R, Adachi E, Maeda Y, Yamaguchi S, et al. The transformation suppressor gene Reck is required for postaxial patterning in mouse forelimbs. Biol Open. 2012;1:458-66 pubmed publisher
  222. Shinozuka E, Miyashita M, Mizuguchi Y, Akagi I, Kikuchi K, Makino H, et al. SnoN/SKIL modulates proliferation through control of hsa-miR-720 transcription in esophageal cancer cells. Biochem Biophys Res Commun. 2013;430:101-6 pubmed publisher
  223. García Huerta P, Diaz Hernandez M, Delicado E, Pimentel Santillana M, Miras Portugal M, Gomez Villafuertes R. The specificity protein factor Sp1 mediates transcriptional regulation of P2X7 receptors in the nervous system. J Biol Chem. 2012;287:44628-44 pubmed publisher
  224. Baltanás F, Berciano M, Valero J, Gómez C, Diaz D, Alonso J, et al. Differential glial activation during the degeneration of Purkinje cells and mitral cells in the PCD mutant mice. Glia. 2013;61:254-72 pubmed publisher
  225. Jones B, Brunet S, Gilbert M, Nichols C, Su T, Westenbroek R, et al. Cardiomyocytes from AKAP7 knockout mice respond normally to adrenergic stimulation. Proc Natl Acad Sci U S A. 2012;109:17099-104 pubmed publisher
  226. Zou Z, Yuan Z, Zhang Q, Long Z, Chen J, Tang Z, et al. Aurora kinase A inhibition-induced autophagy triggers drug resistance in breast cancer cells. Autophagy. 2012;8:1798-810 pubmed publisher
  227. Yui N, Lu H, Chen Y, Nomura N, Bouley R, Brown D. Basolateral targeting and microtubule-dependent transcytosis of the aquaporin-2 water channel. Am J Physiol Cell Physiol. 2013;304:C38-48 pubmed publisher
  228. Lu C, Lin L, Tan H, Wu H, Sherman S, Gao F, et al. Fragile X premutation RNA is sufficient to cause primary ovarian insufficiency in mice. Hum Mol Genet. 2012;21:5039-47 pubmed publisher
  229. Lopez Ramirez M, Fischer R, Torres Badillo C, Davies H, Logan K, Pfizenmaier K, et al. Role of caspases in cytokine-induced barrier breakdown in human brain endothelial cells. J Immunol. 2012;189:3130-9 pubmed publisher
  230. Gao W, Liu M, Yang Y, Yang H, Liao Q, Bai Y, et al. The imprinted H19 gene regulates human placental trophoblast cell proliferation via encoding miR-675 that targets Nodal Modulator 1 (NOMO1). RNA Biol. 2012;9:1002-10 pubmed publisher
  231. Takayanagi S, Fukuda R, Takeuchi Y, Tsukada S, Yoshida K. Gene regulatory network of unfolded protein response genes in endoplasmic reticulum stress. Cell Stress Chaperones. 2013;18:11-23 pubmed publisher
  232. Peluso J, Lodde V, Liu X. Progesterone regulation of progesterone receptor membrane component 1 (PGRMC1) sumoylation and transcriptional activity in spontaneously immortalized granulosa cells. Endocrinology. 2012;153:3929-39 pubmed publisher
  233. Esteves T, Psathaki O, Pfeiffer M, Balbach S, Zeuschner D, Shitara H, et al. Mitochondrial physiology and gene expression analyses reveal metabolic and translational dysregulation in oocyte-induced somatic nuclear reprogramming. PLoS ONE. 2012;7:e36850 pubmed publisher
  234. Turinetto V, Orlando L, Sanchez Ripoll Y, Kumpfmueller B, Storm M, Porcedda P, et al. High basal ?H2AX levels sustain self-renewal of mouse embryonic and induced pluripotent stem cells. Stem Cells. 2012;30:1414-23 pubmed publisher
  235. Zhou D, Li Y, Lin L, Zhou L, Igarashi P, Liu Y. Tubule-specific ablation of endogenous β-catenin aggravates acute kidney injury in mice. Kidney Int. 2012;82:537-47 pubmed publisher
  236. Zhang Y, Cooke M, Panjwani S, Cao K, Krauth B, Ho P, et al. Histone h1 depletion impairs embryonic stem cell differentiation. PLoS Genet. 2012;8:e1002691 pubmed publisher
  237. Romoser A, Figueroa D, Sooresh A, Scribner K, Chen P, Porter W, et al. Distinct immunomodulatory effects of a panel of nanomaterials in human dermal fibroblasts. Toxicol Lett. 2012;210:293-301 pubmed publisher
  238. Hutchins A, Poulain S, Miranda Saavedra D. Genome-wide analysis of STAT3 binding in vivo predicts effectors of the anti-inflammatory response in macrophages. Blood. 2012;119:e110-9 pubmed publisher
  239. Lee J, Jiffar T, Kupferman M. A novel role for BDNF-TrkB in the regulation of chemotherapy resistance in head and neck squamous cell carcinoma. PLoS ONE. 2012;7:e30246 pubmed publisher
  240. Pérez Pérez R, Lopez J, García Santos E, Camafeita E, Gomez Serrano M, Ortega Delgado F, et al. Uncovering suitable reference proteins for expression studies in human adipose tissue with relevance to obesity. PLoS ONE. 2012;7:e30326 pubmed publisher
  241. Shinohara R, Thumkeo D, Kamijo H, Kaneko N, Sawamoto K, Watanabe K, et al. A role for mDia, a Rho-regulated actin nucleator, in tangential migration of interneuron precursors. Nat Neurosci. 2012;15:373-80, S1-2 pubmed publisher
  242. Aytekin M, Aulak K, Haserodt S, Chakravarti R, Cody J, Minai O, et al. Abnormal platelet aggregation in idiopathic pulmonary arterial hypertension: role of nitric oxide. Am J Physiol Lung Cell Mol Physiol. 2012;302:L512-20 pubmed publisher
  243. Mork L, Tang H, Batchvarov I, Capel B. Mouse germ cell clusters form by aggregation as well as clonal divisions. Mech Dev. 2012;128:591-6 pubmed publisher
  244. Medrzycki M, Zhang Y, McDonald J, Fan Y. Profiling of linker histone variants in ovarian cancer. Front Biosci (Landmark Ed). 2012;17:396-406 pubmed
  245. Matousek S, Ghosh S, Shaftel S, Kyrkanides S, Olschowka J, O Banion M. Chronic IL-1?-mediated neuroinflammation mitigates amyloid pathology in a mouse model of Alzheimer's disease without inducing overt neurodegeneration. J Neuroimmune Pharmacol. 2012;7:156-64 pubmed publisher
  246. Gomez C, Curto G, Baltanás F, Valero J, O SHEA E, Colado M, et al. Changes in the serotonergic system and in brain-derived neurotrophic factor distribution in the main olfactory bulb of pcd mice before and after mitral cell loss. Neuroscience. 2012;201:20-33 pubmed publisher
  247. Chen Z, Kolokoltsov A, Wang J, Adhikary S, Lorinczi M, Elferink L, et al. GRB2 interaction with the ecotropic murine leukemia virus receptor, mCAT-1, controls virus entry and is stimulated by virus binding. J Virol. 2012;86:1421-32 pubmed publisher
  248. Miki T, Kamikawa Y, Kurono S, Kaneko Y, Katahira J, Yoneda Y. Cell type-dependent gene regulation by Staufen2 in conjunction with Upf1. BMC Mol Biol. 2011;12:48 pubmed publisher
  249. Kahr P, Piccini I, Fabritz L, Greber B, Schöler H, Scheld H, et al. Systematic analysis of gene expression differences between left and right atria in different mouse strains and in human atrial tissue. PLoS ONE. 2011;6:e26389 pubmed publisher
  250. Schulz N, Himmelbauer H, Rath M, van Weeghel M, Houten S, Kulik W, et al. Role of medium- and short-chain L-3-hydroxyacyl-CoA dehydrogenase in the regulation of body weight and thermogenesis. Endocrinology. 2011;152:4641-51 pubmed publisher
  251. Thumkeo D, Shinohara R, Watanabe K, Takebayashi H, Toyoda Y, Tohyama K, et al. Deficiency of mDia, an actin nucleator, disrupts integrity of neuroepithelium and causes periventricular dysplasia. PLoS ONE. 2011;6:e25465 pubmed publisher
  252. Kye M, Neveu P, Lee Y, Zhou M, Steen J, Sahin M, et al. NMDA mediated contextual conditioning changes miRNA expression. PLoS ONE. 2011;6:e24682 pubmed publisher
  253. Zumer K, Plemenitas A, Saksela K, Peterlin B. Patient mutation in AIRE disrupts P-TEFb binding and target gene transcription. Nucleic Acids Res. 2011;39:7908-19 pubmed publisher
  254. Michaelson J, Amatucci A, Kelly R, Su L, Garber E, Day E, et al. Development of an Fn14 agonistic antibody as an anti-tumor agent. MAbs. 2011;3:362-75 pubmed
  255. Selinger C, Cooper W, Al Sohaily S, Mladenova D, Pangon L, Kennedy C, et al. Loss of special AT-rich binding protein 1 expression is a marker of poor survival in lung cancer. J Thorac Oncol. 2011;6:1179-89 pubmed publisher
  256. Billington C, Ng B, Forsman C, Schmidt B, Bagchi A, Symer D, et al. The molecular and cellular basis of variable craniofacial phenotypes and their genetic rescue in Twisted gastrulation mutant mice. Dev Biol. 2011;355:21-31 pubmed publisher
  257. Kim S, Welsch C, Yi M, Lemon S. Regulation of the production of infectious genotype 1a hepatitis C virus by NS5A domain III. J Virol. 2011;85:6645-56 pubmed publisher
  258. Baras A, Solomon A, Davidson R, Moskaluk C. Loss of VOPP1 overexpression in squamous carcinoma cells induces apoptosis through oxidative cellular injury. Lab Invest. 2011;91:1170-80 pubmed publisher
  259. Selvais C, D Auria L, Tyteca D, Perrot G, Lemoine P, Troeberg L, et al. Cell cholesterol modulates metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 (LRP-1) and clearance function. FASEB J. 2011;25:2770-81 pubmed publisher
  260. Beguin P, Gosselin H, Mamarbachi M, Calderone A. Nestin expression is lost in ventricular fibroblasts during postnatal development of the rat heart and re-expressed in scar myofibroblasts. J Cell Physiol. 2012;227:813-20 pubmed publisher
  261. Revuelta Cervantes J, Mayoral R, Miranda S, Gonzalez Rodriguez A, Fernandez M, Martín Sanz P, et al. Protein Tyrosine Phosphatase 1B (PTP1B) deficiency accelerates hepatic regeneration in mice. Am J Pathol. 2011;178:1591-604 pubmed publisher
  262. Wang D, Li Y, Wu C, Liu Y. PINCH1 is transcriptional regulator in podocytes that interacts with WT1 and represses podocalyxin expression. PLoS ONE. 2011;6:e17048 pubmed publisher
  263. Fabritz L, Hoogendijk M, Scicluna B, van Amersfoorth S, Fortmueller L, Wolf S, et al. Load-reducing therapy prevents development of arrhythmogenic right ventricular cardiomyopathy in plakoglobin-deficient mice. J Am Coll Cardiol. 2011;57:740-50 pubmed publisher
  264. Inaki M, Kato D, Utsugi T, Onoda F, Hanaoka F, Murakami Y. Genetic analyses using a mouse cell cycle mutant identifies magoh as a novel gene involved in Cdk regulation. Genes Cells. 2011;16:166-78 pubmed publisher
  265. Derbigny W, Johnson R, Toomey K, Ofner S, Jayarapu K. The Chlamydia muridarum-induced IFN-? response is TLR3-dependent in murine oviduct epithelial cells. J Immunol. 2010;185:6689-97 pubmed publisher
  266. Nassirpour R, Bahima L, Lalive A, Lüscher C, Lujan R, Slesinger P. Morphine- and CaMKII-dependent enhancement of GIRK channel signaling in hippocampal neurons. J Neurosci. 2010;30:13419-30 pubmed publisher
  267. Andersen N, Chopra A, Monahan T, Malek J, Jain M, Pradhan L, et al. Endothelial cells are susceptible to rapid siRNA transfection and gene silencing ex vivo. J Vasc Surg. 2010;52:1608-15 pubmed publisher
  268. Fett M, Pilsl A, Paquet D, van Bebber F, Haass C, Tatzelt J, et al. Parkin is protective against proteotoxic stress in a transgenic zebrafish model. PLoS ONE. 2010;5:e11783 pubmed publisher
  269. Stankowski J, Zeiger S, Cohen E, DeFranco D, Cai J, McLaughlin B. C-terminus of heat shock cognate 70 interacting protein increases following stroke and impairs survival against acute oxidative stress. Antioxid Redox Signal. 2011;14:1787-801 pubmed publisher
  270. Weber K, Hildner K, Murphy K, Allen P. Trpm4 differentially regulates Th1 and Th2 function by altering calcium signaling and NFAT localization. J Immunol. 2010;185:2836-46 pubmed publisher
  271. Dasgupta J, Kar S, Liu R, Joseph J, Kalyanaraman B, Remington S, et al. Reactive oxygen species control senescence-associated matrix metalloproteinase-1 through c-Jun-N-terminal kinase. J Cell Physiol. 2010;225:52-62 pubmed publisher
  272. Magdeldin S, Li H, Yoshida Y, Enany S, Zhang Y, Xu B, et al. Comparison of two dimensional electrophoresis mouse colon proteomes before and after knocking out Aquaporin 8. J Proteomics. 2010;73:2031-40 pubmed publisher
  273. Smith N, Baker D, James N, Ratcliffe K, Jenkins M, Ashton S, et al. Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clin Cancer Res. 2010;16:3548-61 pubmed publisher
  274. Miller E, Berman S, Yuan T, Lees J. Disruption of calvarial ossification in E2f4 mutant embryos correlates with increased proliferation and progenitor cell populations. Cell Cycle. 2010;9:2620-8 pubmed publisher
  275. Dalmasso G, Nguyen H, Charrier Hisamuddin L, Yan Y, Laroui H, Demoulin B, et al. PepT1 mediates transport of the proinflammatory bacterial tripeptide L-Ala-{gamma}-D-Glu-meso-DAP in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2010;299:G687-96 pubmed publisher
  276. Smrt R, Szulwach K, Pfeiffer R, Li X, Guo W, Pathania M, et al. MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells. 2010;28:1060-70 pubmed publisher
  277. Bergstrom R, Savary K, Morén A, Guibert S, Heldin C, Ohlsson R, et al. Transforming growth factor beta promotes complexes between Smad proteins and the CCCTC-binding factor on the H19 imprinting control region chromatin. J Biol Chem. 2010;285:19727-37 pubmed publisher
  278. Peluso J, Liu X, Gawkowska A, Lodde V, Wu C. Progesterone inhibits apoptosis in part by PGRMC1-regulated gene expression. Mol Cell Endocrinol. 2010;320:153-61 pubmed publisher
  279. Feingold K, Shigenaga J, Patzek S, Chui L, Moser A, Grunfeld C. Endotoxin, zymosan, and cytokines decrease the expression of the transcription factor, carbohydrate response element binding protein, and its target genes. Innate Immun. 2011;17:174-82 pubmed publisher
  280. Qiang L, Yu W, Liu M, Solowska J, Baas P. Basic fibroblast growth factor elicits formation of interstitial axonal branches via enhanced severing of microtubules. Mol Biol Cell. 2010;21:334-44 pubmed publisher
  281. Nguyen H, Dalmasso G, Yan Y, Laroui H, Dahan S, Mayer L, et al. MicroRNA-7 modulates CD98 expression during intestinal epithelial cell differentiation. J Biol Chem. 2010;285:1479-89 pubmed publisher
  282. Hoffmann M, Bellance N, Rossignol R, Koopman W, Willems P, Mayatepek E, et al. C. elegans ATAD-3 is essential for mitochondrial activity and development. PLoS ONE. 2009;4:e7644 pubmed publisher
  283. Hoover A, Strand G, Nowicki P, Anderson M, Vermeer P, Klingelhutz A, et al. Impaired PTPN13 phosphatase activity in spontaneous or HPV-induced squamous cell carcinomas potentiates oncogene signaling through the MAP kinase pathway. Oncogene. 2009;28:3960-70 pubmed publisher
  284. Yu Z, Li M, Zhang D, Xu W, Kone B. Sp1 trans-activates the murine H(+)-K(+)-ATPase alpha(2)-subunit gene. Am J Physiol Renal Physiol. 2009;297:F63-70 pubmed publisher
  285. Dasgupta J, Kar S, Van Remmen H, Melendez J. Age-dependent increases in interstitial collagenase and MAP Kinase levels are exacerbated by superoxide dismutase deficiencies. Exp Gerontol. 2009;44:503-10 pubmed publisher
  286. Judson M, BERGMAN M, Campbell D, Eagleson K, Levitt P. Dynamic gene and protein expression patterns of the autism-associated met receptor tyrosine kinase in the developing mouse forebrain. J Comp Neurol. 2009;513:511-31 pubmed publisher
  287. Semsroth S, Stigler R, Bernecker O, Ruttmann Ulmer E, Troppmair J, Macfelda K, et al. Everolimus attenuates neointimal hyperplasia in cultured human saphenous vein grafts. Eur J Cardiothorac Surg. 2009;35:515-20 pubmed publisher
  288. Hohjoh H, Akari H, Fujiwara Y, Tamura Y, Hirai H, Wada K. Molecular cloning and characterization of the common marmoset huntingtin gene. Gene. 2009;432:60-6 pubmed publisher
  289. Sugawara S, Kawano T, Omoto T, Hosono M, Tatsuta T, Nitta K. Binding of Silurus asotus lectin to Gb3 on Raji cells causes disappearance of membrane-bound form of HSP70. Biochim Biophys Acta. 2009;1790:101-9 pubmed publisher
  290. Argyropoulos G, Stütz A, Ilnytska O, Rice T, Teran Garcia M, Rao D, et al. KIF5B gene sequence variation and response of cardiac stroke volume to regular exercise. Physiol Genomics. 2009;36:79-88 pubmed publisher
  291. Inoue H, Ha V, Prekeris R, Randazzo P. Arf GTPase-activating protein ASAP1 interacts with Rab11 effector FIP3 and regulates pericentrosomal localization of transferrin receptor-positive recycling endosome. Mol Biol Cell. 2008;19:4224-37 pubmed publisher
  292. Kano S, Miyajima N, Fukuda S, Hatakeyama S. Tripartite motif protein 32 facilitates cell growth and migration via degradation of Abl-interactor 2. Cancer Res. 2008;68:5572-80 pubmed publisher
  293. Zhang Q, Wu J, Nguyen A, Wang B, He P, Laurent G, et al. Molecular mechanism underlying differential apoptosis between human melanoma cell lines UACC903 and UACC903(+6) revealed by mitochondria-focused cDNA microarrays. Apoptosis. 2008;13:993-1004 pubmed publisher
  294. Cuende J, Moreno S, Bolanos J, Almeida A. Retinoic acid downregulates Rae1 leading to APC(Cdh1) activation and neuroblastoma SH-SY5Y differentiation. Oncogene. 2008;27:3339-44 pubmed publisher
  295. Kuznetsov A, Smigelskaite J, Doblander C, Janakiraman M, Hermann M, Wurm M, et al. Survival signaling by C-RAF: mitochondrial reactive oxygen species and Ca2+ are critical targets. Mol Cell Biol. 2008;28:2304-13 pubmed publisher
  296. Beck S, Carethers J. BMP suppresses PTEN expression via RAS/ERK signaling. Cancer Biol Ther. 2007;6:1313-7 pubmed
  297. Battaglino R, Pham L, Morse L, Vokes M, Sharma A, Odgren P, et al. NHA-oc/NHA2: a mitochondrial cation-proton antiporter selectively expressed in osteoclasts. Bone. 2008;42:180-92 pubmed
  298. Saelim N, Holstein D, Chocron E, Camacho P, Lechleiter J. Inhibition of apoptotic potency by ligand stimulated thyroid hormone receptors located in mitochondria. Apoptosis. 2007;12:1781-94 pubmed
  299. Lu Z, Lam K, Wang N, Xu X, Cortes M, Andersen B. LMO4 can interact with Smad proteins and modulate transforming growth factor-beta signaling in epithelial cells. Oncogene. 2006;25:2920-30 pubmed