This is a Validated Antibody Database (VAD) review about mouse Tubb1, based on 74 published articles (read how Labome selects the articles), using Tubb1 antibody in all methods. It is aimed to help Labome visitors find the most suited Tubb1 antibody. Please note the number of articles fluctuates since newly identified citations are added and citations for discontinued catalog numbers are removed regularly.
Tubb1 synonym: 2810484G07Rik; M(beta)1; tubulin beta-1 chain

Invitrogen
mouse monoclonal (BT7R)
  • western blot; mouse; loading ...; fig 2a
In order to study the efffect of H2S and homocysteine on cystathionine beta synthase and cystathionine gamma lyase, Invitrogen Tubb1 antibody (Thermo Scientific, MA5-16308) was used in western blot on mouse samples (fig 2a). Sci Rep (2017) ncbi
mouse monoclonal (BT7R)
  • western blot; human; loading ...; fig 3a
In order to describe the effects of 6-Bio using a preclinical model of Parkinson disease, Invitrogen Tubb1 antibody (Thermo Scientific, MA5-16308) was used in western blot on human samples (fig 3a). Autophagy (2017) ncbi
mouse monoclonal (2 28 33)
  • western blot; mouse; 1:4000; fig 8a
In order to report that PABPN1 regulates crucial processes during myotube formation, Invitrogen Tubb1 antibody (Invitrogen, 32-2600) was used in western blot on mouse samples at 1:4000 (fig 8a). J Physiol (2017) ncbi
mouse monoclonal (2 28 33)
  • western blot; human; loading ...; fig 5d
In order to show that the Abl-DDB1-DDA1 axis reduces CRL4 substrate ubiquitination, Invitrogen Tubb1 antibody (Life Technologies, 1559509A) was used in western blot on human samples (fig 5d). J Biol Chem (2017) ncbi
mouse monoclonal (2 28 33)
  • immunocytochemistry; mouse; 1:500; fig s1e
In order to ask if boundary cap neural crest stem cells support survival of SOD1 G93A motor neurons in normal conditions and under oxidative stress in vitro, Invitrogen Tubb1 antibody (Invitrogen, 32-2600) was used in immunocytochemistry on mouse samples at 1:500 (fig s1e). Neurotherapeutics (2017) ncbi
mouse monoclonal (2 28 33)
  • western blot; human; fig 5
In order to investigate the effects of Brilliant Cresyl Blue on human follicular cells exposed to Brilliant Cresyl Blue, Invitrogen Tubb1 antibody (Invitrogen, 32-2600) was used in western blot on human samples (fig 5). Reprod Biol (2017) ncbi
mouse monoclonal (2 28 33)
  • western blot; human; loading ...; fig 3b
In order to study the contribution of long non-coding RNAs to cholangiocarcinoma, Invitrogen Tubb1 antibody (Invitrogen, 32-2600) was used in western blot on human samples (fig 3b). J Hematol Oncol (2016) ncbi
mouse monoclonal (38F4)
  • immunocytochemistry; human; 1:1000; loading ...; fig 4d
In order to study the role of reactive species on SH-SY5Y neuroblastoma cells under retinoic acid-induced differentiation, Invitrogen Tubb1 antibody (Novex, 480011) was used in immunocytochemistry on human samples at 1:1000 (fig 4d). Mol Neurobiol (2017) ncbi
mouse monoclonal (2 28 33)
  • immunocytochemistry; mouse; 1:500; fig 4
In order to assess the use of an auto-Bayes method to analyze single molecule localization microscopy data automatically, Invitrogen Tubb1 antibody (Invitrogen, 32-2600) was used in immunocytochemistry on mouse samples at 1:500 (fig 4). Sci Rep (2016) ncbi
mouse monoclonal (BT7R)
  • western blot; rat; 1:5000; loading ...; tbl 1
In order to test if white tea improves prediabetes-induced male reproductive dysfunction, Invitrogen Tubb1 antibody (Thermo Fisher, MA5-16308) was used in western blot on rat samples at 1:5000 (tbl 1). J Nutr Biochem (2016) ncbi
mouse monoclonal (BT7R)
  • western blot; human; 1:10,000; fig 1
In order to demonstrate the key role of essential amino acid transport in the control of mTORC1 and tumor growth caused by genetic disruption of the multifunctional CD98/LAT1 complex, Invitrogen Tubb1 antibody (Thermo Scientific, MA5-16308) was used in western blot on human samples at 1:10,000 (fig 1). Cancer Res (2016) ncbi
mouse monoclonal (BT7R)
  • western blot; rat; 1:1000; fig 4
In order to investigate the requirement for EIPR-1 and the EARP complex for cargo sorting to dense-core vesicles, Invitrogen Tubb1 antibody (ThermoFisher, BT7R) was used in western blot on rat samples at 1:1000 (fig 4). PLoS Genet (2016) ncbi
mouse monoclonal (2 28 33)
  • western blot; rat; fig 4
In order to study traumatic brain injury in vivo and in vitro to find a strong correlation of genome-wide expression of SORLA, Invitrogen Tubb1 antibody (Life Technologies, 32-2600) was used in western blot on rat samples (fig 4). J Neurotrauma (2017) ncbi
mouse monoclonal (2 28 33)
  • immunocytochemistry; mouse; 1:1000; fig 1s1
In order to study zygotic genome activation and maternal LSD1/KDM1A as an essential regulator of chromatin and transcription landscapes, Invitrogen Tubb1 antibody (Invitrogen, 32-2600) was used in immunocytochemistry on mouse samples at 1:1000 (fig 1s1). elife (2016) ncbi
rabbit polyclonal
  • western blot; baker's yeast; fig 6
In order to study calcium deficiency in the secretory pathway caused by Pmr1 inactivation, Invitrogen Tubb1 antibody (ThermoFisher Scientific, PA5-16863) was used in western blot on baker's yeast samples (fig 6). PLoS ONE (2015) ncbi
mouse monoclonal (TBN06 (Tub 2.5))
In order to develop and characterize a protein delivery tool based on bacterial type III secretion, Invitrogen Tubb1 antibody (Thermo Fisher Scientific, MA5-11732) was used . J Cell Biol (2015) ncbi
mouse monoclonal (2 28 33)
  • immunocytochemistry; mouse
In order to report that carbon monoxide produced by heme-oxygenase 1 impairs DC immunogenicity using a mitochondria-dependent mechanism, Invitrogen Tubb1 antibody (Life Technologies, 32?C2600) was used in immunocytochemistry on mouse samples . Eur J Immunol (2015) ncbi
rabbit polyclonal
  • western blot; mouse; fig 3
In order to describe a method to synthesize damaurone D and test its immunomodulatory activity, Invitrogen Tubb1 antibody (Thermo Scientific, PA1-16947) was used in western blot on mouse samples (fig 3). Chem Pharm Bull (Tokyo) (2015) ncbi
mouse monoclonal (2 28 33)
  • western blot; human
In order to discuss detection of colorectal cancer using conventional wide-field endoscopy, Invitrogen Tubb1 antibody (Invitrogen, 32?C2600) was used in western blot on human samples . Clin Transl Gastroenterol (2015) ncbi
mouse monoclonal (2 28 33)
  • immunocytochemistry; human; 1:500; fig 1,4
In order to characterize a real-time single molecule that identifies and localizes algorithms for super-resolution fluorescence microscopy called SNSMIL, Invitrogen Tubb1 antibody (Life Technologies, 32-C2600) was used in immunocytochemistry on human samples at 1:500 (fig 1,4). Sci Rep (2015) ncbi
mouse monoclonal (2 28 33)
  • western blot; human; fig s5
In order to investigate Ras dimerization-dependent signaling, Invitrogen Tubb1 antibody (Life Technologies, 32-2600) was used in western blot on human samples (fig s5). Proc Natl Acad Sci U S A (2015) ncbi
mouse monoclonal (2 28 33)
  • western blot; rat; 0.5 ng/ml
In order to study the role of a P2X7 receptor in the acrosome reaction in rat spermatozoa, Invitrogen Tubb1 antibody (Life technologies, 32-2600) was used in western blot on rat samples at 0.5 ng/ml. J Cell Physiol (2015) ncbi
mouse monoclonal (BT7R)
  • western blot; rat; 1:5000; loading ...; fig 4a
In order to study the adaptive response of the retina to short-term high fructose treatment, Invitrogen Tubb1 antibody (Thermo, BT7R) was used in western blot on rat samples at 1:5000 (fig 4a). Exp Eye Res (2015) ncbi
rabbit polyclonal
  • western blot; rat; 1:10000
In order to determine if Reg3alpha improves islet engraftment, Invitrogen Tubb1 antibody (Thermo Fisher Scientific, PA1-41331) was used in western blot on rat samples at 1:10000. Mol Med (2014) ncbi
mouse monoclonal (2 28 33)
  • western blot; mouse
In order to evaluate the effect of dexamethasone on in vitro blood-brain barrier recovery after injury, Invitrogen Tubb1 antibody (Life Technologies, 32-2600) was used in western blot on mouse samples . J Cereb Blood Flow Metab (2015) ncbi
rabbit polyclonal
  • western blot; mouse
In order to determine if methylhonokiol analogs inhibit the expression of inflammatory genes in macrophages and adipocytes, Invitrogen Tubb1 antibody (Thermo Scientific, PA1-16947) was used in western blot on mouse samples . PLoS ONE (2015) ncbi
mouse monoclonal (38F4)
  • western blot; mouse; 1:5000
In order to assess how FRG1 expression contributes to myoblast differentiation defects, Invitrogen Tubb1 antibody (Life Technologies, 480011) was used in western blot on mouse samples at 1:5000. PLoS ONE (2015) ncbi
mouse monoclonal (2 28 33)
  • western blot; mouse; 1:1000
In order to investigate serotonin signaling in adipose tissue, Invitrogen Tubb1 antibody (Invitrogen, 322600) was used in western blot on mouse samples at 1:1000. Nat Med (2015) ncbi
mouse monoclonal (2 28 33)
  • western blot; rat; 1:1000
Invitrogen Tubb1 antibody (ZYMED, 22833) was used in western blot on rat samples at 1:1000. Front Cell Neurosci (2014) ncbi
rabbit polyclonal
  • western blot; human; 1:1000
In order to study the role of neurotensin and its receptor in both colitis and inflammatory bowel disease, Invitrogen Tubb1 antibody (Thermo Fischer Scientific, PA1-41331) was used in western blot on human samples at 1:1000. Am J Pathol (2014) ncbi
rabbit polyclonal
  • western blot; mouse; 1:2000
In order to examine the developing epidermis to determine the consequences of lipid dysregulation in mouse models, Invitrogen Tubb1 antibody (Thermo, RB-9249-PO) was used in western blot on mouse samples at 1:2000. Hum Mol Genet (2015) ncbi
rabbit polyclonal
  • western blot; human
In order to study the relation between human cortical formation and impaired sonic hedgehog signaling, Invitrogen Tubb1 antibody (Thermo Scientific Pierce Antibodies, PA1-16947) was used in western blot on human samples . Cereb Cortex (2016) ncbi
mouse monoclonal (2 28 33)
  • western blot; dog
In order to study the role of ZO proteins in the regulation of transcription factor DbpA/ZONAB, Invitrogen Tubb1 antibody (Zymed, 32-2600) was used in western blot on dog samples . J Biol Chem (2014) ncbi
mouse monoclonal (2 28 33)
  • immunohistochemistry - frozen section; mouse; 1:500
In order to study the fate of mouse boundary cap neural crest stem cells implanted in the dorsal root transitional zone, Invitrogen Tubb1 antibody (Invitrogen, 32-2600) was used in immunohistochemistry - frozen section on mouse samples at 1:500. BMC Neurosci (2014) ncbi
mouse monoclonal (2 28 33)
  • western blot; human; fig 2
In order to investigate how ubiquitination of BK channels contributes to epilepsy, Invitrogen Tubb1 antibody (Invitrogen, 32-2600) was used in western blot on human samples (fig 2). Nat Commun (2014) ncbi
rabbit polyclonal
In order to study the role of phospholipase C-related catalytically inactive protein in KIF5B-mediated insulin secretion, Invitrogen Tubb1 antibody (Thermo Fisher Scientific, RB-9249) was used . Biol Open (2014) ncbi
mouse monoclonal (2 28 33)
  • western blot; rat
In order to examine the role of GPR30 in 17beta-estradiol-mediated neuroprotection after an ischemic injury in an organotypic hippocampal slice culture model, Invitrogen Tubb1 antibody (Life Technologies, 32-2600) was used in western blot on rat samples . Brain Res (2014) ncbi
mouse monoclonal (2 28 33)
  • immunohistochemistry; mouse; 1:300
In order to investigate the role of MMP-2 in development of the central nervous system and dendritogenesis, Invitrogen Tubb1 antibody (Invitrogen, 2-28-33) was used in immunohistochemistry on mouse samples at 1:300. Brain Struct Funct (2015) ncbi
mouse monoclonal (2 28 33)
  • immunocytochemistry; human
In order to propose a novel routine to estimate the average experimental localization precision in single-molecule localization microscopy, Invitrogen Tubb1 antibody (Novex, 32-2600) was used in immunocytochemistry on human samples . Histochem Cell Biol (2014) ncbi
mouse monoclonal (BT7R)
  • western blot; mouse; 1:3000
In order to study the differential effects of a high fat diet and caloric restriction on murne hypothalamic CNTF signaling, Invitrogen Tubb1 antibody (Pierce, MA5-16308) was used in western blot on mouse samples at 1:3000. Front Neurosci (2013) ncbi
mouse monoclonal (38F4)
  • immunocytochemistry; human; 1:1000
In order to assess if major components of energy drinks exert cytotoxic effects on human neuronal SH-SY5Y cells, Invitrogen Tubb1 antibody (Novex, 480011) was used in immunocytochemistry on human samples at 1:1000. Oxid Med Cell Longev (2013) ncbi
mouse monoclonal (2 28 33)
  • western blot; mouse; 1:2000; fig 3
In order to study the structure of and proteins associated with calcium homeostasis modulator 1, Invitrogen Tubb1 antibody (Invitrogen, 32-2600) was used in western blot on mouse samples at 1:2000 (fig 3). J Biol Chem (2013) ncbi
mouse monoclonal (2 28 33)
  • western blot; human; fig 1
In order to investigate the role of survivin in MCV infected merkel cell carcinoma cells, Invitrogen Tubb1 antibody (Life technologies, clone 2-28-33) was used in western blot on human samples (fig 1). Int J Cancer (2013) ncbi
mouse monoclonal (2 28 33)
  • western blot; human; fig 4, 5
In order to study the conservation of VEGF-R family signalling in lymphocytic endothelial cells from mice, Invitrogen Tubb1 antibody (Zymed, 32-2600) was used in western blot on human samples (fig 4, 5). Exp Cell Res (2011) ncbi
rabbit polyclonal
  • immunocytochemistry; rat; 1:500; fig 2
In order to determine the role of CK1delta and CK1epsilon activity in neurite outgrowth of lens injury stimulated retinal ganglion cells and nerve growth factor stimulated PC12 cells, Invitrogen Tubb1 antibody (Thermo Fisher, RB-9249-P0) was used in immunocytochemistry on rat samples at 1:500 (fig 2). PLoS ONE (2011) ncbi
mouse monoclonal (2 28 33)
  • western blot; mouse; 1:1000; fig 2
In order to characterize 14 new tumor lines and test potential inhibitors of astrocytoma and glioblastoma, Invitrogen Tubb1 antibody (Zymed Laboratories, 32-2600) was used in western blot on mouse samples at 1:1000 (fig 2). Neuro Oncol (2011) ncbi
mouse monoclonal (2 28 33)
  • western blot; mouse; fig 3
In order to study the influence of Gpx4 on the release of various apoptogenic proteins from mitochondria, Invitrogen Tubb1 antibody (Zymed Laboratories, 32-2600) was used in western blot on mouse samples (fig 3). Free Radic Biol Med (2009) ncbi
mouse monoclonal (2 28 33)
  • immunocytochemistry; African green monkey; fig 2
In order to discuss subdiffraction-resolution fluorescence imaging using conventional fluorescent probes, Invitrogen Tubb1 antibody (Invitrogen, 2-28-33) was used in immunocytochemistry on African green monkey samples (fig 2). Angew Chem Int Ed Engl (2008) ncbi
mouse monoclonal (2 28 33)
  • western blot; human; fig 8
In order to report a role for S100/A11 and p21 in regulating skin barrier integrity and the innate immune response, Invitrogen Tubb1 antibody (Zymed, 32-2600) was used in western blot on human samples (fig 8). J Invest Dermatol (2008) ncbi
mouse monoclonal (2 28 33)
  • western blot; rat; 1:1000
In order to examine the effects of spinal cord transection on sarco(endo)plasmic reticulum calcium ATPase pump isoform protein levels in the slow rat soleus, Invitrogen Tubb1 antibody (Zymed Laboratories, 2-28-33) was used in western blot on rat samples at 1:1000. Biochim Biophys Acta (2007) ncbi
mouse monoclonal (2 28 33)
  • western blot; mouse; fig 6
In order to study the role of autophagy in T cells, Invitrogen Tubb1 antibody (Life Technologies, 32-2600) was used in western blot on mouse samples (fig 6). J Immunol (2006) ncbi
mouse monoclonal (2 28 33)
  • western blot; human; fig 5
In order to investigate the role of brain and reproductive organ-expressed protein BRE in death receptor-mediated apoptosis, Invitrogen Tubb1 antibody (Zymed, 2-28-33) was used in western blot on human samples (fig 5). J Biol Chem (2004) ncbi
Sigma-Aldrich
mouse monoclonal (D66)
  • western blot; great pond snail; 1:2000; fig 2
Sigma-Aldrich Tubb1 antibody (Sigma, T0198) was used in western blot on great pond snail samples at 1:2000 (fig 2). Sci Rep (2016) ncbi
mouse monoclonal (D66)
  • western blot; mouse; fig 1
Sigma-Aldrich Tubb1 antibody (Sigma, T0198) was used in western blot on mouse samples (fig 1). Sci Rep (2016) ncbi
mouse monoclonal (D66)
  • western blot; mouse; fig 1
Sigma-Aldrich Tubb1 antibody (Sigma, T0198) was used in western blot on mouse samples (fig 1). J Neurosci (2016) ncbi
mouse monoclonal (D66)
  • western blot; human; fig 1
Sigma-Aldrich Tubb1 antibody (Sigma, T0198) was used in western blot on human samples (fig 1). Cell Death Dis (2016) ncbi
mouse monoclonal (D66)
  • western blot; rat; 1:5000; fig 2
In order to elucidate how inhibition of vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation occurs by glucagon-like peptide 1, Sigma-Aldrich Tubb1 antibody (Sigma, T0198) was used in western blot on rat samples at 1:5000 (fig 2). Biochem Pharmacol (2016) ncbi
mouse monoclonal (D66)
  • western blot; rat; fig s2
Sigma-Aldrich Tubb1 antibody (Sigma, T0198) was used in western blot on rat samples (fig s2). Autophagy (2015) ncbi
mouse monoclonal (D66)
  • immunoprecipitation; human
Sigma-Aldrich Tubb1 antibody (Sigma-Aldrich, T0198) was used in immunoprecipitation on human samples . J Cell Sci (2015) ncbi
mouse monoclonal (D66)
  • immunocytochemistry; rat; 1:1000
Sigma-Aldrich Tubb1 antibody (Sigma, T0198) was used in immunocytochemistry on rat samples at 1:1000. Biochim Biophys Acta (2015) ncbi
mouse monoclonal (D66)
  • western blot; rat; 1:10000
Sigma-Aldrich Tubb1 antibody (Sigma, T0198) was used in western blot on rat samples at 1:10000. J Cell Physiol (2016) ncbi
mouse monoclonal (D66)
  • western blot; human
In order to study the relationship between nuclear LASP-1 and the epigenetic machinery in breast cancer, Sigma-Aldrich Tubb1 antibody (Sigma, T0198) was used in western blot on human samples . Oncogene (2016) ncbi
mouse monoclonal (D66)
  • western blot; human; fig 7
Sigma-Aldrich Tubb1 antibody (Sigma, T0198) was used in western blot on human samples (fig 7). PLoS ONE (2015) ncbi
mouse monoclonal (D66)
  • western blot; human; fig  3
Sigma-Aldrich Tubb1 antibody (Sigma, T0198) was used in western blot on human samples (fig  3). Clin Exp Metastasis (2015) ncbi
mouse monoclonal (D66)
  • western blot; mouse; 1:4000
Sigma-Aldrich Tubb1 antibody (Sigma, T-0198) was used in western blot on mouse samples at 1:4000. Free Radic Biol Med (2014) ncbi
mouse monoclonal (D66)
  • immunocytochemistry; mouse
  • western blot; mouse
In order to study the role of phospholipase C-related catalytically inactive protein in KIF5B-mediated insulin secretion, Sigma-Aldrich Tubb1 antibody (Sigma-Aldrich, D66) was used in immunocytochemistry on mouse samples and in western blot on mouse samples . Biol Open (2014) ncbi
mouse monoclonal (D66)
  • western blot; rat
Sigma-Aldrich Tubb1 antibody (Sigma, T0198) was used in western blot on rat samples . Physiol Behav (2014) ncbi
EMD Millipore
mouse monoclonal (2G10)
  • immunocytochemistry; rat; 1:500; fig 1
EMD Millipore Tubb1 antibody (Millipore, 05-559) was used in immunocytochemistry on rat samples at 1:500 (fig 1). PLoS ONE (2016) ncbi
mouse monoclonal (2G10)
  • western blot; mouse; fig 7
EMD Millipore Tubb1 antibody (Millipore, 05-559) was used in western blot on mouse samples (fig 7). Autophagy (2015) ncbi
mouse monoclonal (2G10)
  • immunohistochemistry - frozen section; rat; 1:1000; loading ...; fig 4d
EMD Millipore Tubb1 antibody (Millipore, 05-559) was used in immunohistochemistry - frozen section on rat samples at 1:1000 (fig 4d). BMC Neurosci (2015) ncbi
mouse monoclonal (2G10)
  • western blot; Rhesus monkey; 1:20000
EMD Millipore Tubb1 antibody (Millipore, 05-559) was used in western blot on Rhesus monkey samples at 1:20000. Neurosci Lett (2014) ncbi
mouse monoclonal (2G10)
  • immunohistochemistry - free floating section; mouse; 1:1000
EMD Millipore Tubb1 antibody (Millipore, 05-559) was used in immunohistochemistry - free floating section on mouse samples at 1:1000. Acta Neuropathol Commun (2013) ncbi
mouse monoclonal (2G10)
  • immunocytochemistry; rat; 1:400
  • western blot; rat; 1:1000
EMD Millipore Tubb1 antibody (Millipore, 05-559) was used in immunocytochemistry on rat samples at 1:400 and in western blot on rat samples at 1:1000. Biomaterials (2013) ncbi
mouse monoclonal (2G10)
  • immunocytochemistry; human; 1:200
EMD Millipore Tubb1 antibody (Millipore, 05-559) was used in immunocytochemistry on human samples at 1:200. J Biol Chem (2013) ncbi
mouse monoclonal (2G10)
  • western blot; mouse
EMD Millipore Tubb1 antibody (Millipore, 05-559) was used in western blot on mouse samples . Mol Neurobiol (2013) ncbi
Articles Reviewed
  1. Nandi S, Mishra P. H2S and homocysteine control a novel feedback regulation of cystathionine beta synthase and cystathionine gamma lyase in cardiomyocytes. Sci Rep. 2017;7:3639 pubmed publisher
  2. Suresh S, Chavalmane A, Dj V, Yarreiphang H, Rai S, Paul A, et al. A novel autophagy modulator 6-Bio ameliorates SNCA/?-synuclein toxicity. Autophagy. 2017;13:1221-1234 pubmed publisher
  3. García Castañeda M, Vega A, Rodríguez R, Montiel Jaen M, Cisneros B, Zarain Herzberg A, et al. Functional impact of an oculopharyngeal muscular dystrophy mutation in PABPN1. J Physiol. 2017;595:4167-4187 pubmed publisher
  4. Gao S, Geng C, Song T, Lin X, Liu J, Cai Z, et al. Activation of c-Abl Kinase Potentiates the Anti-myeloma Drug Lenalidomide by Promoting DDA1 Protein Recruitment to the CRL4 Ubiquitin Ligase. J Biol Chem. 2017;292:3683-3691 pubmed publisher
  5. Aggarwal T, Hoeber J, Ivert P, Vasylovska S, Kozlova E. Boundary Cap Neural Crest Stem Cells Promote Survival of Mutant SOD1 Motor Neurons. Neurotherapeutics. 2017;14:773-783 pubmed publisher
  6. Alcoba D, Schneider J, Arruda L, Martiny P, Capp E, von Eye Corleta H, et al. Brilliant cresyl blue staining does not present cytotoxic effects on human luteinized follicular cells, according to gene/protein expression, as well as to cytotoxicity tests. Reprod Biol. 2017;17:60-68 pubmed publisher
  7. Wang W, Ye H, Wei P, Han B, He B, Chen Z, et al. LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner. J Hematol Oncol. 2016;9:117 pubmed
  8. Kunzler A, Zeidán Chuliá F, Gasparotto J, Girardi C, Klafke K, Petiz L, et al. Changes in Cell Cycle and Up-Regulation of Neuronal Markers During SH-SY5Y Neurodifferentiation by Retinoic Acid are Mediated by Reactive Species Production and Oxidative Stress. Mol Neurobiol. 2017;54:6903-6916 pubmed publisher
  9. Tang Y, Hendriks J, Gensch T, Dai L, Li J. Automatic Bayesian single molecule identification for localization microscopy. Sci Rep. 2016;6:33521 pubmed publisher
  10. Dias T, Alves M, Rato L, Casal S, Silva B, Oliveira P. White tea intake prevents prediabetes-induced metabolic dysfunctions in testis and epididymis preserving sperm quality. J Nutr Biochem. 2016;37:83-93 pubmed publisher
  11. Yan X, Liu J, Ye Z, Huang J, He F, Xiao W, et al. CaMKII-Mediated CREB Phosphorylation Is Involved in Ca2+-Induced BDNF mRNA Transcription and Neurite Outgrowth Promoted by Electrical Stimulation. PLoS ONE. 2016;11:e0162784 pubmed publisher
  12. Getz A, Visser F, Bell E, Xu F, Flynn N, Zaidi W, et al. Two proteolytic fragments of menin coordinate the nuclear transcription and postsynaptic clustering of neurotransmitter receptors during synaptogenesis between Lymnaea neurons. Sci Rep. 2016;6:31779 pubmed publisher
  13. Li S, Qu Z, Haas M, Ngo L, Heo Y, Kang H, et al. The HSA21 gene EURL/C21ORF91 controls neurogenesis within the cerebral cortex and is implicated in the pathogenesis of Down Syndrome. Sci Rep. 2016;6:29514 pubmed publisher
  14. Cormerais Y, Giuliano S, Lefloch R, Front B, Durivault J, Tambutte E, et al. Genetic Disruption of the Multifunctional CD98/LAT1 Complex Demonstrates the Key Role of Essential Amino Acid Transport in the Control of mTORC1 and Tumor Growth. Cancer Res. 2016;76:4481-92 pubmed publisher
  15. Topalidou I, Cattin Ortolá J, Pappas A, Cooper K, Merrihew G, MacCoss M, et al. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles. PLoS Genet. 2016;12:e1006074 pubmed publisher
  16. Lamprecht M, Elkin B, Kesavabhotla K, Crary J, Hammers J, Huh J, et al. Strong Correlation of Genome-Wide Expression after Traumatic Brain Injury In Vitro and In Vivo Implicates a Role for SORLA. J Neurotrauma. 2017;34:97-108 pubmed publisher
  17. Wahl S, Magupalli V, Dembla M, Katiyar R, Schwarz K, Köblitz L, et al. The Disease Protein Tulp1 Is Essential for Periactive Zone Endocytosis in Photoreceptor Ribbon Synapses. J Neurosci. 2016;36:2473-93 pubmed publisher
  18. Le Pen J, Maillet L, Sarosiek K, Vuillier C, Gautier F, Montessuit S, et al. Constitutive p53 heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors of BCL-xL. Cell Death Dis. 2016;7:e2083 pubmed publisher
  19. Ancelin K, Syx L, Borensztein M, Ranisavljevic N, Vassilev I, Briseño Roa L, et al. Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation. elife. 2016;5: pubmed publisher
  20. Torres G, Morales P, García Miguel M, Norambuena Soto I, Cartes Saavedra B, Vidal Peña G, et al. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation. Biochem Pharmacol. 2016;104:52-61 pubmed publisher
  21. Fokina A, Chechenova M, Karginov A, Ter Avanesyan M, Agaphonov M. Genetic Evidence for the Role of the Vacuole in Supplying Secretory Organelles with Ca2+ in Hansenula polymorpha. PLoS ONE. 2015;10:e0145915 pubmed publisher
  22. Wang J, Cao Y, Li Q, Yang Y, Jin M, Chen D, et al. A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation. Autophagy. 2015;11:2057-2073 pubmed
  23. Ittig S, Schmutz C, Kasper C, Amstutz M, Schmidt A, Sauteur L, et al. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology. J Cell Biol. 2015;211:913-31 pubmed publisher
  24. Riquelme S, Pogu J, Anegon I, Bueno S, Kalergis A. Carbon monoxide impairs mitochondria-dependent endosomal maturation and antigen presentation in dendritic cells. Eur J Immunol. 2015;45:3269-88 pubmed publisher
  25. Jamieson C, Lui C, Brocardo M, Martino Echarri E, Henderson B. Rac1 augments Wnt signaling by stimulating β-catenin-lymphoid enhancer factor-1 complex assembly independent of β-catenin nuclear import. J Cell Sci. 2015;128:3933-46 pubmed publisher
  26. Han Y, Wang Z, Bae E. Synthesis of the Proposed Structure of Damaurone D and Evaluation of Its Anti-inflammatory Activity. Chem Pharm Bull (Tokyo). 2015;63:907-12 pubmed publisher
  27. Zhou J, Joshi B, Duan X, Pant A, Qiu Z, Kuick R, et al. EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging. Clin Transl Gastroenterol. 2015;6:e101 pubmed publisher
  28. Zajkowski T, Nieznanska H, Nieznanski K. Stabilization of microtubular cytoskeleton protects neurons from toxicity of N-terminal fragment of cytosolic prion protein. Biochim Biophys Acta. 2015;1853:2228-39 pubmed publisher
  29. Tang Y, Dai L, Zhang X, Li J, Hendriks J, Fan X, et al. SNSMIL, a real-time single molecule identification and localization algorithm for super-resolution fluorescence microscopy. Sci Rep. 2015;5:11073 pubmed publisher
  30. Nan X, Tamgüney T, Collisson E, Lin L, Pitt C, Galeas J, et al. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway. Proc Natl Acad Sci U S A. 2015;112:7996-8001 pubmed publisher
  31. Tang N, Lyu D, Liu T, Chen F, Jing S, Hao T, et al. Different Effects of p52SHC1 and p52SHC3 on the Cell Cycle of Neurons and Neural Stem Cells. J Cell Physiol. 2016;231:172-80 pubmed publisher
  32. Torres Fuentes J, Rios M, Moreno R. Involvement of a P2X7 Receptor in the Acrosome Reaction Induced by ATP in Rat Spermatozoa. J Cell Physiol. 2015;230:3068-75 pubmed publisher
  33. Duvall Noelle N, Karwandyar A, Richmond A, Raman D. LASP-1: a nuclear hub for the UHRF1-DNMT1-G9a-Snail1 complex. Oncogene. 2016;35:1122-33 pubmed publisher
  34. Kim Y, Kang Y, Lee N, Kim K, Hwang Y, Kim H, et al. Uvrag targeting by Mir125a and Mir351 modulates autophagy associated with Ewsr1 deficiency. Autophagy. 2015;11:796-811 pubmed publisher
  35. Thierry M, Pasquis B, Buteau B, Fourgeux C, Dembele D, Leclère L, et al. Early adaptive response of the retina to a pro-diabetogenic diet: Impairment of cone response and gene expression changes in high-fructose fed rats. Exp Eye Res. 2015;135:37-46 pubmed publisher
  36. Raha Chowdhury R, Raha A, Forostyak S, Zhao J, Stott S, Bomford A. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain. BMC Neurosci. 2015;16:24 pubmed publisher
  37. Ding Y, Xu Y, Shuai X, Shi X, Chen X, Huang W, et al. Reg3α Overexpression Protects Pancreatic Beta-Cells From Cytokine-Induced Damage and Improves Islet Transplant Outcome. Mol Med. 2014;: pubmed publisher
  38. Giehl K, Keller C, Muehlich S, Goppelt Struebe M. Actin-mediated gene expression depends on RhoA and Rac1 signaling in proximal tubular epithelial cells. PLoS ONE. 2015;10:e0121589 pubmed publisher
  39. Bi Q, Ranjan A, Fan R, Agarwal N, Welch D, Weinman S, et al. MTBP inhibits migration and metastasis of hepatocellular carcinoma. Clin Exp Metastasis. 2015;32:301-11 pubmed publisher
  40. Hue C, Cho F, Cao S, Dale Bass C, Meaney D, Morrison B. Dexamethasone potentiates in vitro blood-brain barrier recovery after primary blast injury by glucocorticoid receptor-mediated upregulation of ZO-1 tight junction protein. J Cereb Blood Flow Metab. 2015;35:1191-8 pubmed publisher
  41. Kim S, Ka S, Lee Y, Park B, Fei X, Jung J, et al. The new 4-O-methylhonokiol analog GS12021 inhibits inflammation and macrophage chemotaxis: role of AMP-activated protein kinase α activation. PLoS ONE. 2015;10:e0117120 pubmed publisher
  42. Feeney S, McGrath M, Sriratana A, Gehrig S, Lynch G, D Arcy C, et al. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1). PLoS ONE. 2015;10:e0117665 pubmed publisher
  43. Crane J, Palanivel R, Mottillo E, Bujak A, Wang H, Ford R, et al. Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat Med. 2015;21:166-72 pubmed publisher
  44. Arredondo Zamarripa D, Díaz Lezama N, Meléndez García R, Chávez Balderas J, Adán N, Ledesma Colunga M, et al. Vasoinhibins regulate the inner and outer blood-retinal barrier and limit retinal oxidative stress. Front Cell Neurosci. 2014;8:333 pubmed publisher
  45. Bakirtzi K, West G, Fiocchi C, Law I, Iliopoulos D, Pothoulakis C. The neurotensin-HIF-1α-VEGFα axis orchestrates hypoxia, colonic inflammation, and intestinal angiogenesis. Am J Pathol. 2014;184:3405-14 pubmed publisher
  46. Cottle D, Ursino G, Ip S, Jones L, DiTommaso T, Hacking D, et al. Fetal inhibition of inflammation improves disease phenotypes in harlequin ichthyosis. Hum Mol Genet. 2015;24:436-49 pubmed publisher
  47. Radonjić N, Memi F, Ortega J, Glidden N, Zhan H, Zecevic N. The Role of Sonic Hedgehog in the Specification of Human Cortical Progenitors In Vitro. Cereb Cortex. 2016;26:131-43 pubmed publisher
  48. Tanti G, Goswami S. SG2NA recruits DJ-1 and Akt into the mitochondria and membrane to protect cells from oxidative damage. Free Radic Biol Med. 2014;75:1-13 pubmed publisher
  49. Spadaro D, Tapia R, Jond L, Sudol M, Fanning A, Citi S. ZO proteins redundantly regulate the transcription factor DbpA/ZONAB. J Biol Chem. 2014;289:22500-11 pubmed publisher
  50. Trolle C, König N, Abrahamsson N, Vasylovska S, Kozlova E. Boundary cap neural crest stem cells homotopically implanted to the injured dorsal root transitional zone give rise to different types of neurons and glia in adult rodents. BMC Neurosci. 2014;15:60 pubmed publisher
  51. Liu J, Ye J, Zou X, Xu Z, Feng Y, Zou X, et al. CRL4A(CRBN) E3 ubiquitin ligase restricts BK channel activity and prevents epileptogenesis. Nat Commun. 2014;5:3924 pubmed publisher
  52. Asano S, Nemoto T, Kitayama T, Harada K, Zhang J, Harada K, et al. Phospholipase C-related catalytically inactive protein (PRIP) controls KIF5B-mediated insulin secretion. Biol Open. 2014;3:463-74 pubmed publisher
  53. Lamprecht M, Morrison B. GPR30 activation is neither necessary nor sufficient for acute neuroprotection by 17?-estradiol after an ischemic injury in organotypic hippocampal slice cultures. Brain Res. 2014;1563:131-7 pubmed publisher
  54. Verslegers M, Van Hove I, Dekeyster E, Gantois I, Hu T, D Hooge R, et al. MMP-2 mediates Purkinje cell morphogenesis and spine development in the mouse cerebellum. Brain Struct Funct. 2015;220:1601-17 pubmed publisher
  55. Endesfelder U, Malkusch S, Fricke F, Heilemann M. A simple method to estimate the average localization precision of a single-molecule localization microscopy experiment. Histochem Cell Biol. 2014;141:629-38 pubmed publisher
  56. Willard S, Hemby S, Register T, McIntosh S, Shively C. Altered expression of glial and synaptic markers in the anterior hippocampus of behaviorally depressed female monkeys. Neurosci Lett. 2014;563:1-5 pubmed publisher
  57. Severi I, Perugini J, Mondini E, Smorlesi A, Frontini A, Cinti S, et al. Opposite effects of a high-fat diet and calorie restriction on ciliary neurotrophic factor signaling in the mouse hypothalamus. Front Neurosci. 2013;7:263 pubmed publisher
  58. Raha A, VAISHNAV R, FRIEDLAND R, Bomford A, Raha Chowdhury R. The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer's disease. Acta Neuropathol Commun. 2013;1:55 pubmed publisher
  59. Heydendael W, Sengupta A, Beck S, Bhatnagar S. Optogenetic examination identifies a context-specific role for orexins/hypocretins in anxiety-related behavior. Physiol Behav. 2014;130:182-90 pubmed publisher
  60. Zeidán Chuliá F, Gelain D, Kolling E, Rybarczyk Filho J, Ambrosi P, Terra S, et al. Major components of energy drinks (caffeine, taurine, and guarana) exert cytotoxic effects on human neuronal SH-SY5Y cells by decreasing reactive oxygen species production. Oxid Med Cell Longev. 2013;2013:791795 pubmed publisher
  61. Li X, Xiao Z, Han J, Chen L, Xiao H, Ma F, et al. Promotion of neuronal differentiation of neural progenitor cells by using EGFR antibody functionalized collagen scaffolds for spinal cord injury repair. Biomaterials. 2013;34:5107-16 pubmed publisher
  62. Nihei Y, Ito D, Okada Y, Akamatsu W, Yagi T, Yoshizaki T, et al. Enhanced aggregation of androgen receptor in induced pluripotent stem cell-derived neurons from spinal and bulbar muscular atrophy. J Biol Chem. 2013;288:8043-52 pubmed publisher
  63. Siebert A, Ma Z, Grevet J, Demuro A, Parker I, Foskett J. Structural and functional similarities of calcium homeostasis modulator 1 (CALHM1) ion channel with connexins, pannexins, and innexins. J Biol Chem. 2013;288:6140-53 pubmed publisher
  64. Schrama D, Hesbacher S, Becker J, Houben R. Survivin downregulation is not required for T antigen knockdown mediated cell growth inhibition in MCV infected merkel cell carcinoma cells. Int J Cancer. 2013;132:2980-2 pubmed publisher
  65. Jung M, Kim K, Lee N, Kang Y, Hwang Y, Kim Y, et al. Expression of taurine transporter (TauT) is modulated by heat shock factor 1 (HSF1) in motor neurons of ALS. Mol Neurobiol. 2013;47:699-710 pubmed publisher
  66. Coso S, Zeng Y, Sooraj D, Williams E. Conserved signaling through vascular endothelial growth (VEGF) receptor family members in murine lymphatic endothelial cells. Exp Cell Res. 2011;317:2397-407 pubmed publisher
  67. Bischof J, Müller A, Fänder M, Knippschild U, Fischer D. Neurite outgrowth of mature retinal ganglion cells and PC12 cells requires activity of CK1? and CK1?. PLoS ONE. 2011;6:e20857 pubmed publisher
  68. Gursel D, Connell Albert Y, Tuskan R, Anastassiadis T, Walrath J, Hawes J, et al. Control of proliferation in astrocytoma cells by the receptor tyrosine kinase/PI3K/AKT signaling axis and the use of PI-103 and TCN as potential anti-astrocytoma therapies. Neuro Oncol. 2011;13:610-21 pubmed publisher
  69. Liang H, Ran Q, Jang Y, Holstein D, Lechleiter J, McDonald Marsh T, et al. Glutathione peroxidase 4 differentially regulates the release of apoptogenic proteins from mitochondria. Free Radic Biol Med. 2009;47:312-20 pubmed publisher
  70. Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl. 2008;47:6172-6 pubmed publisher
  71. Howell M, Fairchild H, Kim B, Bin L, Boguniewicz M, Redzic J, et al. Th2 cytokines act on S100/A11 to downregulate keratinocyte differentiation. J Invest Dermatol. 2008;128:2248-58 pubmed publisher
  72. Talmadge R, Paalani M. Sarco(endo)plasmic reticulum calcium pump isoforms in paralyzed rat slow muscle. Biochim Biophys Acta. 2007;1770:1187-93 pubmed
  73. Li C, Capan E, Zhao Y, Zhao J, Stolz D, Watkins S, et al. Autophagy is induced in CD4+ T cells and important for the growth factor-withdrawal cell death. J Immunol. 2006;177:5163-8 pubmed
  74. Li Q, Ching A, Chan B, Chow S, Lim P, Ho T, et al. A death receptor-associated anti-apoptotic protein, BRE, inhibits mitochondrial apoptotic pathway. J Biol Chem. 2004;279:52106-16 pubmed