This is a Validated Antibody Database (VAD) review about mouse Mapk3, based on 436 published articles (read how Labome selects the articles), using Mapk3 antibody in all methods. It is aimed to help Labome visitors find the most suited Mapk3 antibody. Please note the number of articles fluctuates since newly identified citations are added and citations for discontinued catalog numbers are removed regularly.
Mapk3 synonym: Erk-1; Erk1; Ert2; Esrk1; Mnk1; Mtap2k; Prkm3; p44; p44erk1; p44mapk; mitogen-activated protein kinase 3; MAP kinase 3; extracellular signal-regulated kinase 1; insulin-stimulated MAP2 kinase; microtubule-associated protein 2 kinase; p44 MAP kinase; pp42/MAP kinase

Santa Cruz Biotechnology
mouse monoclonal
  • western blot; human; 1:5000; loading ...; fig 1c
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-514302) was used in western blot on human samples at 1:5000 (fig 1c). Nat Commun (2019) ncbi
mouse monoclonal
  • western blot; human; loading ...; fig 2e
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-514302) was used in western blot on human samples (fig 2e). Exp Mol Med (2018) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; loading ...; fig 8a
Santa Cruz Biotechnology Mapk3 antibody (santa cruz, sc-7383) was used in western blot on mouse samples (fig 8a). J Exp Med (2018) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; fig 4d
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology Inc, sc-7383) was used in western blot on mouse samples (fig 4d). J Clin Invest (2018) ncbi
mouse monoclonal (MK1)
  • western blot; mouse; 1:1000; loading ...; fig 5a
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-135900) was used in western blot on mouse samples at 1:1000 (fig 5a). Restor Neurol Neurosci (2018) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; 1:1000; loading ...; fig 5a
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on mouse samples at 1:1000 (fig 5a). Restor Neurol Neurosci (2018) ncbi
mouse monoclonal (E-4)
  • western blot; human; loading ...; fig 2b
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, E-4) was used in western blot on human samples (fig 2b). Cell Death Dis (2018) ncbi
mouse monoclonal (E-4)
  • western blot; human; loading ...; fig 5a
Santa Cruz Biotechnology Mapk3 antibody (SantaCruz, E-4) was used in western blot on human samples (fig 5a). Cell Res (2018) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; loading ...; fig 6d
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology Inc, SC-7383) was used in western blot on mouse samples (fig 6d). Neurotherapeutics (2018) ncbi
mouse monoclonal (12D4)
  • immunohistochemistry - frozen section; mouse; 1:20; loading ...; fig s6f
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-81492) was used in immunohistochemistry - frozen section on mouse samples at 1:20 (fig s6f). Nat Commun (2018) ncbi
mouse monoclonal (pT202/pY204.22A)
  • western blot; human; loading ...; fig 3b
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-136521) was used in western blot on human samples (fig 3b). Int J Oncol (2018) ncbi
mouse monoclonal (E-4)
  • western blot; human; loading ...; fig 5
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples (fig 5). Mol Med Rep (2018) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 6a
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples (fig 6a). Oncotarget (2017) ncbi
mouse monoclonal (pT202/pY204.22A)
  • western blot; human; loading ...; fig 7a
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-136521) was used in western blot on human samples (fig 7a). Cancer Lett (2017) ncbi
mouse monoclonal (E-6)
  • western blot; human; loading ...; fig 3b
In order to investigate Rac1 activity and inhibition in gastric adenocarcinoma cells and mouse xenograft models for epithelial-to-mesenchymal transition and cancer stem-like cell phenotypes, Santa Cruz Biotechnology Mapk3 antibody (SantaCruz, sc-271270) was used in western blot on human samples (fig 3b). Mol Cancer Res (2017) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; fig 3g
Santa Cruz Biotechnology Mapk3 antibody (SantaCruz, SC-7383) was used in western blot on mouse samples (fig 3g). J Exp Med (2017) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 3e
In order to find a role for IL-4 in promoting breast cancer aggressiveness, Santa Cruz Biotechnology Mapk3 antibody (SCB, E-4) was used in western blot on human samples (fig 3e). Cancer Res (2017) ncbi
mouse monoclonal (E-4)
  • western blot; human; 1:1000; loading ...; fig 3c
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples at 1:1000 (fig 3c). Oncol Lett (2017) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; loading ...; fig 4b
In order to show that TLR4 signals through the BCR leading to activation of SYK, ERK, and AKT as well as through MYD88 leading to activation of NFkappaB, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on mouse samples (fig 4b). J Exp Med (2017) ncbi
mouse monoclonal
  • western blot; human; loading ...; fig 6a
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-514302) was used in western blot on human samples (fig 6a). Exp Mol Med (2017) ncbi
mouse monoclonal (E-4)
  • western blot; human; loading ...; fig 6a
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples (fig 6a). Exp Mol Med (2017) ncbi
mouse monoclonal
  • western blot; human; loading ...; fig 6A
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-514302) was used in western blot on human samples (fig 6A). Sci Rep (2017) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; loading ...; fig 6
Santa Cruz Biotechnology Mapk3 antibody (SantaCruz, sc-7383) was used in western blot on mouse samples (fig 6). J Ethnopharmacol (2017) ncbi
mouse monoclonal
  • western blot; human; 1:200; loading ...; fig 2b
In order to investigate whether cannabinoid-type 1 receptor functions as tumor-promoting or -suppressing signal in human cutaneous melanoma, Santa Cruz Biotechnology Mapk3 antibody (SantaCruz, sc-514302) was used in western blot on human samples at 1:200 (fig 2b). Toxicol In Vitro (2017) ncbi
mouse monoclonal (E-4)
  • western blot; human; 1:500; loading ...; fig 2b
In order to investigate whether cannabinoid-type 1 receptor functions as tumor-promoting or -suppressing signal in human cutaneous melanoma, Santa Cruz Biotechnology Mapk3 antibody (SantaCruz, sc-7383) was used in western blot on human samples at 1:500 (fig 2b). Toxicol In Vitro (2017) ncbi
mouse monoclonal (E-4)
  • western blot; human; 1:500; loading ...; fig 2b
Santa Cruz Biotechnology Mapk3 antibody (SantaCruz, sc-7383) was used in western blot on human samples at 1:500 (fig 2b). J Steroid Biochem Mol Biol (2017) ncbi
mouse monoclonal
  • western blot; human; 1:2000; loading ...; fig 4a
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-514302) was used in western blot on human samples at 1:2000 (fig 4a). Exp Ther Med (2016) ncbi
mouse monoclonal (E-4)
  • western blot; human; 1:500; loading ...; fig 2e
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on human samples at 1:500 (fig 2e). Nat Commun (2017) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 1c
In order to determine the role of p21-activated kinases in response to BRAF inhibitors, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, SC-7383) was used in western blot on human samples (fig 1c). Mol Carcinog (2017) ncbi
mouse monoclonal (E-4)
  • immunohistochemistry - paraffin section; mouse; loading ...
In order to clarify the impact of PI3K and PKA signaling to tongue epithelial differentiation, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in immunohistochemistry - paraffin section on mouse samples . Acta Histochem (2017) ncbi
mouse monoclonal (G-8)
  • western blot; mouse; 1:1000; loading ...; fig 9a
In order to examine the effect of piceatannol on renal fibrosis and histone deacetylase expression in a mouse model of unilateral ureteral obstruction, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-271269) was used in western blot on mouse samples at 1:1000 (fig 9a). PLoS ONE (2016) ncbi
mouse monoclonal (MK1)
  • western blot; human; 1:1000; loading ...; fig 1a
In order to explore how the crosstalk between calcium signaling and the MAPK pathway through the regulation of PMCA4b regulates metastasis, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-135900) was used in western blot on human samples at 1:1000 (fig 1a). Int J Cancer (2017) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 5b
In order to determine the effects of high glucose on the epithelial-mesenchymal transition in retinal pigment epithelial cells, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples (fig 5b). Int J Mol Med (2016) ncbi
mouse monoclonal (MK1)
  • western blot; mouse; loading ...; fig 3a
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-135900) was used in western blot on mouse samples (fig 3a). Int J Mol Sci (2016) ncbi
mouse monoclonal (E-4)
  • western blot; rat; loading ...; fig 6b
In order to examine the impact of ischemia/reperfusion injury on sodium potassium ATPase enzymatic and signaling functions, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, Sc-7383) was used in western blot on rat samples (fig 6b). Physiol Rep (2016) ncbi
mouse monoclonal
  • western blot; human; 1:1500; loading ...; fig 4a
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-514302) was used in western blot on human samples at 1:1500 (fig 4a). Oncol Lett (2016) ncbi
mouse monoclonal (E-4)
  • western blot; human; 1:1500; loading ...; fig 4a
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples at 1:1500 (fig 4a). Oncol Lett (2016) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; fig 3
Santa Cruz Biotechnology Mapk3 antibody (santa Cruz, SC-7383) was used in western blot on mouse samples (fig 3). Blood Cancer J (2016) ncbi
mouse monoclonal
  • western blot; mouse; fig 3
Santa Cruz Biotechnology Mapk3 antibody (santa Cruz, SC-514302) was used in western blot on mouse samples (fig 3). Blood Cancer J (2016) ncbi
mouse monoclonal (pT202/pY204.22A)
  • immunohistochemistry - paraffin section; human; loading ...; fig 7a
  • western blot; human; 1:500; loading ...; fig 5a
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-136521) was used in immunohistochemistry - paraffin section on human samples (fig 7a) and in western blot on human samples at 1:500 (fig 5a). Oncotarget (2016) ncbi
mouse monoclonal (E-4)
  • western blot; human; 1:500; tbl 1
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples at 1:500 (tbl 1). J Neuroinflammation (2016) ncbi
mouse monoclonal (E-4)
  • western blot; human; loading ...; fig 6e
In order to test if GLP-1 released from intestinal l-cells governs endothelial vessel tone, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, 7383) was used in western blot on human samples (fig 6e). Am J Physiol Heart Circ Physiol (2016) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 4b
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on human samples (fig 4b). Oncotarget (2016) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; 1:1000; loading ...; fig 5a
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on mouse samples at 1:1000 (fig 5a). Mol Cell Biochem (2016) ncbi
mouse monoclonal (E-4)
  • western blot; human; loading ...; fig 3a
In order to ask if nucleoside diphosphate kinase B interacting with caveolin-1 in endothelial cells is required for the regulation of angiogenesis and adherens junction integrity, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on human samples (fig 3a). J Cereb Blood Flow Metab (2017) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; loading ...; fig 7a
In order to demonstrate that Siglec-E is required for Escherichia coli-induced endocytosis of TLR4, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on mouse samples (fig 7a). J Immunol (2016) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 4
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples (fig 4). Mol Ther Methods Clin Dev (2016) ncbi
mouse monoclonal
  • western blot; human; 1:1000; fig 4
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-514302) was used in western blot on human samples at 1:1000 (fig 4). Mol Med Rep (2016) ncbi
mouse monoclonal (pT202/pY204.22A)
  • western blot; human; 1:1000; fig 4
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-136521) was used in western blot on human samples at 1:1000 (fig 4). Mol Med Rep (2016) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 5
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, SC-7383) was used in western blot on human samples (fig 5). Cell Rep (2016) ncbi
mouse monoclonal (pT202/pY204.22A)
  • western blot; rat; loading ...; fig 5c
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, SC-136521) was used in western blot on rat samples (fig 5c). PLoS ONE (2016) ncbi
mouse monoclonal (E-4)
  • western blot; human; 1:1000; fig 2
In order to assess the role of Nrg1 signaling to Alzheimer's disease pathogenesis, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples at 1:1000 (fig 2). Mol Med Rep (2016) ncbi
mouse monoclonal (MK1)
  • western blot; human; 1:1000; fig 2
In order to assess the role of Nrg1 signaling to Alzheimer's disease pathogenesis, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-135900) was used in western blot on human samples at 1:1000 (fig 2). Mol Med Rep (2016) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; 1:1000; fig 2
In order to use transgenic mice to study how endogenous c-Kit receptor activation affects cardiac cell homeostasis and repair, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on mouse samples at 1:1000 (fig 2). Cell Death Dis (2016) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 3
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples (fig 3). Oncol Lett (2016) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; loading ...; fig 2a
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on mouse samples (fig 2a). J Cell Biol (2016) ncbi
mouse monoclonal (E-4)
  • western blot; human; loading ...; fig 2a
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples (fig 2a). Oncotarget (2016) ncbi
mouse monoclonal (E-4)
  • western blot; human; loading ...; fig 3h
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, E4) was used in western blot on human samples (fig 3h). Genes Cancer (2016) ncbi
mouse monoclonal (MK1)
  • western blot; human; loading ...; fig 6b
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-135900) was used in western blot on human samples (fig 6b). Oncotarget (2016) ncbi
mouse monoclonal (E-4)
  • western blot; human; 1:1000; loading ...; fig 5d
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on human samples at 1:1000 (fig 5d). Oncotarget (2016) ncbi
mouse monoclonal (pT202/pY204.22A)
  • western blot; human; 1:200; fig 6A
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-136521) was used in western blot on human samples at 1:200 (fig 6A). Front Pharmacol (2016) ncbi
mouse monoclonal (MK1)
  • western blot; human; 1:200; fig 6A
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-135900) was used in western blot on human samples at 1:200 (fig 6A). Front Pharmacol (2016) ncbi
mouse monoclonal (MK1)
  • western blot; human; 1:1000; fig s4
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-135900) was used in western blot on human samples at 1:1000 (fig s4). Nat Commun (2016) ncbi
mouse monoclonal (MK1)
  • western blot; mouse; 1:1000; fig 4
In order to study the alterations of brain Neuregulin-1 signaling during neuroinflammation, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-135900) was used in western blot on mouse samples at 1:1000 (fig 4). Mol Med Rep (2016) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; 1:1000; fig 4
In order to study the alterations of brain Neuregulin-1 signaling during neuroinflammation, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on mouse samples at 1:1000 (fig 4). Mol Med Rep (2016) ncbi
mouse monoclonal (E-4)
  • western blot; rat; 1:500; loading ...; fig 5a
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, 7383) was used in western blot on rat samples at 1:500 (fig 5a). Int J Endocrinol (2016) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; loading ...; fig 7c
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on mouse samples (fig 7c). J Biol Chem (2016) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 4
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc7383) was used in western blot on human samples (fig 4). BMC Complement Altern Med (2016) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; fig s2
In order to decipher activation of TFEB and Nrf2 transcription factors and stimulation by Fisetin for autophagic degradation of phosphorylated tau, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, SC-7383) was used in western blot on mouse samples (fig s2). Sci Rep (2016) ncbi
mouse monoclonal (MK1)
  • western blot; human; 1:500; fig 3
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-135900) was used in western blot on human samples at 1:500 (fig 3). Oncoimmunology (2016) ncbi
mouse monoclonal (E-4)
  • western blot; human; loading ...; fig 6a
In order to demonstrate that cross-linking FcgammaRIIIb is responsible for neutrophil extracellular trap formation by the human neutrophil, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples (fig 6a). J Immunol Res (2016) ncbi
mouse monoclonal (pT202/pY204.22A)
  • western blot; human; 1:200; fig 5
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-136521) was used in western blot on human samples at 1:200 (fig 5). Genes Cancer (2016) ncbi
mouse monoclonal (MK1)
  • western blot; human; 1:200; fig 5
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-135900) was used in western blot on human samples at 1:200 (fig 5). Genes Cancer (2016) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 5
Santa Cruz Biotechnology Mapk3 antibody (Santa cruz, sc-7383) was used in western blot on human samples (fig 5). BMC Cancer (2016) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 2
In order to report that glucocorticoid receptor activation and PPAR-gamma inactivation mediate BAY 11-7085-induced autophagy, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples (fig 2). Oncotarget (2016) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 6
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on human samples (fig 6). Oncotarget (2016) ncbi
mouse monoclonal (E-4)
  • immunocytochemistry; mouse; 1:50; fig 5
  • immunohistochemistry; mouse; 1:50; fig 5
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in immunocytochemistry on mouse samples at 1:50 (fig 5) and in immunohistochemistry on mouse samples at 1:50 (fig 5). Nat Commun (2016) ncbi
mouse monoclonal (E-4)
  • western blot; human; loading ...; fig 3c
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples (fig 3c). Oncotarget (2016) ncbi
mouse monoclonal
  • western blot; rat; loading ...; fig 10a
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-514302) was used in western blot on rat samples (fig 10a). Int J Mol Med (2016) ncbi
mouse monoclonal
  • immunohistochemistry; mouse; 1:500; loading ...; fig 3d
  • western blot; mouse; 1:500; loading ...; fig 3d
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-514302) was used in immunohistochemistry on mouse samples at 1:500 (fig 3d) and in western blot on mouse samples at 1:500 (fig 3d). J Neurosci (2016) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 8
  • western blot; mouse; fig 5
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, E-4) was used in western blot on human samples (fig 8) and in western blot on mouse samples (fig 5). J Exp Med (2016) ncbi
mouse monoclonal (12D4)
  • western blot; rat; 1:500; fig 6
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-81492) was used in western blot on rat samples at 1:500 (fig 6). Exp Ther Med (2016) ncbi
mouse monoclonal (MK1)
  • western blot; mouse; 1:1000; fig 5
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-135900) was used in western blot on mouse samples at 1:1000 (fig 5). Sci Rep (2016) ncbi
mouse monoclonal (12D4)
  • immunohistochemistry - paraffin section; mouse; 1:100; fig 5
  • western blot; mouse; 1:1000; fig 5
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-81492) was used in immunohistochemistry - paraffin section on mouse samples at 1:100 (fig 5) and in western blot on mouse samples at 1:1000 (fig 5). Sci Rep (2016) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; loading ...; fig 7e
In order to present the role of Kras in B cell lymphopoiesis, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on mouse samples (fig 7e). J Immunol (2016) ncbi
mouse monoclonal (E-4)
  • immunohistochemistry; mouse; loading ...; fig 7
  • western blot; rat; loading ...; fig 1d
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc7383) was used in immunohistochemistry on mouse samples (fig 7) and in western blot on rat samples (fig 1d). J Cell Mol Med (2016) ncbi
mouse monoclonal (E-4)
  • ELISA; human; 1:500; fig 10
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in ELISA on human samples at 1:500 (fig 10). Oncotarget (2016) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 7
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples (fig 7). Oncotarget (2016) ncbi
mouse monoclonal (E-4)
  • western blot; rat; 1:500; fig 6
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruze, sc-7383) was used in western blot on rat samples at 1:500 (fig 6). PLoS ONE (2016) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; fig 3
Santa Cruz Biotechnology Mapk3 antibody (santa Cruz, sc-7383) was used in western blot on mouse samples (fig 3). Drug Des Devel Ther (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; 1:500; fig 10
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples at 1:500 (fig 10). J Neuroinflammation (2015) ncbi
mouse monoclonal (E-4)
  • immunohistochemistry - paraffin section; mouse; 1:1000; fig s7
  • western blot; mouse; 1:1000; fig 2
  • western blot; human; 1:1000; fig 2
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in immunohistochemistry - paraffin section on mouse samples at 1:1000 (fig s7), in western blot on mouse samples at 1:1000 (fig 2) and in western blot on human samples at 1:1000 (fig 2). Nat Commun (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; loading ...; fig 5c
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples (fig 5c). Mol Cells (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 5a
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples (fig 5a). Apoptosis (2016) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig S3
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples (fig S3). Oncotarget (2016) ncbi
mouse monoclonal (MK1)
  • western blot; human; fig 3
In order to study how all-trans retinoic acid modulates the ERK signaling pathway, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-135900) was used in western blot on human samples (fig 3). Biomed Res Int (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 7
In order to determine promotion of cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin beta1 and insulin-like growth factor-independent insulin-like growth factor binding protein 3, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples (fig 7). Oncotarget (2015) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; fig s3
In order to utilize a chimeric peptide comprising two functionally different motifs of tip from herpesvirus saimiri which modulates p56Lck in T-Cells, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on mouse samples (fig s3). J Immunol Res (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 8
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, SC-7383) was used in western blot on human samples (fig 8). Oncotarget (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 6a
In order to elucidate the contribution of SPRY2 to colon cancer, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on human samples (fig 6a). Oncogene (2016) ncbi
mouse monoclonal (E-4)
  • western blot; human
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, SC7383) was used in western blot on human samples . Int J Cancer (2016) ncbi
mouse monoclonal (E-4)
  • western blot; human; loading ...; fig 3c
Santa Cruz Biotechnology Mapk3 antibody (SantaCruz, sc-7383) was used in western blot on human samples (fig 3c). Oncogene (2016) ncbi
mouse monoclonal (MK1)
  • western blot; human; 1:8000; fig 7
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, SC-135900) was used in western blot on human samples at 1:8000 (fig 7). Int J Mol Sci (2015) ncbi
mouse monoclonal (E-4)
  • western blot; pig; fig 2
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on pig samples (fig 2). J Immunol (2015) ncbi
mouse monoclonal (E-6)
  • western blot; human; loading ...; fig 6b
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-271270) was used in western blot on human samples (fig 6b). BMC Cancer (2015) ncbi
mouse monoclonal (12D4)
  • western blot; human; loading ...; fig 6b
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-81492) was used in western blot on human samples (fig 6b). BMC Cancer (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on human samples . PLoS ONE (2015) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; fig 3
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on mouse samples (fig 3). Cancer Sci (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human
In order to assess the role of Galphaq/11 in VEGF-dependent regulation of vascular permeability and angiogenesis, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on human samples . Cardiovasc Res (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Laboratories, SC7383) was used in western blot on human samples . PLoS ONE (2015) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; fig 6b
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, E-4) was used in western blot on mouse samples (fig 6b). J Exp Med (2015) ncbi
mouse monoclonal (E-4)
  • western blot; rat; 1:1000
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on rat samples at 1:1000. Int J Neuropsychopharmacol (2015) ncbi
mouse monoclonal (E-4)
  • immunohistochemistry - free floating section; rat
In order to report that autophagy is activated to counteract the harmful effect caused by manganese, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in immunohistochemistry - free floating section on rat samples . Free Radic Biol Med (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 2
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples (fig 2). J Biomed Sci (2015) ncbi
mouse monoclonal (E-4)
  • western blot; mouse
In order to study mechanisms that regulate TLR-induced IL-12 expression and the Th1 response, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, SC-7383) was used in western blot on mouse samples . Virol Sin (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 1
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples (fig 1). PLoS ONE (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; 1:1000; fig 6
Santa Cruz Biotechnology Mapk3 antibody (Santa-Cruz, sc-7383) was used in western blot on human samples at 1:1000 (fig 6). PLoS Pathog (2015) ncbi
mouse monoclonal (E-4)
  • western blot; mouse
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on mouse samples . Neuropharmacology (2015) ncbi
mouse monoclonal (MK1)
  • western blot; mouse
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-135900) was used in western blot on mouse samples . Neuropharmacology (2015) ncbi
mouse monoclonal (MK1)
  • western blot; human; loading ...; fig 4d
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, SC-135900) was used in western blot on human samples (fig 4d). Oncotarget (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, SC-7383) was used in western blot on human samples . PLoS ONE (2015) ncbi
mouse monoclonal (MK1)
  • western blot; human
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, SC-135900) was used in western blot on human samples . PLoS ONE (2015) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; 1:1000
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on mouse samples at 1:1000. Cancer Res (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 6
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples (fig 6). Oncotarget (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig s8
In order to investigate the role of RIPK1 in response to endoplasmic reticulum stress, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on human samples (fig s8). Autophagy (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 7
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, SC-7383) was used in western blot on human samples (fig 7). PLoS ONE (2015) ncbi
mouse monoclonal (MK1)
  • chromatin immunoprecipitation; human; fig 6
In order to investigate if and how sHB-EGF treatment results in EGFR nuclear importation, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotech, sc-135900) was used in chromatin immunoprecipitation on human samples (fig 6). PLoS ONE (2015) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; 1:500
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on mouse samples at 1:500. Neuroscience (2015) ncbi
mouse monoclonal (MK1)
  • western blot; mouse
In order to study the regulatory effect of a high-fish-oil diet on rodent white adipose tissue inflammation pathways, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, SC-135900) was used in western blot on mouse samples . J Nutr Biochem (2015) ncbi
mouse monoclonal (12D4)
  • western blot; mouse
In order to study the regulatory effect of a high-fish-oil diet on rodent white adipose tissue inflammation pathways, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, SC-81492) was used in western blot on mouse samples . J Nutr Biochem (2015) ncbi
mouse monoclonal (E-4)
  • western blot; rat; fig 5
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on rat samples (fig 5). Mar Drugs (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 5
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, SC-7383) was used in western blot on human samples (fig 5). Br J Nutr (2015) ncbi
mouse monoclonal (E-4)
  • western blot; rat; 1:500; loading ...; fig 4g
In order to propose that claudin-4 is required for mAChR-modulated paracellular permeability of epithelial cells and investigate the mechanism, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on rat samples at 1:500 (fig 4g). J Cell Sci (2015) ncbi
mouse monoclonal (pT202/pY204.22A)
  • western blot; human; fig 6
In order to test if celastrol inhibits formation of neutrophil extracellular traps induced by inflammatory stimuli associated with rheumatoid arthritis and systemic lupus erythematosus, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-136521) was used in western blot on human samples (fig 6). Curr Mol Med (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, E-4) was used in western blot on human samples . Cell Mol Life Sci (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; 1:500
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on human samples at 1:500. Cell Signal (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; 1:500; fig 2
Santa Cruz Biotechnology Mapk3 antibody (santa Cruz, sc-7383) was used in western blot on human samples at 1:500 (fig 2). PLoS ONE (2015) ncbi
mouse monoclonal (12D4)
  • western blot; mouse; 1:500; loading ...; fig 4a
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-81492) was used in western blot on mouse samples at 1:500 (fig 4a). Biochim Biophys Acta (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; loading ...; fig 5f
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on human samples (fig 5f). Cell Commun Signal (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; 1:500; fig 4
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, SC-7383) was used in western blot on human samples at 1:500 (fig 4). Nat Commun (2015) ncbi
mouse monoclonal (E-4)
  • immunocytochemistry; mouse
  • western blot; mouse
In order to study ROS and MAPK signaling in gonadotropes, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnologies, SC-7383) was used in immunocytochemistry on mouse samples and in western blot on mouse samples . Endocrinology (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig s21
Santa Cruz Biotechnology Mapk3 antibody (Santa, sc-7383) was used in western blot on human samples (fig s21). PLoS ONE (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; 1:1000
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples at 1:1000. Exp Ther Med (2015) ncbi
mouse monoclonal (MK1)
  • western blot; human
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, SC-135900) was used in western blot on human samples . Mutat Res (2015) ncbi
mouse monoclonal (E-4)
  • immunoprecipitation; human; fig 3
  • western blot; human; fig s9
Santa Cruz Biotechnology Mapk3 antibody (santa Cruz, sc-7383) was used in immunoprecipitation on human samples (fig 3) and in western blot on human samples (fig s9). Cell Death Differ (2015) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; 1:1000
In order to elucidate the relationship between FOXO1, insulin, and IGF1 in gonadotropes, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on mouse samples at 1:1000. Mol Cell Endocrinol (2015) ncbi
mouse monoclonal (MK1)
  • western blot; human
In order to investigate the effects of sorafenib on acute myeloid leukemia cell lines lacking FLT3-ITD, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-135900) was used in western blot on human samples . Leuk Lymphoma (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human
In order to investigate the effects of sorafenib on acute myeloid leukemia cell lines lacking FLT3-ITD, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on human samples . Leuk Lymphoma (2015) ncbi
mouse monoclonal (MK1)
  • western blot; rat; 1:200
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-135900) was used in western blot on rat samples at 1:200. PLoS ONE (2015) ncbi
mouse monoclonal (pT202/pY204.22A)
  • western blot; rat; 1:200
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-136521) was used in western blot on rat samples at 1:200. PLoS ONE (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 2
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, E4) was used in western blot on human samples (fig 2). Cell Res (2015) ncbi
mouse monoclonal (E-4)
  • western blot; mouse
In order to show that MDSCs promote invasion of mammary carcinoma cells by increasing fibroblast migration, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on mouse samples . PLoS ONE (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 2
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on human samples (fig 2). Cell Cycle (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; loading ...; fig 2b
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples (fig 2b). Environ Health Perspect (2015) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; 1:200
In order to study mice lacking ERK1/2 selectively in skeletal myofibers, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, SC7383) was used in western blot on mouse samples at 1:200. Mol Cell Biol (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 1
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, E-4) was used in western blot on human samples (fig 1). J Biol Chem (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human
In order to determine the action of PARP inhibition in different glioblastoma multiforme cell lines, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on human samples . Oncotarget (2015) ncbi
mouse monoclonal (E-4)
  • immunohistochemistry; human; 1:100
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in immunohistochemistry on human samples at 1:100. Cancer Lett (2015) ncbi
mouse monoclonal (MK1)
  • western blot; rat; 1:200
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-135900) was used in western blot on rat samples at 1:200. Life Sci (2015) ncbi
mouse monoclonal (12D4)
  • western blot; rat; 1:200
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-81492) was used in western blot on rat samples at 1:200. Life Sci (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; 1:1000
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, E-4) was used in western blot on human samples at 1:1000. Tumour Biol (2015) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; 1:1000
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on mouse samples at 1:1000. Nat Neurosci (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human
In order to study the effect of Imatinib on VASP activity and its interaction with Zyxin in BCR-ABL leukemic cells, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on human samples . Biochim Biophys Acta (2015) ncbi
mouse monoclonal (MK1)
  • western blot; rat; fig 3
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-135900) was used in western blot on rat samples (fig 3). Biochem Pharmacol (2015) ncbi
mouse monoclonal (MK1)
  • western blot; human; 1:1000
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-135900) was used in western blot on human samples at 1:1000. Exp Cell Res (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human; 1:1000
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on human samples at 1:1000. Exp Cell Res (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on human samples . Oncotarget (2014) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 1
In order to study hepatocyte growth factor signaling and resistance to targeted cancer drugs, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, 7383) was used in western blot on human samples (fig 1). Cell Cycle (2014) ncbi
mouse monoclonal (E-4)
  • western blot; mouse; 1:500; fig 2
In order to assess the effect of the C118S mutation of Kras on tumorigenesis, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on mouse samples at 1:500 (fig 2). Nat Commun (2014) ncbi
mouse monoclonal (E-4)
  • western blot; human
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples . PLoS ONE (2014) ncbi
mouse monoclonal (MK1)
  • western blot; human; 1:1000
In order to investigate the role of FOXO3a in Huntington disease, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-135900) was used in western blot on human samples at 1:1000. J Biol Chem (2014) ncbi
mouse monoclonal (E-4)
  • western blot; human; 1:1000
In order to investigate the role of FOXO3a in Huntington disease, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples at 1:1000. J Biol Chem (2014) ncbi
mouse monoclonal (E-4)
  • immunohistochemistry - paraffin section; rat
  • western blot; rat
In order to assess the role of NMDA receptors in mediating the effects of post conditioning administered after global cerebral ischemia in adult male rats, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, E-4, sc-7383) was used in immunohistochemistry - paraffin section on rat samples and in western blot on rat samples . Hippocampus (2015) ncbi
mouse monoclonal (MK1)
  • western blot; human; 1:800
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, SC-135900) was used in western blot on human samples at 1:800. Growth Factors (2015) ncbi
mouse monoclonal (E-4)
  • western blot; kangaroo rats; 1:200; fig 2
Santa Cruz Biotechnology Mapk3 antibody (santa cruz, sc-7383) was used in western blot on kangaroo rats samples at 1:200 (fig 2). Cell Mol Neurobiol (2015) ncbi
mouse monoclonal (12D4)
  • immunocytochemistry; human; 1:300
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotech, sc-81492) was used in immunocytochemistry on human samples at 1:300. Biores Open Access (2014) ncbi
mouse monoclonal (MK1)
  • western blot; human
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-135900) was used in western blot on human samples . Biometals (2014) ncbi
mouse monoclonal (MK1)
  • western blot; mouse
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, SC-135900) was used in western blot on mouse samples . J Am Heart Assoc (2014) ncbi
mouse monoclonal (E-4)
  • western blot; human
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples . J Virol (2014) ncbi
mouse monoclonal (E-4)
  • western blot; human; 1:1000
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on human samples at 1:1000. BMC Cancer (2014) ncbi
mouse monoclonal (E-4)
  • immunohistochemistry - paraffin section; human; 1:100
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc7383) was used in immunohistochemistry - paraffin section on human samples at 1:100. J Gastroenterol Hepatol (2014) ncbi
mouse monoclonal (E-4)
  • western blot; cow
In order to investigate the effect of 17 beta-estradiol and progesterone on autophagy during acini formation, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on cow samples . Biomed Res Int (2014) ncbi
mouse monoclonal (E-4)
  • western blot; human
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on human samples . Angiogenesis (2014) ncbi
mouse monoclonal (MK1)
  • western blot; human
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-135900) was used in western blot on human samples . Int J Oncol (2014) ncbi
mouse monoclonal (E-4)
  • western blot; human
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on human samples . Int J Oncol (2014) ncbi
mouse monoclonal (MK1)
  • western blot; rabbit; 1:1,000
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-135900) was used in western blot on rabbit samples at 1:1,000. Stem Cells Dev (2014) ncbi
mouse monoclonal (E-4)
  • western blot; human
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples . Mol Cell Endocrinol (2014) ncbi
mouse monoclonal (E-4)
  • western blot; human
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on human samples . Mol Cancer Ther (2014) ncbi
mouse monoclonal (E-4)
  • western blot; human; 1:1000; fig 1
In order to study the anti-tumor effects of a pan class I PI3 kinase/mTOR inhibitor in cells with a genetically diverse range of PI3 kinase pathway modifications, Santa Cruz Biotechnology Mapk3 antibody (Santa, sc-7383) was used in western blot on human samples at 1:1000 (fig 1). Mol Cancer Ther (2014) ncbi
mouse monoclonal (E-4)
  • western blot; human
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples . Oncogene (2015) ncbi
mouse monoclonal (E-4)
  • western blot; human
In order to study the preventive effects of pelargonidin toward atherosclerosis mechanistically, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, SC-7383) was used in western blot on human samples . Biochem Pharmacol (2014) ncbi
mouse monoclonal (E-4)
  • western blot; human
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc7383) was used in western blot on human samples . Mol Cell Biol (2014) ncbi
mouse monoclonal (E-4)
  • western blot; mouse
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on mouse samples . Electrophoresis (2014) ncbi
mouse monoclonal (E-4)
  • western blot; mouse
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on mouse samples . Exp Mol Med (2014) ncbi
mouse monoclonal (E-4)
  • western blot; tomato
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, SC-7383) was used in western blot on tomato samples . J Agric Food Chem (2014) ncbi
mouse monoclonal (E-4)
  • western blot; human; 1:1000
In order to investigate the mechanism of fragile histidine triad-mediated regulation of epithelial-mesenchymal transition, Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, E-4) was used in western blot on human samples at 1:1000. Mol Cancer Res (2014) ncbi
mouse monoclonal (E-4)
  • immunocytochemistry; rat
  • western blot; rat
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in immunocytochemistry on rat samples and in western blot on rat samples . Glia (2014) ncbi
mouse monoclonal (E-4)
  • western blot; human
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples . J Biol Chem (2014) ncbi
mouse monoclonal (pT202/pY204.22A)
  • western blot; rat; 1:200
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-136521) was used in western blot on rat samples at 1:200. Exp Cell Res (2014) ncbi
mouse monoclonal (MK1)
  • western blot; rat; 1:200
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-135900) was used in western blot on rat samples at 1:200. Exp Cell Res (2014) ncbi
mouse monoclonal (MK1)
  • western blot; human
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-135900) was used in western blot on human samples . Cancer Cell Int (2013) ncbi
mouse monoclonal (E-4)
  • western blot; human; 1:500
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples at 1:500. Mol Neurodegener (2012) ncbi
mouse monoclonal (E-4)
  • western blot; human; 1:500
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples at 1:500. J Neuroimmunol (2013) ncbi
mouse monoclonal (E-4)
  • western blot; rat
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz Biotechnology, sc-7383) was used in western blot on rat samples . Lab Anim Res (2012) ncbi
mouse monoclonal (E-4)
  • western blot; rat; 1:1000; loading ...; fig 3b
Santa Cruz Biotechnology Mapk3 antibody (SantaCruz, E-4) was used in western blot on rat samples at 1:1000 (fig 3b). Am J Physiol Gastrointest Liver Physiol (2011) ncbi
mouse monoclonal (E-4)
  • western blot; human; fig 5
Santa Cruz Biotechnology Mapk3 antibody (Santa Cruz, sc-7383) was used in western blot on human samples (fig 5). Leukemia (2011) ncbi
Invitrogen
mouse monoclonal (MILAN8R)
  • flow cytometry; human; loading ...; fig s5
Invitrogen Mapk3 antibody (eBioscience, MILAN8R) was used in flow cytometry on human samples (fig s5). Eur J Immunol (2018) ncbi
rabbit polyclonal
  • western blot; rat; loading ...; fig 4b
Invitrogen Mapk3 antibody (Thermo Fisher Scientific, 44-654G) was used in western blot on rat samples (fig 4b). Biosci Rep (2018) ncbi
rabbit monoclonal (B.742.5)
  • western blot; Stylophora pistillata; 1:1000; fig 2a
  • western blot; human; fig 4
In order to validate ERK antibodies in the scleractinian coral Stylophora pistillata, Invitrogen Mapk3 antibody (ThermoFisher, MA5-15174) was used in western blot on Stylophora pistillata samples at 1:1000 (fig 2a) and in western blot on human samples (fig 4). F1000Res (2017) ncbi
mouse monoclonal (3F8B3)
  • western blot; human; fig 4
  • western blot; Stylophora pistillata; 1:1000; fig 2a
In order to validate ERK antibodies in the scleractinian coral Stylophora pistillata, Invitrogen Mapk3 antibody (ThermoFisher, MA5-15605) was used in western blot on human samples (fig 4) and in western blot on Stylophora pistillata samples at 1:1000 (fig 2a). F1000Res (2017) ncbi
mouse monoclonal (ERK-7D8)
  • immunoprecipitation; human; loading ...; fig 5a
  • western blot; human; loading ...; fig 5a
In order to study the effect of symplekin on cellular proliferation and dedifferentiation, Invitrogen Mapk3 antibody (Invitrogen, 13-6200) was used in immunoprecipitation on human samples (fig 5a) and in western blot on human samples (fig 5a). Sci Rep (2017) ncbi
mouse monoclonal (ERK-7D8)
  • western blot; human; 1:500; loading ...; fig 3a
In order to elucidate the mechanism of Pin1 overexpression in hepatocellular carcinoma, Invitrogen Mapk3 antibody (Invitrogen, 13-6200) was used in western blot on human samples at 1:500 (fig 3a). Sci Rep (2017) ncbi
rabbit polyclonal
  • western blot; human; loading ...; fig 1d
In order to characterize a new specific pharmacological hematopoietic cell kinase inhibitor, Invitrogen Mapk3 antibody (Invitrogen, 44-680G) was used in western blot on human samples (fig 1d). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
rabbit polyclonal
  • western blot; human; loading ...; fig 1d
In order to characterize a new specific pharmacological hematopoietic cell kinase inhibitor, Invitrogen Mapk3 antibody (Invitrogen, 44-654G) was used in western blot on human samples (fig 1d). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
mouse monoclonal (ERK-7D8)
  • western blot; human; fig 5e
In order to elucidate how JNJ-61186372 attenuates therapeutic resistance in patients with epidermal growth factor receptor mutations, Invitrogen Mapk3 antibody (Invitrogen, 13-6200) was used in western blot on human samples (fig 5e). MAbs (2017) ncbi
rabbit polyclonal
  • western blot; human; loading ...; fig 3b
In order to demonstrate that entinostat targets SALL4-positive lung cancer, Invitrogen Mapk3 antibody (Invitrogen, 61-7400) was used in western blot on human samples (fig 3b). Oncotarget (2016) ncbi
rabbit polyclonal
  • western blot; African green monkey; loading ...; fig 5c
In order to characterize a V2 vasopressin receptor mutation found in patient with partial nephrogenic diabetes insipidus, Invitrogen Mapk3 antibody (Zymed, 61-7400) was used in western blot on African green monkey samples (fig 5c). J Biol Chem (2016) ncbi
rabbit polyclonal
  • western blot; human; loading ...; fig 1b
In order to compare dabrafenib-resistant and -sensitive BRAF-mutant human melanoma cell lines, Invitrogen Mapk3 antibody (Invitrogen, 44-680G) was used in western blot on human samples (fig 1b). Int J Oncol (2016) ncbi
rabbit polyclonal
  • western blot; mouse; loading ...; fig 5e
  • western blot; human; loading ...; fig s3b
In order to discover that WNK1 kinase regulates integrin-mediated adhesion and T cell migration, Invitrogen Mapk3 antibody (Life Technologies, 44-654G) was used in western blot on mouse samples (fig 5e) and in western blot on human samples (fig s3b). Nat Immunol (2016) ncbi
rabbit polyclonal
  • western blot; human; loading ...; fig s3b
  • western blot; mouse; loading ...; fig 5e
In order to discover that WNK1 kinase regulates integrin-mediated adhesion and T cell migration, Invitrogen Mapk3 antibody (Life Technologies, 44-680G) was used in western blot on human samples (fig s3b) and in western blot on mouse samples (fig 5e). Nat Immunol (2016) ncbi
mouse monoclonal (ERK-7D8)
  • western blot; human; 1:2000; loading ...; fig 2a
In order to describe the antitumoral mechanism of vitamin C in KRAS mutant colorectal cancer that is related to the Warburg effect, Invitrogen Mapk3 antibody (Thermo Fisher Scientific, ERK-7D8) was used in western blot on human samples at 1:2000 (fig 2a). Oncotarget (2016) ncbi
rabbit polyclonal
  • western blot; human; fig 3
In order to research pediatric large congenital melanocytic nevi to show melanocytes affect nodal expression and signaling in melanoma cells, Invitrogen Mapk3 antibody (Life technologies, 44-654-G) was used in western blot on human samples (fig 3). Int J Mol Sci (2016) ncbi
mouse monoclonal (MILAN8R)
  • flow cytometry; mouse
Invitrogen Mapk3 antibody (eBioscience, MILAN8R) was used in flow cytometry on mouse samples . Oncotarget (2016) ncbi
rabbit polyclonal
  • western blot; human; fig 4
In order to determine facilitation of chemoresistance and cancer proliferation by Haem-dependent dimerization of PGRMC1/Sigma-2 receptor, Invitrogen Mapk3 antibody (Invitrogen, 44680G) was used in western blot on human samples (fig 4). Nat Commun (2016) ncbi
rabbit polyclonal
  • immunohistochemistry - paraffin section; human; fig 3
  • western blot; human; fig 1
In order to learn how oncogene addiction can be broken in tumors with MET amplification by the Anti-c-Met monoclonal antibody ABT-700, Invitrogen Mapk3 antibody (Invitrogen, 44680G) was used in immunohistochemistry - paraffin section on human samples (fig 3) and in western blot on human samples (fig 1). BMC Cancer (2016) ncbi
rabbit polyclonal
  • western blot; human; fig 6
In order to determine a mechanism for regulation of tumor progression due to simultaneous activation of induced heterodimerization between cannabinoid receptor 2 (CB2) and CXCR4 chemokine receptor, Invitrogen Mapk3 antibody (Invitrogen Biosource, 44-654G) was used in western blot on human samples (fig 6). J Biol Chem (2016) ncbi
mouse monoclonal (12D11)
  • western blot; human; fig s6
In order to discuss the use of Crispr/Cas to develop models for non-allelic homologous recombination based diseases, Invitrogen Mapk3 antibody (ThermoFisher Scientific, MA1-13041) was used in western blot on human samples (fig s6). Nat Neurosci (2016) ncbi
rabbit polyclonal
  • western blot; mouse; 1:5000; loading ...; fig 5
In order to present the involvement IL-6 on ethanol effect on synaptic function, Invitrogen Mapk3 antibody (Zymed, 61-7400) was used in western blot on mouse samples at 1:5000 (fig 5). Neuropharmacology (2016) ncbi
rabbit polyclonal
  • western blot; rat; fig 5
In order to investigate the role of neuron-enriched Na(+)/H(+) exchanger NHE5, Invitrogen Mapk3 antibody (Invitrogen, 44-680G) was used in western blot on rat samples (fig 5). Mol Biol Cell (2016) ncbi
rabbit polyclonal
  • western blot; human; 1:1000; fig 3
In order to test if DEHP affects MMP-2 or MMP-9 expression in vascular smooth muscle cells, Invitrogen Mapk3 antibody (Invitrogen, 44680G) was used in western blot on human samples at 1:1000 (fig 3). Int J Mol Sci (2015) ncbi
mouse monoclonal (ERK-6B11)
  • immunohistochemistry - paraffin section; mouse; fig 3
  • western blot; mouse; fig 3
In order to elucidate the role of ERK isoforms to auditory function, Invitrogen Mapk3 antibody (Invitrogen, 13-8600) was used in immunohistochemistry - paraffin section on mouse samples (fig 3) and in western blot on mouse samples (fig 3). Sci Rep (2015) ncbi
rabbit polyclonal
  • western blot; human; fig 3
In order to study how all-trans retinoic acid modulates the ERK signaling pathway, Invitrogen Mapk3 antibody (Thermo Fisher Scientific, 44-680G) was used in western blot on human samples (fig 3). Biomed Res Int (2015) ncbi
rabbit polyclonal
  • western blot; human
In order to assess the use of 3D1 mAb for treating Nodal expressing cancers, Invitrogen Mapk3 antibody (Life Technologies, 44-654-G) was used in western blot on human samples . Oncotarget (2015) ncbi
mouse monoclonal (ERK-7D8)
  • western blot; human; fig 1
In order to show that inhibition of the oxidative arm of the pentose phosphate pathway is required for antimalarial-mediated apoptosis, Invitrogen Mapk3 antibody (Invitrogen, 13-6200) was used in western blot on human samples (fig 1). Oncogene (2016) ncbi
rabbit polyclonal
  • western blot; human; fig 1
In order to show that inhibition of the oxidative arm of the pentose phosphate pathway is required for antimalarial-mediated apoptosis, Invitrogen Mapk3 antibody (Invitrogen, 44-680G) was used in western blot on human samples (fig 1). Oncogene (2016) ncbi
rabbit polyclonal
  • western blot; human; 1:1000
In order to test if NBDHEX and MC3181 have antitumor activity against melanoma cells resistant to vemurafenib, Invitrogen Mapk3 antibody (Invitrogen, 44680G) was used in western blot on human samples at 1:1000. Biochem Pharmacol (2015) ncbi
rabbit polyclonal
  • immunocytochemistry; rat; fig 1
In order to describe a method for the preparation, fixation, and fluorescence analysis of in vitro cultivated metacestode vesicles from E. multilocularis, Invitrogen Mapk3 antibody (Life Technologies, 44680G) was used in immunocytochemistry on rat samples (fig 1). PLoS ONE (2015) ncbi
mouse monoclonal (ERK-7D8)
  • western blot; mouse; 1:500; fig 5b
In order to uncover a role for ATG12-ATG3 in late endosome function that is distinct from autophagy, Invitrogen Mapk3 antibody (Zymed, 13-6200) was used in western blot on mouse samples at 1:500 (fig 5b). Nat Cell Biol (2015) ncbi
rabbit polyclonal
  • western blot; mouse; 1:2000; fig 5b
In order to uncover a role for ATG12-ATG3 in late endosome function that is distinct from autophagy, Invitrogen Mapk3 antibody (Biosource, 44-680G) was used in western blot on mouse samples at 1:2000 (fig 5b). Nat Cell Biol (2015) ncbi
rabbit polyclonal
  • western blot; human
In order to determine the action of PARP inhibition in different glioblastoma multiforme cell lines, Invitrogen Mapk3 antibody (Invitrogen, CA 61-7400) was used in western blot on human samples . Oncotarget (2015) ncbi
rabbit polyclonal
  • western blot; human; fig 4
In order to elucidate the tumor suppressor function of BTG3, Invitrogen Mapk3 antibody (Invitrogen Life Technologies, 44-654G) was used in western blot on human samples (fig 4). Cell Death Dis (2015) ncbi
rabbit polyclonal
  • western blot; human; fig 4
In order to elucidate the tumor suppressor function of BTG3, Invitrogen Mapk3 antibody (Invitrogen Life Technologies, 44680G) was used in western blot on human samples (fig 4). Cell Death Dis (2015) ncbi
mouse monoclonal (ERK-7D8)
  • western blot; human
In order to study the effect of Imatinib on VASP activity and its interaction with Zyxin in BCR-ABL leukemic cells, Invitrogen Mapk3 antibody (Zymed, 13-6200) was used in western blot on human samples . Biochim Biophys Acta (2015) ncbi
mouse monoclonal (ERK-7D8)
  • western blot; mouse
In order to investigate the role of Ras in the production of effector cytokines by primary murine CD4+ T cells during Th1/Th2 differentiation, Invitrogen Mapk3 antibody (Invitrogen, 13-6200) was used in western blot on mouse samples . PLoS ONE (2014) ncbi
rabbit polyclonal
  • western blot; mouse; 1:5000; fig 2
In order to study IL-6 and CCL2 in the central nervous system, Invitrogen Mapk3 antibody (Zymed, 61-7400) was used in western blot on mouse samples at 1:5000 (fig 2). Front Cell Neurosci (2014) ncbi
rabbit monoclonal (K.913.4)
  • immunohistochemistry - paraffin section; zebrafish
  • western blot; zebrafish
In order to show that H2O2 acts via MAPK signaling for heart regeneration in adult zebrafish, Invitrogen Mapk3 antibody (Pierce, MA5-15134) was used in immunohistochemistry - paraffin section on zebrafish samples and in western blot on zebrafish samples . Cell Res (2014) ncbi
mouse monoclonal (ERK-7D8)
  • western blot; human
In order to study the effect of Hinokitiol on DNA damage and autophagy in gefitinib-resistant lung adenocarcinoma cells, Invitrogen Mapk3 antibody (Zymed Laboratories, 13-6200) was used in western blot on human samples . PLoS ONE (2014) ncbi
rabbit polyclonal
  • western blot; mouse; 1:5000
In order to study the effect of ethanol exposure on CCL2 secretion and hippocampal synaptic protein expression, Invitrogen Mapk3 antibody (Zymed, 61-7400) was used in western blot on mouse samples at 1:5000. Front Integr Neurosci (2014) ncbi
rabbit polyclonal
  • western blot; rat
In order to examine the role of GPR30 in 17beta-estradiol-mediated neuroprotection after an ischemic injury in an organotypic hippocampal slice culture model, Invitrogen Mapk3 antibody (Life Technologies, 617400) was used in western blot on rat samples . Brain Res (2014) ncbi
rabbit polyclonal
  • immunohistochemistry; human; 1:50; fig 6
  • western blot; human; 1:1000; fig 4
In order to assess the role of the MEK1/2-ERK1/2 signaling pathway in the pathogenesis of chronic rhinosinusitis with nasal polyps, Invitrogen Mapk3 antibody (Invitrogen, 44-680G) was used in immunohistochemistry on human samples at 1:50 (fig 6) and in western blot on human samples at 1:1000 (fig 4). Arch Immunol Ther Exp (Warsz) (2014) ncbi
rabbit polyclonal
  • western blot; human; 1:1000
In order to test if extracellular signal-regulated kinase and c-Jun N-terminal kinase are associated with long-term organ damage in SLE patients, Invitrogen Mapk3 antibody (BioSource, 44-680G) was used in western blot on human samples at 1:1000. Rheumatology (Oxford) (2014) ncbi
rabbit polyclonal
  • western blot; human; 1:1000
In order to test if extracellular signal-regulated kinase and c-Jun N-terminal kinase are associated with long-term organ damage in SLE patients, Invitrogen Mapk3 antibody (BioSource, 44-654G) was used in western blot on human samples at 1:1000. Rheumatology (Oxford) (2014) ncbi
rabbit polyclonal
  • western blot; human; fig 7
In order to alter the C-terminal trafficking domain of P2X7 and examine its function, Invitrogen Mapk3 antibody (Invitrogen, 44680G) was used in western blot on human samples (fig 7). PLoS ONE (2013) ncbi
mouse monoclonal (ERK-6B11)
  • western blot; mouse; 1:3000; fig 3
In order to generate and characterize mice conditionally deleted for Ngf or Trka in the central nervous system, Invitrogen Mapk3 antibody (Zymed, ERK-6B11) was used in western blot on mouse samples at 1:3000 (fig 3). J Neurosci (2012) ncbi
mouse monoclonal (ERK-7D8)
  • western blot; rat; 1:2500; tbl 1
In order to study the effects of taurine on antidepressive behaviour and depression-related signaling in the rat hippocampus, Invitrogen Mapk3 antibody (Invitrogen, 136200) was used in western blot on rat samples at 1:2500 (tbl 1). Amino Acids (2012) ncbi
rabbit polyclonal
  • western blot; human
In order to identify Lyn as a redox sensor that recruits neutrophils to wounds in zebrafish larvae, Invitrogen Mapk3 antibody (BioSource, 44654G) was used in western blot on human samples . Nature (2011) ncbi
rabbit polyclonal
  • western blot; mouse; fig 4
In order to study how elevated levels of IL-6 affect neurons, Invitrogen Mapk3 antibody (Zymed, 61-7400) was used in western blot on mouse samples (fig 4). J Neuroimmunol (2011) ncbi
mouse monoclonal (ERK-7D8)
  • western blot; human
In order to determine the impact of IRS1 on the BCR-ABL signaling pathways, Invitrogen Mapk3 antibody (Zymed, 13-6200) was used in western blot on human samples . Biochim Biophys Acta (2011) ncbi
mouse monoclonal (ERK-7D8)
  • western blot; human; fig 1
In order to examine the phosphorylation of insulin-receptors substrate in various adenoma and adipocytes, Invitrogen Mapk3 antibody (Invitrogen, 13-6200) was used in western blot on human samples (fig 1). J Endocrinol Invest (2011) ncbi
rabbit polyclonal
  • immunocytochemistry; Caenorhabditis elegans; fig 7
In order to identify and characterize the role of TFG-1 in protein secretion and export of cargo from the endoplasmic reticulum, Invitrogen Mapk3 antibody (Invitrogen, 44680G) was used in immunocytochemistry on Caenorhabditis elegans samples (fig 7). Nat Cell Biol (2011) ncbi
rabbit polyclonal
  • western blot; human; fig 3
In order to investigate the roles of EGFR and beta1 integrin in ErbB2-driven anchorage independence of tumor cells, Invitrogen Mapk3 antibody (Invitrogen, 44-680G) was used in western blot on human samples (fig 3). J Biol Chem (2011) ncbi
rabbit polyclonal
  • immunohistochemistry; human; 0.5 ug/ul; fig 1
In order to develop an in vitro model for experimental studies of cancer cell invasion, Invitrogen Mapk3 antibody (Biosource, 44-680G) was used in immunohistochemistry on human samples at 0.5 ug/ul (fig 1). Eur J Oral Sci (2010) ncbi
rabbit polyclonal
  • immunocytochemistry; rat; 1:50; fig 3
  • western blot; rat; fig 3
In order to investigate the potential neuroprotective effects of extranuclear estrogen receptors in the brain following cerebral ischemia, Invitrogen Mapk3 antibody (Biosource, 44-680G) was used in immunocytochemistry on rat samples at 1:50 (fig 3) and in western blot on rat samples (fig 3). PLoS ONE (2010) ncbi
rabbit polyclonal
  • western blot; human; 1:1000; fig 1
In order to examine how PDK1 affects MAPK and PI3K signaling in tumor cells, Invitrogen Mapk3 antibody (Invitrogen, 44680G) was used in western blot on human samples at 1:1000 (fig 1). Mol Cancer Res (2010) ncbi
mouse monoclonal (ERK-6B11)
  • western blot; mouse; 1:3000
In order to study molecular pathways required for fear learning, Invitrogen Mapk3 antibody (Zymed, 13-8600) was used in western blot on mouse samples at 1:3000. J Neurosci (2009) ncbi
rabbit polyclonal
  • western blot; human; fig 3
In order to discuss the contribution of the p21ras/MAP kinase pathway to systemic lupus erythematosus, Invitrogen Mapk3 antibody (Bio-Source, 44-654G) was used in western blot on human samples (fig 3). Ann Rheum Dis (2010) ncbi
rabbit polyclonal
In order to assess the effects of chronic CXCL10 exposure on neuronal/glial cell cultures, Invitrogen Mapk3 antibody (Zymed, 61-7400) was used . J Neuroimmunol (2008) ncbi
rabbit polyclonal
In order to assess the prognostic value of activated phosphorylated ERK1 and ERK2 and COX-2 at the invasive front and in central/superficial parts of oral squamous cell carcinomas, Invitrogen Mapk3 antibody (BioSource, 44-680G) was used . J Oral Pathol Med (2008) ncbi
rabbit polyclonal
In order to develop an assay to measure temporal, site-specific phosphorylation of key members of the EGFR pathway in A431 cells stimulated with epidermal growth factor, Invitrogen Mapk3 antibody (Invitrogen, 44-680G) was used . Anal Biochem (2008) ncbi
rabbit polyclonal
In order to study the role of laminins during osteogenic differentiation of human mesenchymal stem cells, Invitrogen Mapk3 antibody (Biosource, 44-680) was used . Exp Cell Res (2008) ncbi
rabbit polyclonal
In order to examine the roles of ERK1 and ERK2 in cell proliferation and immediate-early gene expression, Invitrogen Mapk3 antibody (Zymed, 61-7400) was used . Mol Cell Biol (2008) ncbi
mouse monoclonal (ERK-6B11)
  • western blot; human; fig 5
In order to demonstrate that phosphatase of activated cells 1 phosphatase is a direct transcription target of E2F-1 and mediates apoptosis, Invitrogen Mapk3 antibody (Zymed Laboratories, 13-8600) was used in western blot on human samples (fig 5). Oncogene (2007) ncbi
mouse monoclonal (ERK-7D8)
  • western blot; mouse; fig 2a
In order to study the link between Ras activity and T cell anergy, Invitrogen Mapk3 antibody (Zymed, 13-6200) was used in western blot on mouse samples (fig 2a). Nat Immunol (2006) ncbi
rabbit polyclonal
In order to report that FAK is an important mediator of laminin-5-induced osteogenic differentiation of human mesenchymal stem cells, Invitrogen Mapk3 antibody (Biosource, 44-680G) was used . J Cell Biochem (2007) ncbi
mouse monoclonal (ERK-7D8)
  • western blot; rat; fig 6
In order to test if ischemic post conditioning is protective in remodeled myocardium, Invitrogen Mapk3 antibody (Zymed, ERK-7D8) was used in western blot on rat samples (fig 6). Cardiovasc Res (2006) ncbi
rabbit polyclonal
In order to report that epidermal growth factor treatment induced Erk1/2 phosphorylation in rat suprachiasmatic nucleus cells, Invitrogen Mapk3 antibody (Biosources, 44-680G) was used . Brain Res (2006) ncbi
rabbit polyclonal
In order to assess the contribution of CCL2/CCR2 signaling to systemic sclerosis, Invitrogen Mapk3 antibody (BioSource, 44-680G) was used . Arthritis Rheum (2005) ncbi
rabbit polyclonal
In order to study focal adhesion kinase and extracellular regulated kinases in glioblastomas, Invitrogen Mapk3 antibody (Zymed, 61-7400) was used . Am J Pathol (2005) ncbi
rabbit polyclonal
In order to study P2X7 receptor-mediated thymocyte death and the role for mitogen-activated protein kinase (Erk1/2) activation and non-selective pore formation, Invitrogen Mapk3 antibody (Zymed, noca) was used . J Biol Chem (2005) ncbi
mouse monoclonal (ERK-7D8)
  • western blot; rat; fig 7
In order to examine the effects of MCP-1 on the migration of smooth muscle cells and the pathways modulated, Invitrogen Mapk3 antibody (Zymed, ERK-7D8) was used in western blot on rat samples (fig 7). J Biomed Sci (2005) ncbi
mouse monoclonal (ERK-7D8)
  • western blot; rat; 1:5000; fig 2
In order to determine the roles of ERK1/2 in modulating intracellular calcium concentrations, calcium sensitivity, and the 20-kDa myosin light chain phosphorylation during contraction activated by U46619 treatment in rat tail artery strips, Invitrogen Mapk3 antibody (Zymed, ERK-7D8) was used in western blot on rat samples at 1:5000 (fig 2). Life Sci (2005) ncbi
mouse monoclonal (ERK-7D8)
  • western blot; rat; fig 5
In order to study S1P(1)-triggered and G(i)-Ras-ERK/p38 MAPK-KLF5-dependent regulation of PDGF gene transcription in vascular smooth muscle cells, Invitrogen Mapk3 antibody (Zymed, 13-6200,) was used in western blot on rat samples (fig 5). J Biol Chem (2004) ncbi
mouse monoclonal (ERK-6B11)
  • western blot; rat; fig 3
In order to test if an increase in fat cell size modulates signaling pathways by changing the relationships between the cell and the extracellular matrix, Invitrogen Mapk3 antibody (Zymed, 13-8600) was used in western blot on rat samples (fig 3). Int J Obes Relat Metab Disord (2003) ncbi
mouse monoclonal (ERK-7D8)
  • western blot; human; fig 2
In order to determine the effect of lysophosphatidic acid, sphingosine 1-phosphate, and epidermal growth factor on a human astrocytoma cell line, Invitrogen Mapk3 antibody (Zymed Laboratories, clone ERK-7D8) was used in western blot on human samples (fig 2). J Neurochem (2000) ncbi
mouse monoclonal (ERK-7D8)
  • western blot; rat
In order to examine Ras-GTP and Ras-GDP at low temperatures in vivo, Invitrogen Mapk3 antibody (Zymed, 13-6200) was used in western blot on rat samples . J Clin Invest (1999) ncbi
mouse monoclonal (ERK-7D8)
  • western blot; mouse; fig 1, 2
In order to compare the effect of cold water stress on the phosphorylation of brain tau protein in ob/ob and ob/+ mice, Invitrogen Mapk3 antibody (Zymed, 13-6200) was used in western blot on mouse samples (fig 1, 2). Neurochem Res (1998) ncbi
mouse monoclonal (ERK-7D8)
  • immunoprecipitation; mouse
  • western blot; mouse
In order to elucidate Ras-mediated tumorigenicity, Invitrogen Mapk3 antibody (Zymed, ERK-7D8) was used in immunoprecipitation on mouse samples and in western blot on mouse samples . Proc Natl Acad Sci U S A (1998) ncbi
mouse monoclonal (ERK-7D8)
  • western blot; common platanna; 1:1000; fig 1
In order to identify the cleavage site for anthrax lethal toxin, Invitrogen Mapk3 antibody (Zymed, ERK-7D8) was used in western blot on common platanna samples at 1:1000 (fig 1). Science (1998) ncbi
mouse monoclonal (ERK-7D8)
  • western blot; human; fig 3
In order to test if ligation of PSGL-1 transmits signals into leukocytes, Invitrogen Mapk3 antibody (Zymed Laboratories, clone ERK-7D8) was used in western blot on human samples (fig 3). J Biol Chem (1997) ncbi
Abcam
rabbit polyclonal
  • western blot; human; loading ...; fig 5b
Abcam Mapk3 antibody (Abcam, ab115799) was used in western blot on human samples (fig 5b). Eur Rev Med Pharmacol Sci (2019) ncbi
rabbit monoclonal (EPR17526)
  • western blot; human; 1:1000; loading ...; fig 5c
Abcam Mapk3 antibody (Abcam, ab184699) was used in western blot on human samples at 1:1000 (fig 5c). Sci Rep (2017) ncbi
rabbit monoclonal (EP197Y)
  • western blot; human; 1:1000; loading ...; fig 5c
Abcam Mapk3 antibody (Abcam, ab76299) was used in western blot on human samples at 1:1000 (fig 5c). Sci Rep (2017) ncbi
rabbit polyclonal
  • western blot; human; 1:500; loading ...; fig 4a
In order to determine the effects of High mobility group box 1 on cytokine secretion from mesenchymal stem cells, Abcam Mapk3 antibody (Abcam, ab196883) was used in western blot on human samples at 1:500 (fig 4a). Exp Ther Med (2016) ncbi
rabbit monoclonal (EPR17526)
  • western blot; rat; 1:500; fig 5
In order to use a herpes simplex virus carrying a small interfering RNA targeting platelet-derived growth factor to alleviate bone cancer pain, Abcam Mapk3 antibody (Abcam, ab184699) was used in western blot on rat samples at 1:500 (fig 5). Sci Rep (2016) ncbi
mouse monoclonal (9B3)
  • western blot; human; fig 7e
Abcam Mapk3 antibody (Abcam, 9B3) was used in western blot on human samples (fig 7e). J Biol Chem (2016) ncbi
mouse monoclonal (9B3)
  • western blot; human; loading ...; fig 6e
Abcam Mapk3 antibody (Abcam, ab36991) was used in western blot on human samples (fig 6e). Nat Genet (2016) ncbi
rabbit monoclonal (EP197Y)
  • western blot; human; loading ...; fig 6e
Abcam Mapk3 antibody (Abcam, ab76299) was used in western blot on human samples (fig 6e). Nat Genet (2016) ncbi
rabbit polyclonal
  • western blot; chicken; 1:200; loading ...; fig 2b
In order to study the effects of inorganic and organic Mn sources on MnSOD mRNA, protein, and enzymatic activity, Abcam Mapk3 antibody (Abcam, ab79853) was used in western blot on chicken samples at 1:200 (fig 2b). Biometals (2016) ncbi
rabbit polyclonal
  • western blot; human; loading ...; fig 1d
Abcam Mapk3 antibody (abcam, 115799) was used in western blot on human samples (fig 1d). Mar Drugs (2015) ncbi
mouse monoclonal (9B3)
  • western blot; African green monkey; 1:1000; loading ...; fig 6b
Abcam Mapk3 antibody (Abcam, Ab366991) was used in western blot on African green monkey samples at 1:1000 (fig 6b). Nat Commun (2015) ncbi
mouse monoclonal (9B3)
  • western blot; human; fig 6
Abcam Mapk3 antibody (Abcam, ab36991) was used in western blot on human samples (fig 6). Biomaterials (2015) ncbi
mouse monoclonal (9B3)
  • western blot; human; loading ...; fig 2a
Abcam Mapk3 antibody (Abcam, ab36991) was used in western blot on human samples (fig 2a). Med Oncol (2015) ncbi
rabbit monoclonal (Y72)
  • western blot; human; fig 3c
Abcam Mapk3 antibody (Abcam, ab32537) was used in western blot on human samples (fig 3c). Mol Cell Endocrinol (2015) ncbi
rabbit monoclonal (Y72)
  • western blot; pig
Abcam Mapk3 antibody (Abcam, ab32537) was used in western blot on pig samples . Eur J Nutr (2015) ncbi
R&D Systems
rabbit polyclonal
  • western blot; mouse
R&D Systems Mapk3 antibody (R&D Systems, AF1575) was used in western blot on mouse samples . In Vitro Cell Dev Biol Anim (2014) ncbi
Abnova
rabbit monoclonal (G15-B)
  • western blot; human
In order to discuss using serum CSE1L as a biomarker for assessing the efficacy of cancer therapy, Abnova Mapk3 antibody (Abnova, G15-B) was used in western blot on human samples . J Transl Med (2015) ncbi
MilliporeSigma
rabbit polyclonal
  • western blot; rat; 1:800
In order to investigate the role of zinc in the epithelial to mesenchymal transition, MilliporeSigma Mapk3 antibody (Sigma, E7028) was used in western blot on rat samples at 1:800. Int J Mol Med (2015) ncbi
Cell Signaling Technology
rabbit monoclonal (3D7)
  • western blot; mouse; 1:1000; loading ...; fig 4d
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in western blot on mouse samples at 1:1000 (fig 4d). elife (2019) ncbi
rabbit monoclonal (3D7)
  • western blot; mouse; 1:1000; loading ...; fig 5b
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in western blot on mouse samples at 1:1000 (fig 5b). Nat Commun (2019) ncbi
rabbit monoclonal (12F8)
  • flow cytometry; human; loading ...; fig 2e
Cell Signaling Technology Mapk3 antibody (CST, 12F8) was used in flow cytometry on human samples (fig 2e). Front Immunol (2018) ncbi
mouse monoclonal (28B10)
  • western blot; mouse; loading ...; fig s4b
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216) was used in western blot on mouse samples (fig s4b). Cell (2018) ncbi
rabbit monoclonal (12F8)
  • western blot; mouse; 1:1000; loading ...; fig 3e
Cell Signaling Technology Mapk3 antibody (Cell signaling technology, 4631) was used in western blot on mouse samples at 1:1000 (fig 3e). Nat Commun (2018) ncbi
rabbit monoclonal (3D7)
  • western blot; human; fig 7c
Cell Signaling Technology Mapk3 antibody (CST, 9215) was used in western blot on human samples (fig 7c). Cell Death Differ (2019) ncbi
mouse monoclonal (28B10)
  • western blot; mouse; 1:2500; loading ...; fig s4a
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216) was used in western blot on mouse samples at 1:2500 (fig s4a). Nat Commun (2018) ncbi
rabbit monoclonal (3D7)
  • western blot; mouse; loading ...; fig 2i
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 9215) was used in western blot on mouse samples (fig 2i). Nat Med (2018) ncbi
rabbit monoclonal (3D7)
  • western blot; human; loading ...; fig 6f
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 9215) was used in western blot on human samples (fig 6f). Cell (2018) ncbi
rabbit monoclonal (3D7)
  • western blot; mouse; loading ...; fig 1f
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in western blot on mouse samples (fig 1f). Proc Natl Acad Sci U S A (2017) ncbi
rabbit monoclonal (12F8)
  • immunohistochemistry; mouse; 1:500; loading ...; fig 3
In order to research the role for BMP4 i mouse ureter development, Cell Signaling Technology Mapk3 antibody (cell signalling, 4631) was used in immunohistochemistry on mouse samples at 1:500 (fig 3). Hum Mol Genet (2017) ncbi
rabbit monoclonal (3D7)
  • western blot; mouse; fig s5b
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in western blot on mouse samples (fig s5b). J Clin Invest (2017) ncbi
rabbit monoclonal (3D7)
  • western blot; mouse; 1:200; loading ...; fig 3d
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in western blot on mouse samples at 1:200 (fig 3d). Proc Natl Acad Sci U S A (2017) ncbi
rabbit monoclonal (3D7)
  • western blot; human; loading ...; fig s7f
  • western blot; mouse; fig s7e
In order to identify and characterize extended pluripotent stem cells, Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in western blot on human samples (fig s7f) and in western blot on mouse samples (fig s7e). Cell (2017) ncbi
rabbit monoclonal (3D7)
  • western blot; mouse; 1:3000; loading ...; fig 3a
In order to describe the mechanism by which FBXW7 stabilizes RigI, Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in western blot on mouse samples at 1:3000 (fig 3a). Nat Commun (2017) ncbi
rabbit monoclonal (3D7)
  • western blot; human; loading ...; fig 1g
In order to study the mechanism of internalization of CXCR4 receptor dependent on MIM and small Rab GTPases., Cell Signaling Technology Mapk3 antibody (cst, 9215s) was used in western blot on human samples (fig 1g). J Cell Sci (2017) ncbi
rabbit monoclonal (3D7)
  • western blot; mouse; loading ...; fig EV3d
  • western blot; human; loading ...; fig 7a
Cell Signaling Technology Mapk3 antibody (cell signalling, 9215) was used in western blot on mouse samples (fig EV3d) and in western blot on human samples (fig 7a). EMBO J (2017) ncbi
mouse monoclonal (28B10)
  • western blot; mouse; 1:1000; loading ...
In order to examine the role of laminin on type I and type II pericyte proliferation and differentiation, Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216) was used in western blot on mouse samples at 1:1000. Stem Cell Res Ther (2017) ncbi
rabbit monoclonal (3D7)
  • western blot; mouse; 1:1000; loading ...; fig S17A
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 3D7) was used in western blot on mouse samples at 1:1000 (fig S17A). Nat Commun (2017) ncbi
mouse monoclonal (28B10)
  • western blot; mouse; 1:2000; loading ...; fig s3
Cell Signaling Technology Mapk3 antibody (cell signalling, 9216) was used in western blot on mouse samples at 1:2000 (fig s3). Proc Natl Acad Sci U S A (2017) ncbi
rabbit monoclonal (12F8)
  • western blot; mouse; 1:500; fig 6c
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 4631) was used in western blot on mouse samples at 1:500 (fig 6c). J Cell Biol (2017) ncbi
rabbit monoclonal (12F8)
  • western blot; mouse; 1:1000; loading ...; fig s5
Cell Signaling Technology Mapk3 antibody (cell signalling, 4631) was used in western blot on mouse samples at 1:1000 (fig s5). Nat Commun (2017) ncbi
mouse monoclonal (28B10)
  • western blot; mouse; loading ...; fig 4c
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216) was used in western blot on mouse samples (fig 4c). EMBO J (2017) ncbi
rabbit monoclonal (3D7)
  • western blot; human; 1:2000; loading ...; fig 5E
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in western blot on human samples at 1:2000 (fig 5E). PLoS ONE (2017) ncbi
mouse monoclonal (28B10)
  • western blot; human; loading ...; fig 2c
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216) was used in western blot on human samples (fig 2c). Cell Cycle (2017) ncbi
rabbit monoclonal (3D7)
  • western blot; human; 1:1000; loading ...; fig 5a
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in western blot on human samples at 1:1000 (fig 5a). Arch Biochem Biophys (2017) ncbi
mouse monoclonal (28B10)
  • western blot; mouse; loading ...; fig 8b
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 28B10) was used in western blot on mouse samples (fig 8b). J Biol Chem (2017) ncbi
rabbit monoclonal (12F8)
  • western blot; human; 1:1000; loading ...; fig 7
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 4631) was used in western blot on human samples at 1:1000 (fig 7). Respir Res (2016) ncbi
mouse monoclonal (28B10)
  • western blot; mouse; fig s7b
In order to assess the role of individual TAM family proteins during autophagy induction and hepatic inflammation, Cell Signaling Technology Mapk3 antibody (Cell signaling, 9216) was used in western blot on mouse samples (fig s7b). Autophagy (2016) ncbi
rabbit monoclonal (3D7)
  • western blot; human; loading ...; fig 2a
Cell Signaling Technology Mapk3 antibody (Cell signaling, 9215) was used in western blot on human samples (fig 2a). Sci Rep (2016) ncbi
rabbit monoclonal (12F8)
  • immunohistochemistry - paraffin section; rat; 1:25; fig 4b
  • western blot; rat; 1:1000; fig 4c
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 4631) was used in immunohistochemistry - paraffin section on rat samples at 1:25 (fig 4b) and in western blot on rat samples at 1:1000 (fig 4c). Evid Based Complement Alternat Med (2016) ncbi
rabbit monoclonal (3D7)
  • western blot; pig; 1:1000; fig 2A
In order to assess the effects of deoxynivalenol and its derivatives on intestinal tight junction proteins, Cell Signaling Technology Mapk3 antibody (Cell Signaling, 3D7) was used in western blot on pig samples at 1:1000 (fig 2A). Toxins (Basel) (2016) ncbi
mouse monoclonal (28B10)
  • immunohistochemistry; mouse; loading ...; fig s10b
In order to discover that p38 family mitogen-activated protein kinases contribute to primitive endoderm formation, Cell Signaling Technology Mapk3 antibody (Cell Signalling Technologies, 9216) was used in immunohistochemistry on mouse samples (fig s10b). Open Biol (2016) ncbi
rabbit monoclonal (12F8)
  • western blot; rat; fig 2
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 4631) was used in western blot on rat samples (fig 2). Int J Mol Med (2016) ncbi
rabbit monoclonal (12F8)
  • western blot; human; fig 4a
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 4631) was used in western blot on human samples (fig 4a). Mol Med Rep (2016) ncbi
rabbit monoclonal (3D7)
  • immunohistochemistry; zebrafish ; 1:500; loading ...; fig 5a
In order to study the role of PACAP-38 in hair cells found in zebrafish sense organs-neuromasts during oxidative stress, Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in immunohistochemistry on zebrafish samples at 1:500 (fig 5a). Neurotox Res (2016) ncbi
mouse monoclonal (28B10)
  • flow cytometry; human; loading ...; fig s18a
In order to suggest that the BRD4-p300 signaling cascade promotes antitumor T cell grafts that could be used adoptive immunotherapy, Cell Signaling Technology Mapk3 antibody (Cell Signaling, 28B10) was used in flow cytometry on human samples (fig s18a). J Clin Invest (2016) ncbi
rabbit monoclonal (3D7)
  • flow cytometry; human; loading ...; fig 5b
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 3D7) was used in flow cytometry on human samples (fig 5b). Cell Rep (2016) ncbi
rabbit monoclonal (12F8)
  • western blot; mouse; fig 4c
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 4631S) was used in western blot on mouse samples (fig 4c). BMC Complement Altern Med (2016) ncbi
mouse monoclonal (28B10)
  • western blot; rat; fig 4
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216) was used in western blot on rat samples (fig 4). Physiol Rep (2016) ncbi
rabbit monoclonal (3D7)
  • western blot; mouse; fig 3
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in western blot on mouse samples (fig 3). PLoS ONE (2016) ncbi
mouse monoclonal (28B10)
  • western blot; human; loading ...; fig 4a
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216) was used in western blot on human samples (fig 4a). PLoS ONE (2016) ncbi
mouse monoclonal (28B10)
  • western blot; human; 1:2000; loading ...; fig 3c
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216) was used in western blot on human samples at 1:2000 (fig 3c). Leukemia (2017) ncbi
rabbit monoclonal (3D7)
  • western blot; human; 1:1000; fig 3
Cell Signaling Technology Mapk3 antibody (Cell Signaling Tech, 9215S) was used in western blot on human samples at 1:1000 (fig 3). Oncol Lett (2016) ncbi
mouse monoclonal (28B10)
  • immunocytochemistry; mouse; 1:50; fig 3g
In order to explore how the interaction between beta1-integrin and Fgf2 contributes to the satellite cell niche, Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216) was used in immunocytochemistry on mouse samples at 1:50 (fig 3g). Nat Med (2016) ncbi
rabbit monoclonal (3D7)
  • western blot; mouse; 1:1000; loading ...; fig s3e
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in western blot on mouse samples at 1:1000 (fig s3e). Sci Rep (2016) ncbi
mouse monoclonal (28B10)
  • western blot; human; 1:250; loading ...; fig 6a
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216) was used in western blot on human samples at 1:250 (fig 6a). Oncotarget (2016) ncbi
rabbit monoclonal (12F8)
  • immunohistochemistry - paraffin section; mouse; 1:200; fig 5d
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 4631) was used in immunohistochemistry - paraffin section on mouse samples at 1:200 (fig 5d). Oncol Lett (2016) ncbi
rabbit monoclonal (12F8)
  • western blot; mouse; fig 5
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 4631) was used in western blot on mouse samples (fig 5). PLoS Pathog (2016) ncbi
rabbit monoclonal (3D7)
  • western blot; human; 1:1000; fig 5
Cell Signaling Technology Mapk3 antibody (Cell signaling, 9215) was used in western blot on human samples at 1:1000 (fig 5). J Ovarian Res (2016) ncbi
rabbit monoclonal (3D7)
  • western blot; mouse; 1:1000; fig 2C
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in western blot on mouse samples at 1:1000 (fig 2C). PLoS ONE (2016) ncbi
mouse monoclonal (28B10)
  • western blot; mouse; fig 1
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216) was used in western blot on mouse samples (fig 1). Cell Rep (2016) ncbi
rabbit monoclonal (12F8)
  • western blot; mouse; fig 4
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 4631) was used in western blot on mouse samples (fig 4). Nat Commun (2016) ncbi
mouse monoclonal (28B10)
  • immunohistochemistry; rat; 1:100; fig 6
In order to investigate VEGF-A antagonism due to distal retinal ganglion cell axon transport loss and activation of p38 MAPK stress pathway, Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216S) was used in immunohistochemistry on rat samples at 1:100 (fig 6). Cell Death Dis (2016) ncbi
rabbit monoclonal (3D7)
  • western blot; human; fig 9e
  • western blot; cow; loading ...; fig 9f
In order to elucidate the mechanism of chondrocyte activation due to hyaluronan loss, Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in western blot on human samples (fig 9e) and in western blot on cow samples (fig 9f). J Biol Chem (2016) ncbi
rabbit monoclonal (3D7)
  • western blot; human; loading ...; fig 1c
In order to show that CARD14 activates p38 and JNK MAP kinase pathways, Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in western blot on human samples (fig 1c). EMBO Rep (2016) ncbi
rabbit monoclonal (3D7)
  • immunocytochemistry; dog; 1:50; fig 4
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in immunocytochemistry on dog samples at 1:50 (fig 4). Nat Commun (2016) ncbi
rabbit monoclonal (12F8)
  • immunocytochemistry; mouse; loading ...; fig s1a,s1b
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 4631) was used in immunocytochemistry on mouse samples (fig s1a,s1b). Sci Rep (2016) ncbi
rabbit monoclonal (12F8)
  • western blot; mouse; loading ...; fig 4a
Cell Signaling Technology Mapk3 antibody (Cell signaling, 4631) was used in western blot on mouse samples (fig 4a). elife (2016) ncbi
rabbit monoclonal (12F8)
  • western blot; mouse; 1:1000; fig 3a
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 4631) was used in western blot on mouse samples at 1:1000 (fig 3a). Sci Rep (2016) ncbi
rabbit monoclonal (12F8)
  • western blot; mouse; 1:1000; fig s6
In order to study how alphav integrins regulate Toll-like receptor signaling and intracellular trafficking, Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 12F8) was used in western blot on mouse samples at 1:1000 (fig s6). Nat Commun (2016) ncbi
rabbit monoclonal (3D7)
  • western blot; human; fig 4
In order to determine the induction of transforming growth factor beta1 through activation of endoplasmic reticulum stress and the unfolded protein response due to HCV, Cell Signaling Technology Mapk3 antibody (Cell signaling, 9215) was used in western blot on human samples (fig 4). Sci Rep (2016) ncbi
rabbit monoclonal (12F8)
  • western blot; mouse; loading ...; fig 8a, 8b
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 4631) was used in western blot on mouse samples (fig 8a, 8b). J Mol Cell Cardiol (2016) ncbi
mouse monoclonal (28B10)
  • western blot; human; fig 5
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216S) was used in western blot on human samples (fig 5). Oncotarget (2016) ncbi
mouse monoclonal (28B10)
  • western blot; rat; fig 3
In order to determine regulation of global protein synthesis by inactivating eukaryotic translation initiation factor 2-alpha by the small molecule '1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate' and its derivatives, Cell Signaling Technology Mapk3 antibody (Cell signaling, 9216) was used in western blot on rat samples (fig 3). Cell Stress Chaperones (2016) ncbi
mouse monoclonal (28B10)
  • western blot; mouse; 1:1000; loading ...; fig s10f
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216) was used in western blot on mouse samples at 1:1000 (fig s10f). Nat Commun (2016) ncbi
rabbit monoclonal (3D7)
  • western blot; mouse; fig 1
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in western blot on mouse samples (fig 1). Nat Commun (2016) ncbi
rabbit monoclonal (12F8)
  • western blot; human; fig 3
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 4631) was used in western blot on human samples (fig 3). Int J Cancer (2016) ncbi
mouse monoclonal (28B10)
  • western blot; mouse; loading ...; fig 7d
In order to present the role of Kras in B cell lymphopoiesis, Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216) was used in western blot on mouse samples (fig 7d). J Immunol (2016) ncbi
rabbit monoclonal (12F8)
  • western blot; human; 1:1000; fig s2a
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 4631) was used in western blot on human samples at 1:1000 (fig s2a). Nat Commun (2015) ncbi
rabbit monoclonal (3D7)
  • western blot; mouse; 1:1000; fig s7
In order to research the dependence on WIP-mediated mTORC1 and Abl family kinases activities due to neuritic complexity of hippocampal neurons, Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 9215) was used in western blot on mouse samples at 1:1000 (fig s7). Brain Behav (2015) ncbi
rabbit monoclonal (12F8)
  • western blot; human; fig 2
In order to develop and characterize a protein delivery tool based on bacterial type III secretion, Cell Signaling Technology Mapk3 antibody (Cell signaling, 4631) was used in western blot on human samples (fig 2). J Cell Biol (2015) ncbi
rabbit polyclonal
  • western blot; human; fig 4
Cell Signaling Technology Mapk3 antibody (Cell Signaling Tech, 4372S) was used in western blot on human samples (fig 4). BMC Genomics (2015) ncbi
rabbit monoclonal (3D7)
  • western blot; mouse; 1:1000; fig 8
In order to characterize linalool that reverses behavioral and neuropathological impairments in old triple transgenic Alzheimer's mice, Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in western blot on mouse samples at 1:1000 (fig 8). Neuropharmacology (2016) ncbi
mouse monoclonal (28B10)
  • western blot; human; fig 2
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216S) was used in western blot on human samples (fig 2). Aging (Albany NY) (2015) ncbi
mouse monoclonal (28B10)
  • western blot; rat; 1:1000; fig 5a
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216S) was used in western blot on rat samples at 1:1000 (fig 5a). Int J Mol Med (2016) ncbi
rabbit polyclonal
  • western blot; human; fig 3
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 4372) was used in western blot on human samples (fig 3). Cell Death Dis (2015) ncbi
rabbit monoclonal (3D7)
  • western blot; human; fig 1
Cell Signaling Technology Mapk3 antibody (Cell Signaling Tech, 9215) was used in western blot on human samples (fig 1). J Cell Biol (2015) ncbi
mouse monoclonal (28B10)
  • western blot; rat; fig 7
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216) was used in western blot on rat samples (fig 7). Int J Mol Sci (2015) ncbi
mouse monoclonal (28B10)
  • western blot; mouse; 1:1000; fig 4
Cell Signaling Technology Mapk3 antibody (Cell signaling, 9216) was used in western blot on mouse samples at 1:1000 (fig 4). Sci Rep (2015) ncbi
rabbit monoclonal (12F8)
  • western blot; human; fig 6
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 4631) was used in western blot on human samples (fig 6). Oncotarget (2015) ncbi
mouse monoclonal (28B10)
  • western blot; human
In order to study the molecular signaling responsible for retinoic acid-induced differentiation, Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216) was used in western blot on human samples . PLoS ONE (2015) ncbi
mouse monoclonal (28B10)
  • western blot; mouse; fig s5
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 28B10) was used in western blot on mouse samples (fig s5). Nature (2015) ncbi
rabbit monoclonal (3D7)
  • western blot; rabbit; 1:1000; fig 3
Cell Signaling Technology Mapk3 antibody (Cell Signalling Technology, 9215) was used in western blot on rabbit samples at 1:1000 (fig 3). Sci Rep (2015) ncbi
rabbit monoclonal (3D7)
  • western blot; rat; 1:1000
In order to investigate the role of p18, Rab4, Rab7, and Rab9 in vessel formation within the pulmonary vasculature, Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215S) was used in western blot on rat samples at 1:1000. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
rabbit monoclonal (12F8)
  • western blot; rat; fig S3
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 4631) was used in western blot on rat samples (fig S3). PLoS ONE (2015) ncbi
rabbit monoclonal (3D7)
  • western blot; human; fig 5
Cell Signaling Technology Mapk3 antibody (Cell Signaling Tech, 9215) was used in western blot on human samples (fig 5). Sci Rep (2015) ncbi
mouse monoclonal (28B10)
  • western blot; human
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216) was used in western blot on human samples . Mol Carcinog (2016) ncbi
rabbit monoclonal (3D7)
  • western blot; mouse; 1:2000
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in western blot on mouse samples at 1:2000. Mol Oncol (2015) ncbi
mouse monoclonal (28B10)
  • western blot; mouse; fig 6
In order to report that liver X receptors modulate inflammation by altering lipid metabolism, Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216) was used in western blot on mouse samples (fig 6). elife (2015) ncbi
mouse monoclonal (28B10)
  • western blot; mouse; 1:1000; fig 5
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9,216) was used in western blot on mouse samples at 1:1000 (fig 5). Nat Commun (2015) ncbi
rabbit monoclonal (3D7)
  • western blot; human; fig 2
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in western blot on human samples (fig 2). Nat Immunol (2015) ncbi
mouse monoclonal (28B10)
  • western blot; human; fig 5
Cell Signaling Technology Mapk3 antibody (Cell Signalling, 9216) was used in western blot on human samples (fig 5). Int J Mol Med (2015) ncbi
rabbit monoclonal (12F8)
  • western blot; human; 1:1000
In order to investigate GPR40 and PPARgamma signaling interactions in endothelial cells, Cell Signaling Technology Mapk3 antibody (Cell Signaling, 4631) was used in western blot on human samples at 1:1000. J Biol Chem (2015) ncbi
rabbit monoclonal (3D7)
  • western blot; rat; 1:1000; fig 6
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in western blot on rat samples at 1:1000 (fig 6). PLoS ONE (2015) ncbi
rabbit monoclonal (3D7)
  • western blot; human; fig 7
Cell Signaling Technology Mapk3 antibody (Cell signaling, 9215) was used in western blot on human samples (fig 7). Oncotarget (2015) ncbi
mouse monoclonal (28B10)
  • western blot; human; fig s8
In order to investigate the role of RIPK1 in response to endoplasmic reticulum stress, Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 9216) was used in western blot on human samples (fig s8). Autophagy (2015) ncbi
mouse monoclonal (28B10)
  • western blot; human; loading ...; fig 4
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216) was used in western blot on human samples (fig 4). Int J Biol Sci (2015) ncbi
rabbit monoclonal (3D7)
  • western blot; rat
  • immunocytochemistry; human
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in western blot on rat samples and in immunocytochemistry on human samples . Toxicol Lett (2015) ncbi
mouse monoclonal (28B10)
  • western blot; mouse; fig 1
Cell Signaling Technology Mapk3 antibody (Cell signaling, 9216) was used in western blot on mouse samples (fig 1). FASEB J (2015) ncbi
rabbit monoclonal (3D7)
  • western blot; mouse; 1:1000
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 9215) was used in western blot on mouse samples at 1:1000. Int J Mol Sci (2015) ncbi
mouse monoclonal (28B10)
  • western blot; mouse; 1:1000; fig s2
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216) was used in western blot on mouse samples at 1:1000 (fig s2). Nat Commun (2015) ncbi
rabbit polyclonal
  • western blot; human
In order to study myocardial infarction-induced cardiomyocyte apoptosis in the context of sialylation of heart, Cell Signaling Technology Mapk3 antibody (Cell Signaling, 4372S) was used in western blot on human samples . Basic Res Cardiol (2015) ncbi
rabbit monoclonal (3D7)
  • western blot; mouse; 1:500; fig 4
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 9215) was used in western blot on mouse samples at 1:500 (fig 4). J Physiol (2015) ncbi
rabbit monoclonal (3D7)
  • western blot; mouse; 1:1000; fig 2
In order to study TLR3-mediated pro-inflammatory cytokine production regulated by glycogen synthase kinase 3-beta ubiquitination by TRAF6, Cell Signaling Technology Mapk3 antibody (Cell signaling, 9215) was used in western blot on mouse samples at 1:1000 (fig 2). Nat Commun (2015) ncbi
rabbit monoclonal (12F8)
  • western blot; human; fig 1
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 4631) was used in western blot on human samples (fig 1). EMBO J (2015) ncbi
rabbit monoclonal (12F8)
  • western blot; mouse; loading ...; fig s7a
In order to study the role of Jnk2 in mitophagy., Cell Signaling Technology Mapk3 antibody (Cell signaling, 4631) was used in western blot on mouse samples (fig s7a). Nat Immunol (2015) ncbi
mouse monoclonal (28B10)
  • western blot; mouse; 1:1000; fig s4
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 9216S) was used in western blot on mouse samples at 1:1000 (fig s4). Nat Cell Biol (2015) ncbi
rabbit monoclonal (3D7)
  • western blot; human; fig 5
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215S) was used in western blot on human samples (fig 5). Evid Based Complement Alternat Med (2015) ncbi
rabbit monoclonal (12F8)
  • western blot; mouse
In order to determine if methylhonokiol analogs inhibit the expression of inflammatory genes in macrophages and adipocytes, Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 4631) was used in western blot on mouse samples . PLoS ONE (2015) ncbi
rabbit monoclonal (3D7)
  • western blot; human
In order to study the effects of uPA and EGF in breast adenocarcinoma cell lines, Cell Signaling Technology Mapk3 antibody (Cell Signalling, 9215) was used in western blot on human samples . Mol Carcinog (2016) ncbi
rabbit polyclonal
  • western blot; human; 1:1000; fig s5
Cell Signaling Technology Mapk3 antibody (cell Signaling Tech, 4372) was used in western blot on human samples at 1:1000 (fig s5). Nat Commun (2015) ncbi
rabbit monoclonal (3D7)
  • western blot; human; 1:1000
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 9215) was used in western blot on human samples at 1:1000. Cancer Lett (2015) ncbi
rabbit monoclonal (12F8)
  • western blot; mouse
  • western blot; human
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 4631) was used in western blot on mouse samples and in western blot on human samples . Oncotarget (2014) ncbi
rabbit monoclonal (3D7)
  • western blot; human; loading ...; fig 3a
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in western blot on human samples (fig 3a). Int J Oncol (2015) ncbi
rabbit monoclonal (12F8)
  • western blot; rat
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 4631S) was used in western blot on rat samples . Br J Pharmacol (2015) ncbi
rabbit polyclonal
  • western blot; rat
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 4372S) was used in western blot on rat samples . Br J Pharmacol (2015) ncbi
rabbit monoclonal (12F8)
  • western blot; mouse
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 4631) was used in western blot on mouse samples . J Biol Chem (2014) ncbi
rabbit monoclonal (3D7)
  • western blot; mouse; 1:1000
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 9215) was used in western blot on mouse samples at 1:1000. Int Immunopharmacol (2014) ncbi
rabbit monoclonal (3D7)
  • western blot; mouse
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 9215S) was used in western blot on mouse samples . J Agric Food Chem (2014) ncbi
rabbit monoclonal (3D7)
  • western blot; mouse; fig 6
Cell Signaling Technology Mapk3 antibody (Cell signaling, 9215) was used in western blot on mouse samples (fig 6). Nat Commun (2014) ncbi
rabbit monoclonal (3D7)
  • western blot; mouse; 1:1000
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in western blot on mouse samples at 1:1000. Nat Med (2014) ncbi
rabbit monoclonal (3D7)
  • western blot; pig; 1:500
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 9215) was used in western blot on pig samples at 1:500. Amino Acids (2014) ncbi
mouse monoclonal (28B10)
  • western blot; human
In order to investigate the effect of cell senescence on tissue factor, Cell Signaling Technology Mapk3 antibody (Cell Signalling, 9216S) was used in western blot on human samples . Mech Ageing Dev (2014) ncbi
rabbit monoclonal (12F8)
  • western blot; human; loading ...; fig 8
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 4631) was used in western blot on human samples (fig 8). J Biol Chem (2014) ncbi
rabbit monoclonal (3D7)
  • western blot; human
In order to study mechanisms underlying resistance to MET monoclonal antibodies and chemical tyrosine kinase inhibitors, Cell Signaling Technology Mapk3 antibody (cell Signaling, 9215) was used in western blot on human samples . Mol Oncol (2014) ncbi
rabbit monoclonal (12F8)
  • western blot; human
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 4631) was used in western blot on human samples . Eur J Cancer (2014) ncbi
mouse monoclonal (28B10)
  • western blot; human; 1:200
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216S) was used in western blot on human samples at 1:200. Biomed Res Int (2014) ncbi
rabbit monoclonal (12F8)
  • immunohistochemistry; chicken; 1:400
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technologies, 12F8) was used in immunohistochemistry on chicken samples at 1:400. Glia (2014) ncbi
mouse monoclonal (28B10)
  • western blot; dog
In order to test if PAR2 activation affects the structure and function of tight junctions in epithelial cells, Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 9216) was used in western blot on dog samples . J Vet Med Sci (2014) ncbi
rabbit monoclonal (12F8)
  • western blot; human
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 4631) was used in western blot on human samples . Cell Death Differ (2014) ncbi
rabbit monoclonal (3D7)
  • western blot; rat
Cell Signaling Technology Mapk3 antibody (CST, 9215) was used in western blot on rat samples . FASEB J (2014) ncbi
mouse monoclonal (28B10)
  • western blot; human
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216) was used in western blot on human samples . Oncogene (2015) ncbi
rabbit monoclonal (3D7)
  • western blot; human
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in western blot on human samples . Mol Cell Biol (2014) ncbi
mouse monoclonal (28B10)
  • flow cytometry; mouse
  • immunocytochemistry; mouse; 1:50
In order to study the age-associated deregulation of the satellite cell homeostatic network to identify therapeutic targets, Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216S) was used in flow cytometry on mouse samples and in immunocytochemistry on mouse samples at 1:50. Nat Med (2014) ncbi
rabbit monoclonal (3D7)
  • western blot; human; fig 5
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215) was used in western blot on human samples (fig 5). Biochem J (2014) ncbi
mouse monoclonal (28B10)
  • western blot; mouse
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 9216) was used in western blot on mouse samples . J Biol Chem (2014) ncbi
mouse monoclonal (28B10)
  • western blot; mouse; fig 1e
Cell Signaling Technology Mapk3 antibody (cell signalling technology, 9216) was used in western blot on mouse samples (fig 1e). Arthritis Res Ther (2014) ncbi
rabbit monoclonal (12F8)
  • western blot; human; 1:500
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 4631S) was used in western blot on human samples at 1:500. PLoS ONE (2013) ncbi
rabbit monoclonal (12F8)
  • western blot; mouse
  • western blot; human
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 4631) was used in western blot on mouse samples and in western blot on human samples . J Dermatol Sci (2014) ncbi
rabbit monoclonal (12F8)
  • western blot; rat
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 4631S) was used in western blot on rat samples . PLoS ONE (2013) ncbi
mouse monoclonal (28B10)
  • western blot; mouse; 1:200
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technology, 9216) was used in western blot on mouse samples at 1:200. Nat Med (2013) ncbi
rabbit monoclonal (12F8)
  • western blot; human
Cell Signaling Technology Mapk3 antibody (Cell Signaling Technologies, 4631) was used in western blot on human samples . PLoS ONE (2013) ncbi
mouse monoclonal (28B10)
  • western blot; pig
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216) was used in western blot on pig samples . Basic Res Cardiol (2013) ncbi
mouse monoclonal (28B10)
  • western blot; human
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9216) was used in western blot on human samples . Am J Physiol Renal Physiol (2013) ncbi
rabbit monoclonal (12F8)
  • immunohistochemistry - paraffin section; mouse
Cell Signaling Technology Mapk3 antibody (Cell signaling, 4631) was used in immunohistochemistry - paraffin section on mouse samples . Exp Toxicol Pathol (2013) ncbi
rabbit monoclonal (12F8)
  • immunohistochemistry - paraffin section; mouse; 1:50
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 4631S) was used in immunohistochemistry - paraffin section on mouse samples at 1:50. PLoS ONE (2013) ncbi
rabbit monoclonal (3D7)
  • immunohistochemistry - free floating section; rat; 1:100
  • western blot; rat; 1:1000
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 9215S) was used in immunohistochemistry - free floating section on rat samples at 1:100 and in western blot on rat samples at 1:1000. J Neurosci (2013) ncbi
rabbit monoclonal (3D7)
  • western blot; human; fig 7d
Cell Signaling Technology Mapk3 antibody (Cell Signaling, 3D7) was used in western blot on human samples (fig 7d). EMBO J (2012) ncbi
BD Biosciences
mouse monoclonal (MK12)
  • western blot; mouse; loading ...; fig e2c
BD Biosciences Mapk3 antibody (BD Biosciences, 610031) was used in western blot on mouse samples (fig e2c). Nature (2016) ncbi
mouse monoclonal (G262-118)
  • western blot; human; fig s6
BD Biosciences Mapk3 antibody (BD Biosciences, 554100) was used in western blot on human samples (fig s6). Sci Rep (2016) ncbi
mouse monoclonal (MK12)
  • western blot; rat; 1:4000; fig 4
BD Biosciences Mapk3 antibody (BD Transduction Laboratories, 610031) was used in western blot on rat samples at 1:4000 (fig 4). Sci Rep (2016) ncbi
mouse monoclonal (MK12)
  • western blot; mouse; fig 5
In order to analyze regulation of NLRP3 inflammasome in adipose tissue by phosphodiesterase 3B (PDE3B), BD Biosciences Mapk3 antibody (BD Biosciences, 610031) was used in western blot on mouse samples (fig 5). Sci Rep (2016) ncbi
mouse monoclonal (MK12)
  • western blot; mouse; loading ...; fig 2c
In order to study Ph-like ALL-related novel fusion kinase ATF7IP-PDGFRB and tyrosine kinase inhibitors in murine cells, BD Biosciences Mapk3 antibody (BD Biosciences, 610030) was used in western blot on mouse samples (fig 2c). Exp Hematol (2016) ncbi
mouse monoclonal (MK12)
  • western blot; human; fig 3
BD Biosciences Mapk3 antibody (BD Biosciences, 610031) was used in western blot on human samples (fig 3). Cell Mol Life Sci (2016) ncbi
mouse monoclonal (MK1)
  • western blot; mouse; fig s5c
In order to assess the role of matrix-mediated mechanotransduction in osteoarthritis pathogenesis, BD Biosciences Mapk3 antibody (BD Biosciences, 610408) was used in western blot on mouse samples (fig s5c). Proc Natl Acad Sci U S A (2015) ncbi
mouse monoclonal (MK12)
  • western blot; rat; 1:5000
BD Biosciences Mapk3 antibody (BD Biosciences, 610030) was used in western blot on rat samples at 1:5000. Cell Death Dis (2015) ncbi
mouse monoclonal (MK1)
  • western blot; mouse; 1:5000; fig 7
BD Biosciences Mapk3 antibody (BD Transduction Laboratories, 610408) was used in western blot on mouse samples at 1:5000 (fig 7). PLoS ONE (2014) ncbi
mouse monoclonal (MK1)
  • western blot; mouse; fig 1d
BD Biosciences Mapk3 antibody (BD Biosciences, 610408) was used in western blot on mouse samples (fig 1d). Arthritis Res Ther (2014) ncbi
mouse monoclonal (MK12)
  • western blot; human
BD Biosciences Mapk3 antibody (BD Biosciences, 610031) was used in western blot on human samples . Eur J Cancer (2014) ncbi
mouse monoclonal (MK12)
  • western blot; mouse; 1:2000
BD Biosciences Mapk3 antibody (BD Transduction Laboratories, 610031) was used in western blot on mouse samples at 1:2000. PLoS ONE (2013) ncbi
EMD Millipore
rabbit polyclonal
  • western blot; mouse; loading ...; fig 3b
In order to explore the role of TPM4 in platelet biogenesis, EMD Millipore Mapk3 antibody (EMD Millipore, AB544) was used in western blot on mouse samples (fig 3b). J Clin Invest (2017) ncbi
rabbit recombinant (AW39R)
  • western blot; rat; 1:1000; loading ...; fig 5b
EMD Millipore Mapk3 antibody (Millipore, 05-797R) was used in western blot on rat samples at 1:1000 (fig 5b). Vascul Pharmacol (2017) ncbi
rabbit recombinant (AW39R)
  • western blot; human; loading ...
In order to test if UAB30, a synthetic rexinoid, reduces the growth of tumor cells from both rare renal and liver tumors, EMD Millipore Mapk3 antibody (Millipore, 05-797R) was used in western blot on human samples . Mol Cancer Ther (2016) ncbi
rabbit recombinant (AW39R)
  • western blot; human; fig 1a
  • western blot; mouse; fig 1b
EMD Millipore Mapk3 antibody (Millipore, 05-797R) was used in western blot on human samples (fig 1a) and in western blot on mouse samples (fig 1b). J Neuroinflammation (2016) ncbi
rabbit recombinant (AW39R)
  • western blot; rat; 1:1000; fig 2e
EMD Millipore Mapk3 antibody (Millipore, 05-797R) was used in western blot on rat samples at 1:1000 (fig 2e). Front Behav Neurosci (2015) ncbi
rabbit polyclonal
  • western blot; human; fig 5b
EMD Millipore Mapk3 antibody (Merk Millipore, ABS44) was used in western blot on human samples (fig 5b). Oncotarget (2015) ncbi
rabbit recombinant (AW39R)
  • western blot; human
EMD Millipore Mapk3 antibody (EMDMillipore, 05-797R) was used in western blot on human samples . Mol Cancer Ther (2015) ncbi
rabbit recombinant (AW39R)
  • immunocytochemistry; mouse
EMD Millipore Mapk3 antibody (Millipore, 05-797R) was used in immunocytochemistry on mouse samples . Glia (2015) ncbi
rabbit monoclonal
  • western blot; mouse; 1:1000; fig 6
EMD Millipore Mapk3 antibody (Millipore, 05-957) was used in western blot on mouse samples at 1:1000 (fig 6). PLoS ONE (2012) ncbi
Articles Reviewed
  1. Zhao J, Sun H, Zhang J, Wang M, Du X, Zhang J. Long non-coding RNA ANRIL down-regulates microRNA-7 to protect human trabecular meshwork cells in an experimental model for glaucoma. Eur Rev Med Pharmacol Sci. 2019;23:3173-3182 pubmed publisher
  2. Udden S, Kwak Y, Godfrey V, Khan M, Khan S, Loof N, et al. NLRP12 suppresses hepatocellular carcinoma via downregulation of cJun N-terminal kinase activation in the hepatocyte. elife. 2019;8: pubmed publisher
  3. Araiz C, Yan A, Bettedi L, Samuelson I, Virtue S, McGavigan A, et al. Enhanced β-adrenergic signalling underlies an age-dependent beneficial metabolic effect of PI3K p110α inactivation in adipose tissue. Nat Commun. 2019;10:1546 pubmed publisher
  4. Jeong W, Park J, Kim W, Ro E, Jeon S, Lee S, et al. WDR76 is a RAS binding protein that functions as a tumor suppressor via RAS degradation. Nat Commun. 2019;10:295 pubmed publisher
  5. Richardson J, Armbruster N, Günter M, Henes J, Autenrieth S. Staphylococcus aureus PSM Peptides Modulate Human Monocyte-Derived Dendritic Cells to Prime Regulatory T Cells. Front Immunol. 2018;9:2603 pubmed publisher
  6. Lee S, Cho Y, Cha P, Yoon J, Ro E, Jeong W, et al. A small molecule approach to degrade RAS with EGFR repression is a potential therapy for KRAS mutation-driven colorectal cancer resistance to cetuximab. Exp Mol Med. 2018;50:153 pubmed publisher
  7. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed publisher
  8. Panda S, Gekara N. The deubiquitinase MYSM1 dampens NOD2-mediated inflammation and tissue damage by inactivating the RIP2 complex. Nat Commun. 2018;9:4654 pubmed publisher
  9. Fauster A, Rebsamen M, Willmann K, César Razquin A, Girardi E, Bigenzahn J, et al. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ. 2019;26:1138-1155 pubmed publisher
  10. Chen S, Yun F, Yao Y, Cao M, Zhang Y, Wang J, et al. USP38 critically promotes asthmatic pathogenesis by stabilizing JunB protein. J Exp Med. 2018;215:2850-2867 pubmed publisher
  11. Liu Z, Qin Q, Wu C, Li H, Shou J, Yang Y, et al. Downregulated NDR1 protein kinase inhibits innate immune response by initiating an miR146a-STAT1 feedback loop. Nat Commun. 2018;9:2789 pubmed publisher
  12. Imbrechts M, De Samblancx K, Fierens K, Brisse E, Vandenhaute J, Mitera T, et al. IFN-γ stimulates CpG-induced IL-10 production in B cells via p38 and JNK signalling pathways. Eur J Immunol. 2018;48:1506-1521 pubmed publisher
  13. Li F, Li Y, Liang H, Xu T, Kong Y, Huang M, et al. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. J Clin Invest. 2018;128:4148-4162 pubmed publisher
  14. Li R, Sahu S, Schachner M. Phenelzine, a small organic compound mimicking the functions of cell adhesion molecule L1, promotes functional recovery after mouse spinal cord injury. Restor Neurol Neurosci. 2018;36:469-483 pubmed publisher
  15. Lei F, Jin L, Liu X, Lai F, Yan X, Farrelly M, et al. RIP1 protects melanoma cells from apoptosis induced by BRAF/MEK inhibitors. Cell Death Dis. 2018;9:679 pubmed publisher
  16. Xue Z, Vis D, Bruna A, Sustic T, van Wageningen S, Batra A, et al. MAP3K1 and MAP2K4 mutations are associated with sensitivity to MEK inhibitors in multiple cancer models. Cell Res. 2018;28:719-729 pubmed publisher
  17. Jun H, Yu H, Gong J, Jiang J, Qiao X, Perkey E, et al. An immune-beige adipocyte communication via nicotinic acetylcholine receptor signaling. Nat Med. 2018;24:814-822 pubmed publisher
  18. Huang M, Qi W, Fang S, Jiang P, Yang C, Mo Y, et al. Pigment Epithelium-Derived Factor Plays a Role in Alzheimer's Disease by Negatively Regulating Aβ42. Neurotherapeutics. 2018;15:728-741 pubmed publisher
  19. Ahmad F, Salahuddin M, Alsamman K, Herzallah H, Al Otaibi S. Neonatal maternal deprivation impairs localized de novo activity-induced protein translation at the synapse in the rat hippocampus. Biosci Rep. 2018;38: pubmed publisher
  20. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed publisher
  21. Lino Cardenas C, Kessinger C, Cheng Y, MacDonald C, Macgillivray T, Ghoshhajra B, et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun. 2018;9:1009 pubmed publisher
  22. Qi Z, Xu H, Zhang S, Xu J, Li S, Gao H, et al. RIPK4/PEBP1 axis promotes pancreatic cancer cell migration and invasion by activating RAF1/MEK/ERK signaling. Int J Oncol. 2018;52:1105-1116 pubmed publisher
  23. Qian Z, Ryu B, Kang K, Heo S, Kang D, Bae S, et al. Cellular properties of the fermented microalgae Pavlova lutheri and its isolated active peptide in osteoblastic differentiation of MG?63 cells. Mol Med Rep. 2018;17:2044-2050 pubmed publisher
  24. Cho M, Lee J, Shin M, Kim H, Choi Y, Rho S, et al. TSC-22 inhibits CSF-1R function and induces apoptosis in cervical cancer. Oncotarget. 2017;8:97990-98003 pubmed publisher
  25. Liang Z, Yang Y, He Y, Yang P, Wang X, He G, et al. SUMOylation of IQGAP1 promotes the development of colorectal cancer. Cancer Lett. 2017;411:90-99 pubmed publisher
  26. Magilnick N, Reyes E, Wang W, Vonderfecht S, Gohda J, Inoue J, et al. miR-146a-Traf6 regulatory axis controls autoimmunity and myelopoiesis, but is dispensable for hematopoietic stem cell homeostasis and tumor suppression. Proc Natl Acad Sci U S A. 2017;114:E7140-E7149 pubmed publisher
  27. Courtial L, Picco V, Pagès G, Ferrier Pagès C. Validation of commercial ERK antibodies against the ERK orthologue of the scleractinian coral Stylophora pistillata. F1000Res. 2017;6:577 pubmed publisher
  28. Mamo T, Wittern A, Kleppa M, Bohnenpoll T, Weiss A, Kispert A. BMP4 uses several different effector pathways to regulate proliferation and differentiation in the epithelial and mesenchymal tissue compartments of the developing mouse ureter. Hum Mol Genet. 2017;26:3553-3563 pubmed publisher
  29. Zhang C, Mao H, Cao Y. Nuclear accumulation of symplekin promotes cellular proliferation and dedifferentiation in an ERK1/2-dependent manner. Sci Rep. 2017;7:3769 pubmed publisher
  30. Bae S, Lee M, Mun S, Giannopoulou E, Yong Gonzalez V, Cross J, et al. MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERR?. J Clin Invest. 2017;127:2555-2568 pubmed publisher
  31. Nishimura S, Mishra Gorur K, Park J, Surovtseva Y, Sebti S, Levchenko A, et al. Combined HMG-COA reductase and prenylation inhibition in treatment of CCM. Proc Natl Acad Sci U S A. 2017;114:5503-5508 pubmed publisher
  32. Yoon C, Cho S, Chang K, Park D, Ryeom S, Yoon S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol Cancer Res. 2017;15:1106-1116 pubmed publisher
  33. Ma S, Wan X, Deng Z, Shi L, Hao C, Zhou Z, et al. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med. 2017;214:1471-1491 pubmed publisher
  34. Gaggianesi M, Turdo A, Chinnici A, Lipari E, Apuzzo T, Benfante A, et al. IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition. Cancer Res. 2017;77:3268-3279 pubmed publisher
  35. Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, et al. Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency. Cell. 2017;169:243-257.e25 pubmed publisher
  36. Yan X, Zhu Z, Xu S, Yang L, Liao X, Zheng M, et al. MicroRNA-140-5p inhibits hepatocellular carcinoma by directly targeting the unique isomerase Pin1 to block multiple cancer-driving pathways. Sci Rep. 2017;7:45915 pubmed publisher
  37. Mon N, Senga T, Ito S. Interleukin-1? activates focal adhesion kinase and Src to induce matrix metalloproteinase-9 production and invasion of MCF-7 breast cancer cells. Oncol Lett. 2017;13:955-960 pubmed publisher
  38. Schweighoffer E, Nys J, Vanes L, Smithers N, Tybulewicz V. TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK. J Exp Med. 2017;214:1269-1280 pubmed publisher
  39. Yang K, Chen Y, To K, Wang F, Li D, Chen L, et al. Alectinib (CH5424802) antagonizes ABCB1- and ABCG2-mediated multidrug resistance in vitro, in vivo and ex vivo. Exp Mol Med. 2017;49:e303 pubmed publisher
  40. Song Y, Lai L, Chong Z, He J, Zhang Y, Xue Y, et al. E3 ligase FBXW7 is critical for RIG-I stabilization during antiviral responses. Nat Commun. 2017;8:14654 pubmed publisher
  41. Li L, Baxter S, Gu N, Ji M, Zhan X. Missing-in-metastasis protein downregulates CXCR4 by promoting ubiquitylation and interaction with small Rab GTPases. J Cell Sci. 2017;130:1475-1485 pubmed publisher
  42. Lafont E, Kantari Mimoun C, Dráber P, De Miguel D, Hartwig T, Reichert M, et al. The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death. EMBO J. 2017;36:1147-1166 pubmed publisher
  43. Fu S, Xu H, Gu M, Liu C, Wang Q, Wan X, et al. Adiponectin deficiency contributes to the development and progression of benign prostatic hyperplasia in obesity. Sci Rep. 2017;7:43771 pubmed publisher
  44. Chung C, Chang C, Hsu C, Lin K, Peng H, Huang T. Aggretin Venom Polypeptide as a Novel Anti-angiogenesis Agent by Targeting Integrin alpha2beta1. Sci Rep. 2017;7:43612 pubmed publisher
  45. de Oliveira R, de Campos Castilho G, da Cunha A, Miyajima F, de Oliveira Martins D. Dilodendron bipinnatum Radlk. inhibits pro-inflammatory mediators through the induction of MKP-1 and the down-regulation of MAPKp38/JNK/NF-?B pathways and COX-2 in LPS-activated RAW 264.7 cells. J Ethnopharmacol. 2017;202:127-137 pubmed publisher
  46. Gautam J, Nirwane A, Yao Y. Laminin differentially regulates the stemness of type I and type II pericytes. Stem Cell Res Ther. 2017;8:28 pubmed publisher
  47. Li C, Bi Y, Li Y, Yang H, Yu Q, Wang J, et al. Dendritic cell MST1 inhibits Th17 differentiation. Nat Commun. 2017;8:14275 pubmed publisher
  48. Lim E, Nakanishi S, Hoghooghi V, Eaton S, Palmer A, Frederick A, et al. AlphaB-crystallin regulates remyelination after peripheral nerve injury. Proc Natl Acad Sci U S A. 2017;114:E1707-E1716 pubmed publisher
  49. Mindos T, Dun X, North K, Doddrell R, Schulz A, Edwards P, et al. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol. 2017;216:495-510 pubmed publisher
  50. Pleines I, Woods J, Chappaz S, Kew V, Foad N, Ballester Beltrán J, et al. Mutations in tropomyosin 4 underlie a rare form of human macrothrombocytopenia. J Clin Invest. 2017;127:814-829 pubmed publisher
  51. Carpi S, Fogli S, Polini B, Montagnani V, Podestà A, Breschi M, et al. Tumor-promoting effects of cannabinoid receptor type 1 in human melanoma cells. Toxicol In Vitro. 2017;40:272-279 pubmed publisher
  52. Difranco K, Mulligan J, Sumal A, Diamond G. Induction of CFTR gene expression by 1,25(OH)2 vitamin D3, 25OH vitamin D3, and vitamin D3 in cultured human airway epithelial cells and in mouse airways. J Steroid Biochem Mol Biol. 2017;173:323-332 pubmed publisher
  53. Feng L, Xue D, Chen E, Zhang W, Gao X, Yu J, et al. HMGB1 promotes the secretion of multiple cytokines and potentiates the osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Exp Ther Med. 2016;12:3941-3947 pubmed publisher
  54. Wu M, Chen W, Lu Y, Zhu G, Hao L, Li Y. Gα13 negatively controls osteoclastogenesis through inhibition of the Akt-GSK3β-NFATc1 signalling pathway. Nat Commun. 2017;8:13700 pubmed publisher
  55. Peng Y, Shi X, Li Z, He X, Sun Y. Particularly interesting Cys-His-rich protein is highly expressed in human intracranial aneurysms and resists aneurysmal rupture. Exp Ther Med. 2016;12:3905-3912 pubmed publisher
  56. Schwarz F, Landig C, Siddiqui S, Secundino I, Olson J, Varki N, et al. Paired Siglec receptors generate opposite inflammatory responses to a human-specific pathogen. EMBO J. 2017;36:751-760 pubmed publisher
  57. Xu X, Fan Z, Liang C, Li L, Wang L, Liang Y, et al. A signature motif in LIM proteins mediates binding to checkpoint proteins and increases tumour radiosensitivity. Nat Commun. 2017;8:14059 pubmed publisher
  58. Pyle C, Akhter S, Bao S, Dodd C, Schlesinger L, Knoell D. Zinc Modulates Endotoxin-Induced Human Macrophage Inflammation through ZIP8 Induction and C/EBP? Inhibition. PLoS ONE. 2017;12:e0169531 pubmed publisher
  59. Babagana M, Johnson S, Slabodkin H, Bshara W, Morrison C, Kandel E. P21-activated kinase 1 regulates resistance to BRAF inhibition in human cancer cells. Mol Carcinog. 2017;56:1515-1525 pubmed publisher
  60. Wamsley J, Issaeva N, An H, Lu X, Donehower L, Yarbrough W. LZAP is a novel Wip1 binding partner and positive regulator of its phosphatase activity in vitro. Cell Cycle. 2017;16:213-223 pubmed publisher
  61. Marmisolle I, Martínez J, Liu J, Mastrogiovanni M, Fergusson M, Rovira I, et al. Reciprocal regulation of acetyl-CoA carboxylase 1 and senescence in human fibroblasts involves oxidant mediated p38 MAPK activation. Arch Biochem Biophys. 2017;613:12-22 pubmed publisher
  62. Harper K, Sosa M, Entenberg D, Hosseini H, Cheung J, Nobre R, et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature. 2016;540:588-592 pubmed publisher
  63. Jung J, Jung H, Neupane S, Kim K, Kim J, Yamamoto H, et al. Involvement of PI3K and PKA pathways in mouse tongue epithelial differentiation. Acta Histochem. 2017;119:92-98 pubmed publisher
  64. Lee H, Khan S, Khaliqdina S, Altintas M, Grahammer F, Zhao J, et al. Absence of miR-146a in Podocytes Increases Risk of Diabetic Glomerulopathy via Up-regulation of ErbB4 and Notch-1. J Biol Chem. 2017;292:732-747 pubmed publisher
  65. Choi S, Piao Z, Jin L, Kim J, Kim G, Ryu Y, et al. Piceatannol Attenuates Renal Fibrosis Induced by Unilateral Ureteral Obstruction via Downregulation of Histone Deacetylase 4/5 or p38-MAPK Signaling. PLoS ONE. 2016;11:e0167340 pubmed publisher
  66. Ferland D, Darios E, Neubig R, Sjögren B, Truong N, Torres R, et al. Chemerin-induced arterial contraction is Gi- and calcium-dependent. Vascul Pharmacol. 2017;88:30-41 pubmed publisher
  67. Roversi F, Pericole F, Machado Neto J, da Silva Santos Duarte A, Longhini A, Corrocher F, et al. Hematopoietic cell kinase (HCK) is a potential therapeutic target for dysplastic and leukemic cells due to integration of erythropoietin/PI3K pathway and regulation of erythropoiesis: HCK in erythropoietin/PI3K pathway. Biochim Biophys Acta Mol Basis Dis. 2017;1863:450-461 pubmed publisher
  68. Milara J, Cervera A, de Diego A, Sanz C, Juan G, Gavaldá A, et al. Non-neuronal cholinergic system contributes to corticosteroid resistance in chronic obstructive pulmonary disease patients. Respir Res. 2016;17:145 pubmed
  69. Hegedüs L, Garay T, Molnar E, Varga K, Bilecz A, Torok S, et al. The plasma membrane Ca2+ pump PMCA4b inhibits the migratory and metastatic activity of BRAF mutant melanoma cells. Int J Cancer. 2017;140:2758-2770 pubmed publisher
  70. Grugan K, Dorn K, Jarantow S, Bushey B, Pardinas J, Laquerre S, et al. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells. MAbs. 2017;9:114-126 pubmed publisher
  71. Han J, Bae J, Choi C, Choi S, Kang H, Jo E, et al. Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy. 2016;12:2326-2343 pubmed
  72. Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, et al. High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med. 2016;38:1815-1822 pubmed publisher
  73. Li S, Yang B, Teguh D, Zhou L, Xu J, Rong L. Amyloid ? Peptide Enhances RANKL-Induced Osteoclast Activation through NF-?B, ERK, and Calcium Oscillation Signaling. Int J Mol Sci. 2016;17: pubmed
  74. Yue G, Xie S, Lee J, Kwok H, Gao S, Nian Y, et al. New potential beneficial effects of actein, a triterpene glycoside isolated from Cimicifuga species, in breast cancer treatment. Sci Rep. 2016;6:35263 pubmed publisher
  75. Yong K, Li A, Ou W, Hong C, Zhao W, Wang F, et al. Targeting SALL4 by entinostat in lung cancer. Oncotarget. 2016;7:75425-75440 pubmed publisher
  76. Belliard A, Gulati G, Duan Q, Alves R, Brewer S, Madan N, et al. Ischemia/reperfusion-induced alterations of enzymatic and signaling functions of the rat cardiac Na+/K+-ATPase: protection by ouabain preconditioning. Physiol Rep. 2016;4: pubmed
  77. Zhong W, Wang X, Pan B, Li F, Kuang L, Su Z. Eupatilin induces human renal cancer cell apoptosis via ROS-mediated MAPK and PI3K/AKT signaling pathways. Oncol Lett. 2016;12:2894-2899 pubmed
  78. Jin Q, Ren Y, Wang M, Suraneni P, Li D, Crispino J, et al. Novel function of FAXDC2 in megakaryopoiesis. Blood Cancer J. 2016;6:e478 pubmed publisher
  79. Yan S, Wang Y, Liu P, Chen A, Chen M, Yao D, et al. Baicalin Attenuates Hypoxia-Induced Pulmonary Arterial Hypertension to Improve Hypoxic Cor Pulmonale by Reducing the Activity of the p38 MAPK Signaling Pathway and MMP-9. Evid Based Complement Alternat Med. 2016;2016:2546402 pubmed publisher
  80. Chen B, Zeng X, He Y, Wang X, Liang Z, Liu J, et al. STC2 promotes the epithelial-mesenchymal transition of colorectal cancer cells through AKT-ERK signaling pathways. Oncotarget. 2016;7:71400-71416 pubmed publisher
  81. Jansson D, Scotter E, Rustenhoven J, Coppieters N, Smyth L, Oldfield R, et al. Interferon-? blocks signalling through PDGFR? in human brain pericytes. J Neuroinflammation. 2016;13:249 pubmed
  82. Egholm C, Khammy M, Dalsgaard T, Mazur A, Tritsaris K, Hansen A, et al. GLP-1 inhibits VEGFA-mediated signaling in isolated human endothelial cells and VEGFA-induced dilation of rat mesenteric arteries. Am J Physiol Heart Circ Physiol. 2016;311:H1214-H1224 pubmed publisher
  83. Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar Onfray F, et al. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 2016;7:67373-67386 pubmed publisher
  84. Yadav V, Hong K, Zeldin D, Nayeem M. Vascular endothelial over-expression of soluble epoxide hydrolase (Tie2-sEH) enhances adenosine A1 receptor-dependent contraction in mouse mesenteric arteries: role of ATP-sensitive K+ channels. Mol Cell Biochem. 2016;422:197-206 pubmed
  85. Gross S, Devraj K, Feng Y, Macas J, Liebner S, Wieland T. Nucleoside diphosphate kinase B regulates angiogenic responses in the endothelium via caveolae formation and c-Src-mediated caveolin-1 phosphorylation. J Cereb Blood Flow Metab. 2017;37:2471-2484 pubmed publisher
  86. Wu Y, Ren D, Chen G. Siglec-E Negatively Regulates the Activation of TLR4 by Controlling Its Endocytosis. J Immunol. 2016;197:3336-3347 pubmed
  87. Springler A, Hessenberger S, Schatzmayr G, Mayer E. Early Activation of MAPK p44/42 Is Partially Involved in DON-Induced Disruption of the Intestinal Barrier Function and Tight Junction Network. Toxins (Basel). 2016;8: pubmed publisher
  88. Wang H, Han X, Bretz C, Becker S, Gambhir D, Smith G, et al. Retinal pigment epithelial cell expression of active Rap 1a by scAAV2 inhibits choroidal neovascularization. Mol Ther Methods Clin Dev. 2016;3:16056 pubmed publisher
  89. Thamodaran V, Bruce A. p38 (Mapk14/11) occupies a regulatory node governing entry into primitive endoderm differentiation during preimplantation mouse embryo development. Open Biol. 2016;6: pubmed publisher
  90. García Carpizo V, Sarmentero J, Han B, Grana O, Ruiz Llorente S, Pisano D, et al. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation. Sci Rep. 2016;6:32952 pubmed publisher
  91. Makita N, Sato T, Yajima Shoji Y, Sato J, Manaka K, Eda Hashimoto M, et al. Analysis of the V2 Vasopressin Receptor (V2R) Mutations Causing Partial Nephrogenic Diabetes Insipidus Highlights a Sustainable Signaling by a Non-peptide V2R Agonist. J Biol Chem. 2016;291:22460-22471 pubmed
  92. Zhang Y, Hu S, Chen Y, Guo M, Wang S. Hepatocyte growth factor inhibits hypoxia/reoxygenation-induced activation of xanthine oxidase in endothelial cells through the JAK2 signaling pathway. Int J Mol Med. 2016;38:1055-62 pubmed publisher
  93. Cheng G, Gao F, Sun X, Bi H, Zhu Y. Paris saponin VII suppresses osteosarcoma cell migration and invasion by inhibiting MMP?2/9 production via the p38 MAPK signaling pathway. Mol Med Rep. 2016;14:3199-205 pubmed publisher
  94. Caporali S, Alvino E, Lacal P, Levati L, Giurato G, Memoli D, et al. Targeting the PI3K/AKT/mTOR pathway overcomes the stimulating effect of dabrafenib on the invasive behavior of melanoma cells with acquired resistance to the BRAF inhibitor. Int J Oncol. 2016;49:1164-74 pubmed publisher
  95. Shang W, Zhao L, Dong X, Zhao Z, Li J, Zhang B, et al. Curcumin inhibits osteoclastogenic potential in PBMCs from rheumatoid arthritis patients via the suppression of MAPK/RANK/c-Fos/NFATc1 signaling pathways. Mol Med Rep. 2016;14:3620-6 pubmed publisher
  96. Kasica N, Podlasz P, Sundvik M, Tamas A, Reglodi D, Kaleczyc J. Protective Effects of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Against Oxidative Stress in Zebrafish Hair Cells. Neurotox Res. 2016;30:633-647 pubmed
  97. Kagoya Y, Nakatsugawa M, Yamashita Y, Ochi T, Guo T, Anczurowski M, et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J Clin Invest. 2016;126:3479-94 pubmed publisher
  98. Kupka S, De Miguel D, Dráber P, Martino L, Surinova S, Rittinger K, et al. SPATA2-Mediated Binding of CYLD to HOIP Enables CYLD Recruitment to Signaling Complexes. Cell Rep. 2016;16:2271-80 pubmed publisher
  99. Hedl M, Yan J, Abraham C. IRF5 and IRF5 Disease-Risk Variants Increase Glycolysis and Human M1 Macrophage Polarization by Regulating Proximal Signaling and Akt2 Activation. Cell Rep. 2016;16:2442-55 pubmed publisher
  100. Stucky A, Bakshi K, Friedman E, Wang H. Prenatal Cocaine Exposure Upregulates BDNF-TrkB Signaling. PLoS ONE. 2016;11:e0160585 pubmed publisher
  101. Jiang Q, Chen S, Hu C, Huang P, Shen H, Zhao W. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease. Mol Med Rep. 2016;14:2614-24 pubmed publisher
  102. Lyukmanova E, Shulepko M, Shenkarev Z, Bychkov M, Paramonov A, Chugunov A, et al. Secreted Isoform of Human Lynx1 (SLURP-2): Spatial Structure and Pharmacology of Interactions with Different Types of Acetylcholine Receptors. Sci Rep. 2016;6:30698 pubmed publisher
  103. Kim J, Weeratunga P, Kim M, Nikapitiya C, Lee B, Uddin M, et al. Inhibitory effects of an aqueous extract from Cortex Phellodendri on the growth and replication of broad-spectrum of viruses in vitro and in vivo. BMC Complement Altern Med. 2016;16:265 pubmed publisher
  104. Kawamoto E, Koshinaka K, Yoshimura T, Masuda H, Kawanaka K. Immobilization rapidly induces muscle insulin resistance together with the activation of MAPKs (JNK and p38) and impairment of AS160 phosphorylation. Physiol Rep. 2016;4: pubmed publisher
  105. Di Siena S, Gimmelli R, Nori S, Barbagallo F, Campolo F, Dolci S, et al. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury. Cell Death Dis. 2016;7:e2317 pubmed publisher
  106. Møller C, Kjøbsted R, Enriori P, Jensen T, Garcia Rudaz C, Litwak S, et al. ?-MSH Stimulates Glucose Uptake in Mouse Muscle and Phosphorylates Rab-GTPase-Activating Protein TBC1D1 Independently of AMPK. PLoS ONE. 2016;11:e0157027 pubmed publisher
  107. Ciaraldi T, Ryan A, Mudaliar S, Henry R. Altered Myokine Secretion Is an Intrinsic Property of Skeletal Muscle in Type 2 Diabetes. PLoS ONE. 2016;11:e0158209 pubmed publisher
  108. Abdelbaset Ismail A, Borkowska Rzeszotek S, Kubis E, Bujko K, Brzeźniakiewicz Janus K, Bolkun L, et al. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1. Leukemia. 2017;31:446-458 pubmed publisher
  109. Shi K, Qian J, Qi L, Mao D, Chen Y, Zhu Y, et al. Atorvastatin antagonizes the visfatin-induced expression of inflammatory mediators via the upregulation of NF-?B activation in HCAECs. Oncol Lett. 2016;12:1438-1444 pubmed
  110. Bao H, Liu P, Jiang K, Zhang X, Xie L, Wang Z, et al. Huaier polysaccharide induces apoptosis in hepatocellular carcinoma cells through p38 MAPK. Oncol Lett. 2016;12:1058-1066 pubmed
  111. Inda C, Dos Santos Claro P, Bonfiglio J, Senin S, Maccarrone G, Turck C, et al. Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling. J Cell Biol. 2016;214:181-95 pubmed publisher
  112. Köchl R, Thelen F, Vanes L, Brazão T, Fountain K, Xie J, et al. WNK1 kinase balances T cell adhesion versus migration in vivo. Nat Immunol. 2016;17:1075-83 pubmed publisher
  113. Wang C, Guo S, Wang J, Yan X, Farrelly M, Zhang Y, et al. Reactivation of ERK and Akt confers resistance of mutant BRAF colon cancer cells to the HSP90 inhibitor AUY922. Oncotarget. 2016;7:49597-49610 pubmed publisher
  114. Elzi D, Song M, Blackman B, Weintraub S, Lopez Terrada D, Chen Y, et al. FGF19 functions as autocrine growth factor for hepatoblastoma. Genes Cancer. 2016;7:125-35 pubmed publisher
  115. Rozo M, Li L, Fan C. Targeting ?1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med. 2016;22:889-96 pubmed publisher
  116. Xiang N, Liu J, Liao Y, Huang Y, Wu Z, Bai Z, et al. Abrogating ClC-3 Inhibits LPS-induced Inflammation via Blocking the TLR4/NF-κB Pathway. Sci Rep. 2016;6:27583 pubmed publisher
  117. Heckler M, Zeleke T, Divekar S, Fernandez A, Tiek D, Woodrick J, et al. Antimitotic activity of DY131 and the estrogen-related receptor beta 2 (ERRβ2) splice variant in breast cancer. Oncotarget. 2016;7:47201-47220 pubmed publisher
  118. Madureira P, Bharadwaj A, Bydoun M, Garant K, O Connell P, Lee P, et al. Cell surface protease activation during RAS transformation: Critical role of the plasminogen receptor, S100A10. Oncotarget. 2016;7:47720-47737 pubmed publisher
  119. Zhang J, Jing X, Niu W, Zhang M, Ge L, Miao C, et al. Peroxiredoxin 1 has an anti-apoptotic role via apoptosis signal-regulating kinase 1 and p38 activation in mouse models with oral precancerous lesions. Oncol Lett. 2016;12:413-420 pubmed
  120. Aguilera O, Muñoz Sagastibelza M, Torrejón B, Borrero Palacios A, del Puerto Nevado L, Martínez Useros J, et al. Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer. Oncotarget. 2016;7:47954-47965 pubmed publisher
  121. Ahmad F, Chung Y, Tang Y, Hockman S, Liu S, Khan Y, et al. Phosphodiesterase 3B (PDE3B) regulates NLRP3 inflammasome in adipose tissue. Sci Rep. 2016;6:28056 pubmed publisher
  122. Tisza M, Zhao W, Fuentes J, Prijic S, Chen X, Levental I, et al. Motility and stem cell properties induced by the epithelial-mesenchymal transition require destabilization of lipid rafts. Oncotarget. 2016;7:51553-51568 pubmed publisher
  123. Maugeri G, D Amico A, Reitano R, Magro G, Cavallaro S, Salomone S, et al. PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression. Front Pharmacol. 2016;7:139 pubmed publisher
  124. Xu Y, Liu J, He M, Liu R, Belegu V, Dai P, et al. Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord. Sci Rep. 2016;6:27512 pubmed publisher
  125. Wang T, Pan D, Zhou Z, You Y, Jiang C, Zhao X, et al. Dectin-3 Deficiency Promotes Colitis Development due to Impaired Antifungal Innate Immune Responses in the Gut. PLoS Pathog. 2016;12:e1005662 pubmed publisher
  126. Wang J, Farris A, Xu K, Wang P, Zhang X, Duong D, et al. GPRC5A suppresses protein synthesis at the endoplasmic reticulum to prevent radiation-induced lung tumorigenesis. Nat Commun. 2016;7:11795 pubmed publisher
  127. Schütz I, López Hernández T, Gao Q, Puchkov D, Jabs S, Nordmeyer D, et al. Lysosomal Dysfunction Caused by Cellular Accumulation of Silica Nanoparticles. J Biol Chem. 2016;291:14170-84 pubmed publisher
  128. Yang Z, Jiang Q, Chen S, Hu C, Shen H, Huang P, et al. Differential changes in Neuregulin-1 signaling in major brain regions in a lipopolysaccharide-induced neuroinflammation mouse model. Mol Med Rep. 2016;14:790-6 pubmed publisher
  129. Zheng J, Huang X, Tan W, Yu D, Du Z, Chang J, et al. Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nat Genet. 2016;48:747-57 pubmed publisher
  130. Zhang C, Li L, Zhao B, Jiao A, Li X, Sun N, et al. Ghrelin Protects against Dexamethasone-Induced INS-1 Cell Apoptosis via ERK and p38MAPK Signaling. Int J Endocrinol. 2016;2016:4513051 pubmed publisher
  131. Ribeiro J, Schorl C, Yano N, Romano N, Kim K, Singh R, et al. HE4 promotes collateral resistance to cisplatin and paclitaxel in ovarian cancer cells. J Ovarian Res. 2016;9:28 pubmed publisher
  132. Chen L, DeWispelaere A, Dastvan F, Osborne W, Blechner C, Windhorst S, et al. Smooth Muscle-Alpha Actin Inhibits Vascular Smooth Muscle Cell Proliferation and Migration by Inhibiting Rac1 Activity. PLoS ONE. 2016;11:e0155726 pubmed publisher
  133. Tortola L, Nitsch R, Bertrand M, Kogler M, Redouane Y, Kozieradzki I, et al. The Tumor Suppressor Hace1 Is a Critical Regulator of TNFR1-Mediated Cell Fate. Cell Rep. 2016;15:1481-1492 pubmed publisher
  134. Yang Y, Andersson P, Hosaka K, Zhang Y, Cao R, Iwamoto H, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun. 2016;7:11385 pubmed publisher
  135. Foxton R, Osborne A, Martin K, Ng Y, Shima D. Distal retinal ganglion cell axon transport loss and activation of p38 MAPK stress pathway following VEGF-A antagonism. Cell Death Dis. 2016;7:e2212 pubmed publisher
  136. Ishizuka S, Askew E, Ishizuka N, Knudson C, Knudson W. 4-Methylumbelliferone Diminishes Catabolically Activated Articular Chondrocytes and Cartilage Explants via a Mechanism Independent of Hyaluronan Inhibition. J Biol Chem. 2016;291:12087-104 pubmed publisher
  137. Wu Y, Lan C, Ren D, Chen G. Induction of Siglec-1 by Endotoxin Tolerance Suppresses the Innate Immune Response by Promoting TGF-?1 Production. J Biol Chem. 2016;291:12370-82 pubmed publisher
  138. Choi H, Kim M, Choi Y, Shin Y, Cho S, Ko S. Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation. BMC Complement Altern Med. 2016;16:122 pubmed publisher
  139. Afonina I, Van Nuffel E, Baudelet G, Driege Y, Kreike M, Staal J, et al. The paracaspase MALT1 mediates CARD14-induced signaling in keratinocytes. EMBO Rep. 2016;17:914-27 pubmed publisher
  140. Kim S, Choi K, Cho S, Yun S, Jeon J, Koh Y, et al. Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors. Sci Rep. 2016;6:24933 pubmed publisher
  141. Wagstaff L, Goschorska M, Kozyrska K, Duclos G, Kucinski I, Chessel A, et al. Mechanical cell competition kills cells via induction of lethal p53 levels. Nat Commun. 2016;7:11373 pubmed publisher
  142. Hamanoue M, Morioka K, Ohsawa I, Ohsawa K, Kobayashi M, Tsuburaya K, et al. Cell-permeable p38?MAP kinase promotes migration of adult neural stem/progenitor cells. Sci Rep. 2016;6:24279 pubmed publisher
  143. Yu Z, Chen T, Li X, Yang M, Tang S, Zhu X, et al. Lys29-linkage of ASK1 by Skp1-Cullin 1-Fbxo21 ubiquitin ligase complex is required for antiviral innate response. elife. 2016;5: pubmed publisher
  144. Maselli A, Capoccia S, Pugliese P, Raggi C, Cirulli F, Fabi A, et al. Autoantibodies specific to estrogen receptor alpha act as estrogen agonists and their levels correlate with breast cancer cell proliferation. Oncoimmunology. 2016;5:e1074375 pubmed
  145. Shi C, Iura A, Terajima M, Liu F, Lyons K, Pan H, et al. Deletion of BMP receptor type IB decreased bone mass in association with compromised osteoblastic differentiation of bone marrow mesenchymal progenitors. Sci Rep. 2016;6:24256 pubmed publisher
  146. Alemán O, Mora N, Cortés Vieyra R, Uribe Querol E, Rosales C. Differential Use of Human Neutrophil Fc? Receptors for Inducing Neutrophil Extracellular Trap Formation. J Immunol Res. 2016;2016:2908034 pubmed publisher
  147. Maugeri G, D Amico A, Rasà D, Reitano R, Saccone S, Federico C, et al. Expression profile of Wilms Tumor 1 (WT1) isoforms in undifferentiated and all-trans retinoic acid differentiated neuroblastoma cells. Genes Cancer. 2016;7:47-58 pubmed
  148. Huang J, Yao C, Chuang S, Yeh C, Lee L, Chen R, et al. Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer. 2016;16:245 pubmed publisher
  149. Margaryan N, Gilgur A, Seftor E, Purnell C, Arva N, Gosain A, et al. Melanocytes Affect Nodal Expression and Signaling in Melanoma Cells: A Lesson from Pediatric Large Congenital Melanocytic Nevi. Int J Mol Sci. 2016;17:418 pubmed publisher
  150. Yang Y, Xu J, Chen H, Fei X, Tang Y, Yan Y, et al. MiR-128-2 inhibits common lymphoid progenitors from developing into progenitor B cells. Oncotarget. 2016;7:17520-31 pubmed publisher
  151. Relic B, Charlier E, Deroyer C, Malaise O, Neuville S, Desoroux A, et al. BAY 11-7085 induces glucocorticoid receptor activation and autophagy that collaborate with apoptosis to induce human synovial fibroblast cell death. Oncotarget. 2016;7:23370-82 pubmed publisher
  152. Lee J, Kim H, Rho S, Lee S. eIF3f reduces tumor growth by directly interrupting clusterin with anti-apoptotic property in cancer cells. Oncotarget. 2016;7:18541-57 pubmed publisher
  153. Kabe Y, Nakane T, Koike I, Yamamoto T, Sugiura Y, Harada E, et al. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nat Commun. 2016;7:11030 pubmed publisher
  154. Acharya M, Sokolovska A, Tam J, Conway K, Stefani C, Raso F, et al. αv Integrins combine with LC3 and atg5 to regulate Toll-like receptor signalling in B cells. Nat Commun. 2016;7:10917 pubmed publisher
  155. Yang H, Vainshtein A, Maik Rachline G, Peles E. G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination. Nat Commun. 2016;7:10884 pubmed publisher
  156. Atiq R, Hertz R, Eldad S, Smeir E, Bar Tana J. Suppression of B-Raf(V600E) cancers by MAPK hyper-activation. Oncotarget. 2016;7:18694-704 pubmed publisher
  157. Yang W, Yang Y, Yang J, Liang M, Song J. Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway. Int J Mol Med. 2016;37:1075-82 pubmed publisher
  158. Chusri P, Kumthip K, Hong J, Zhu C, Duan X, Jilg N, et al. HCV induces transforming growth factor β1 through activation of endoplasmic reticulum stress and the unfolded protein response. Sci Rep. 2016;6:22487 pubmed publisher
  159. Abdul Rahman N, Greenwood S, Brett R, Tossell K, Ungless M, Plevin R, et al. Mitogen-Activated Protein Kinase Phosphatase-2 Deletion Impairs Synaptic Plasticity and Hippocampal-Dependent Memory. J Neurosci. 2016;36:2348-54 pubmed publisher
  160. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed publisher
  161. Cao L, Qin X, Peterson M, Haller S, Wilson K, Hu N, et al. CARD9 knockout ameliorates myocardial dysfunction associated with high fat diet-induced obesity. J Mol Cell Cardiol. 2016;92:185-95 pubmed publisher
  162. Huo L, Shi W, Chong L, Wang J, Zhang K, Li Y. Asiatic acid inhibits left ventricular remodeling and improves cardiac function in a rat model of myocardial infarction. Exp Ther Med. 2016;11:57-64 pubmed
  163. Pecháčková S, Burdova K, Benada J, Kleiblova P, Jenikova G, Macurek L. Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to MDM2 antagonist nutlin-3. Oncotarget. 2016;7:14458-75 pubmed publisher
  164. Wang J, Goetsch L, Tucker L, Zhang Q, Gonzalez A, Vaidya K, et al. Anti-c-Met monoclonal antibody ABT-700 breaks oncogene addiction in tumors with MET amplification. BMC Cancer. 2016;16:105 pubmed publisher
  165. Waters A, Stewart J, Atigadda V, Mroczek Musulman E, Muccio D, Grubbs C, et al. Preclinical Evaluation of UAB30 in Pediatric Renal and Hepatic Malignancies. Mol Cancer Ther. 2016;15:911-21 pubmed publisher
  166. Hong M, Nam K, Kim K, Kim S, Kim I. The small molecule '1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate' and its derivatives regulate global protein synthesis by inactivating eukaryotic translation initiation factor 2-alpha. Cell Stress Chaperones. 2016;21:485-97 pubmed publisher
  167. Demetriades C, Plescher M, Teleman A. Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat Commun. 2016;7:10662 pubmed publisher
  168. Li S, Lu L, Liao X, Gao T, Wang F, Zhang L, et al. Manganese elevates manganese superoxide dismutase protein level through protein kinase C and protein tyrosine kinase. Biometals. 2016;29:265-74 pubmed publisher
  169. O Sullivan C, Schubart A, Mir A, Dev K. The dual S1PR1/S1PR5 drug BAF312 (Siponimod) attenuates demyelination in organotypic slice cultures. J Neuroinflammation. 2016;13:31 pubmed publisher
  170. Coke C, Scarlett K, Chetram M, Jones K, Sandifer B, Davis A, et al. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression. J Biol Chem. 2016;291:9991-10005 pubmed publisher
  171. Liu L, Zhu J, Zhou L, Wan L. RACK1 promotes maintenance of morphine-associated memory via activation of an ERK-CREB dependent pathway in hippocampus. Sci Rep. 2016;6:20183 pubmed publisher
  172. Tai D, Ragavendran A, Manavalan P, Stortchevoi A, Seabra C, Erdin S, et al. Engineering microdeletions and microduplications by targeting segmental duplications with CRISPR. Nat Neurosci. 2016;19:517-22 pubmed publisher
  173. Thornton T, Delgado P, Chen L, Salas B, Krementsov D, Fernández M, et al. Inactivation of nuclear GSK3β by Ser(389) phosphorylation promotes lymphocyte fitness during DNA double-strand break response. Nat Commun. 2016;7:10553 pubmed publisher
  174. van der Mijn J, Broxterman H, Knol J, Piersma S, de Haas R, Dekker H, et al. Sunitinib activates Axl signaling in renal cell cancer. Int J Cancer. 2016;138:3002-10 pubmed publisher
  175. Chen Y, Zheng Y, You X, Yu M, Fu G, Su X, et al. Kras Is Critical for B Cell Lymphopoiesis. J Immunol. 2016;196:1678-85 pubmed publisher
  176. Peng K, Tian X, Qian Y, Skibba M, Zou C, Liu Z, et al. Novel EGFR inhibitors attenuate cardiac hypertrophy induced by angiotensin II. J Cell Mol Med. 2016;20:482-94 pubmed publisher
  177. Daniele S, Barresi E, Zappelli E, Marinelli L, Novellino E, Da Settimo F, et al. Long lasting MDM2/Translocator protein modulator: a new strategy for irreversible apoptosis of human glioblastoma cells. Oncotarget. 2016;7:7866-84 pubmed publisher
  178. Pivonello C, Negri M, De Martino M, Napolitano M, De Angelis C, Provvisiero D, et al. The dual targeting of insulin and insulin-like growth factor 1 receptor enhances the mTOR inhibitor-mediated antitumor efficacy in hepatocellular carcinoma. Oncotarget. 2016;7:9718-31 pubmed publisher
  179. Lin C, Wang C, Hsu S, Liao L, Lin T, Hsueh C. Molecular Mechanisms Responsible for Neuron-Derived Conditioned Medium (NCM)-Mediated Protection of Ischemic Brain. PLoS ONE. 2016;11:e0146692 pubmed publisher
  180. Hernandez R, Puro A, Manos J, Huitron Resendiz S, Reyes K, Liu K, et al. Transgenic mice with increased astrocyte expression of IL-6 show altered effects of acute ethanol on synaptic function. Neuropharmacology. 2016;103:27-43 pubmed publisher
  181. Ishibashi T, Yaguchi A, Terada K, Ueno Yokohata H, Tomita O, Iijima K, et al. Ph-like ALL-related novel fusion kinase ATF7IP-PDGFRB exhibits high sensitivity to tyrosine kinase inhibitors in murine cells. Exp Hematol. 2016;44:177-88.e5 pubmed publisher
  182. Fan S, Numata Y, Numata M. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration. Mol Biol Cell. 2016;27:702-15 pubmed publisher
  183. Shih M, Pan K, Cherng J. Possible Mechanisms of Di(2-ethylhexyl) Phthalate-Induced MMP-2 and MMP-9 Expression in A7r5 Rat Vascular Smooth Muscle Cells. Int J Mol Sci. 2015;16:28800-11 pubmed publisher
  184. Roth Flach R, Skoura A, Matevossian A, Danai L, Zheng W, Cortes C, et al. Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis. Nat Commun. 2015;6:8995 pubmed publisher
  185. Sun J, Fu X, Liu Y, Wang Y, Huo B, Guo Y, et al. Hypoglycemic effect and mechanism of honokiol on type 2 diabetic mice. Drug Des Devel Ther. 2015;9:6327-42 pubmed publisher
  186. Franco Villanueva A, Wandosell F, Antón I. Neuritic complexity of hippocampal neurons depends on WIP-mediated mTORC1 and Abl family kinases activities. Brain Behav. 2015;5:e00359 pubmed publisher
  187. Daniele S, Zappelli E, Martini C. Trazodone regulates neurotrophic/growth factors, mitogen-activated protein kinases and lactate release in human primary astrocytes. J Neuroinflammation. 2015;12:225 pubmed publisher
  188. Bunda S, Burrell K, Heir P, Zeng L, Alamsahebpour A, Kano Y, et al. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nat Commun. 2015;6:8859 pubmed publisher
  189. Lim J, Nguyen K, Han J, Jang I, Fabian C, Cho K. Direct Regulation of TLR5 Expression by Caveolin-1. Mol Cells. 2015;38:1111-7 pubmed publisher
  190. Giri K, Pabelick C, Mukherjee P, Prakash Y. Hepatoma derived growth factor (HDGF) dynamics in ovarian cancer cells. Apoptosis. 2016;21:329-39 pubmed publisher
  191. Ittig S, Schmutz C, Kasper C, Amstutz M, Schmidt A, Sauteur L, et al. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology. J Cell Biol. 2015;211:913-31 pubmed publisher
  192. Kurioka T, Matsunobu T, Satoh Y, Niwa K, Endo S, Fujioka M, et al. ERK2 mediates inner hair cell survival and decreases susceptibility to noise-induced hearing loss. Sci Rep. 2015;5:16839 pubmed publisher
  193. Wang Z, Ma B, Li H, Xiao X, Zhou W, Liu F, et al. Protein 4.1N acts as a potential tumor suppressor linking PP1 to JNK-c-Jun pathway regulation in NSCLC. Oncotarget. 2016;7:509-23 pubmed publisher
  194. Chandrani P, Upadhyay P, Iyer P, Tanna M, Shetty M, Raghuram G, et al. Integrated genomics approach to identify biologically relevant alterations in fewer samples. BMC Genomics. 2015;16:936 pubmed publisher
  195. Ampofo E, Später T, Müller I, Eichler H, Menger M, Laschke M. The Marine-Derived Kinase Inhibitor Fascaplysin Exerts Anti-Thrombotic Activity. Mar Drugs. 2015;13:6774-91 pubmed publisher
  196. Quintero Barceinas R, García Regalado A, Aréchaga Ocampo E, Villegas Sepúlveda N, González De la Rosa C. All-Trans Retinoic Acid Induces Proliferation, Survival, and Migration in A549 Lung Cancer Cells by Activating the ERK Signaling Pathway through a Transcription-Independent Mechanism. Biomed Res Int. 2015;2015:404368 pubmed publisher
  197. Sabogal Guáqueta A, Osorio E, Cardona Gómez G. Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer's mice. Neuropharmacology. 2016;102:111-20 pubmed publisher
  198. Yen Y, Hsiao J, Jiang S, Chang J, Wang S, Shen Y, et al. Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1. Oncotarget. 2015;6:41837-55 pubmed publisher
  199. Waye S, Naeem A, Choudhry M, Parasido E, Tricoli L, Sivakumar A, et al. The p53 tumor suppressor protein protects against chemotherapeutic stress and apoptosis in human medulloblastoma cells. Aging (Albany NY). 2015;7:854-68 pubmed
  200. Vernot J, Perdomo Arciniegas A, Pérez Quintero L, Martínez D. Modulating p56Lck in T-Cells by a Chimeric Peptide Comprising Two Functionally Different Motifs of Tip from Herpesvirus saimiri. J Immunol Res. 2015;2015:395371 pubmed publisher
  201. Li W, Wei S, Liu C, Song M, Wu H, Yang Y. Regulation of the osteogenic and adipogenic differentiation of bone marrow-derived stromal cells by extracellular uridine triphosphate: The role of P2Y2 receptor and ERK1/2 signaling. Int J Mol Med. 2016;37:63-73 pubmed publisher
  202. d Avenia M, Citro R, De Marco M, Veronese A, Rosati A, Visone R, et al. A novel miR-371a-5p-mediated pathway, leading to BAG3 upregulation in cardiomyocytes in response to epinephrine, is lost in Takotsubo cardiomyopathy. Cell Death Dis. 2015;6:e1948 pubmed publisher
  203. Wu S, Guo Z, Hopkins C, Wei N, Chu E, Wipf P, et al. Bis-cyclopropane analog of disorazole C1 is a microtubule-destabilizing agent active in ABCB1-overexpressing human colon cancer cells. Oncotarget. 2015;6:40866-79 pubmed publisher
  204. Dumas A, Lê Bury G, Marie Anaïs F, Herit F, Mazzolini J, Guilbert T, et al. The HIV-1 protein Vpr impairs phagosome maturation by controlling microtubule-dependent trafficking. J Cell Biol. 2015;211:359-72 pubmed publisher
  205. Strizzi L, Sandomenico A, Margaryan N, Focà A, Sanguigno L, Bodenstine T, et al. Effects of a novel Nodal-targeting monoclonal antibody in melanoma. Oncotarget. 2015;6:34071-86 pubmed publisher
  206. Barbáchano A, Fernández Barral A, Pereira F, Segura M, Ordóñez Morán P, Carrillo de Santa Pau E, et al. SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene. 2016;35:2991-3003 pubmed publisher
  207. Salas E, Roy S, Marsh T, Rubin B, Debnath J. Oxidative pentose phosphate pathway inhibition is a key determinant of antimalarial induced cancer cell death. Oncogene. 2016;35:2913-22 pubmed publisher
  208. Kim H, Lim J, Kim J, Kim Y, Park S, Sohn J. Panaxydol, a component of Panax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models. Int J Cancer. 2016;138:1432-41 pubmed publisher
  209. Zhu X, Wang K, Zhang K, Tan X, Wu Z, Sun S, et al. Tetramethylpyrazine Protects Retinal Capillary Endothelial Cells (TR-iBRB2) against IL-1β-Induced Nitrative/Oxidative Stress. Int J Mol Sci. 2015;16:21775-90 pubmed publisher
  210. Xing R, Li L, Chen L, Gao Z, Wang H, Li W, et al. Copy number variations of HLA-I and activation of NKp30 pathway determine the sensitivity of gastric cancer cells to the cytotoxicity of natural killer cells. Oncogene. 2016;35:2584-91 pubmed publisher
  211. Ashford A, Dunkley T, Cockerill M, Rowlinson R, Baak L, Gallo R, et al. Identification of DYRK1B as a substrate of ERK1/2 and characterisation of the kinase activity of DYRK1B mutants from cancer and metabolic syndrome. Cell Mol Life Sci. 2016;73:883-900 pubmed publisher
  212. Plescher M, Teleman A, Demetriades C. TSC2 mediates hyperosmotic stress-induced inactivation of mTORC1. Sci Rep. 2015;5:13828 pubmed publisher
  213. Zhou X, Tao Y, Liang C, Zhang Y, Li H, Chen Q. BMP3 Alone and Together with TGF-β Promote the Differentiation of Human Mesenchymal Stem Cells into a Nucleus Pulposus-Like Phenotype. Int J Mol Sci. 2015;16:20344-59 pubmed publisher
  214. Georgiannakis A, Burgoyne T, Lueck K, Futter C, Greenwood J, Moss S. Retinal Pigment Epithelial Cells Mitigate the Effects of Complement Attack by Endocytosis of C5b-9. J Immunol. 2015;195:3382-9 pubmed publisher
  215. Gong Y, Qiu W, Ning X, Yang X, Liu L, Wang Z, et al. CCDC34 is up-regulated in bladder cancer and regulates bladder cancer cell proliferation, apoptosis and migration. Oncotarget. 2015;6:25856-67 pubmed publisher
  216. Kumarasamy V, Shin Y, White J, Sun D. Selective repression of RET proto-oncogene in medullary thyroid carcinoma by a natural alkaloid berberine. BMC Cancer. 2015;15:599 pubmed publisher
  217. Wong T, Lin S, Leung L. The Flavone Luteolin Suppresses SREBP-2 Expression and Post-Translational Activation in Hepatic Cells. PLoS ONE. 2015;10:e0135637 pubmed publisher
  218. Zhao C, Su Y, Zhang J, Feng Q, Qu L, Wang L, et al. Fibrinogen-derived fibrinostatin inhibits tumor growth through anti-angiogenesis. Cancer Sci. 2015;106:1596-606 pubmed publisher
  219. Sabet O, Stockert R, Xouri G, Brüggemann Y, Stanoev A, Bastiaens P. Ubiquitination switches EphA2 vesicular traffic from a continuous safeguard to a finite signalling mode. Nat Commun. 2015;6:8047 pubmed publisher
  220. Bunaciu R, Jensen H, Macdonald R, Latocha D, Varner J, Yen A. 6-Formylindolo(3,2-b)Carbazole (FICZ) Modulates the Signalsome Responsible for RA-Induced Differentiation of HL-60 Myeloblastic Leukemia Cells. PLoS ONE. 2015;10:e0135668 pubmed publisher
  221. Zhang Q, Zhao K, Shen Q, Han Y, Gu Y, Li X, et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature. 2015;525:389-393 pubmed publisher
  222. Varela A, Piperi C, Sigala F, Agrogiannis G, Davos C, Andri M, et al. Elevated expression of mechanosensory polycystins in human carotid atherosclerotic plaques: association with p53 activation and disease severity. Sci Rep. 2015;5:13461 pubmed publisher
  223. Sivaraj K, Li R, Albarrán Juárez J, Wang S, Tischner D, Grimm M, et al. Endothelial Gαq/11 is required for VEGF-induced vascular permeability and angiogenesis. Cardiovasc Res. 2015;108:171-80 pubmed publisher
  224. Chichger H, Braza J, Duong H, Stark M, Harrington E. Neovascularization in the pulmonary endothelium is regulated by the endosome: Rab4-mediated trafficking and p18-dependent signaling. Am J Physiol Lung Cell Mol Physiol. 2015;309:L700-9 pubmed publisher
  225. Simard E, Söllradl T, Maltais J, Boucher J, D Orléans Juste P, Grandbois M. Receptor for Advanced Glycation End-Products Signaling Interferes with the Vascular Smooth Muscle Cell Contractile Phenotype and Function. PLoS ONE. 2015;10:e0128881 pubmed publisher
  226. Wu M, Lee W, Hua K, Kuo M, Lin M. Macrophage Infiltration Induces Gastric Cancer Invasiveness by Activating the β-Catenin Pathway. PLoS ONE. 2015;10:e0134122 pubmed publisher
  227. Zhang X, Wang X, Wu T, Li B, Liu T, Wang R, et al. Isoliensinine induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Sci Rep. 2015;5:12579 pubmed publisher
  228. Picot N, Guerrette R, Beauregard A, Jean S, Michaud P, Harquail J, et al. Mammaglobin 1 promotes breast cancer malignancy and confers sensitivity to anticancer drugs. Mol Carcinog. 2016;55:1150-62 pubmed publisher
  229. Zou Q, Jin J, Xiao Y, Hu H, Zhou X, Jie Z, et al. T cell development involves TRAF3IP3-mediated ERK signaling in the Golgi. J Exp Med. 2015;212:1323-36 pubmed publisher
  230. Dahlhoff M, Schäfer M, Muzumdar S, Rose C, Schneider M. ERBB3 is required for tumor promotion in a mouse model of skin carcinogenesis. Mol Oncol. 2015;9:1825-33 pubmed publisher
  231. Ito A, Hong C, Rong X, Zhu X, Tarling E, Hedde P, et al. LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. elife. 2015;4:e08009 pubmed publisher
  232. Kim J, Lee G, Won Y, Lee M, Kwak J, Chun C, et al. Matrix cross-linking-mediated mechanotransduction promotes posttraumatic osteoarthritis. Proc Natl Acad Sci U S A. 2015;112:9424-9 pubmed publisher
  233. García Pérez D, Laorden M, Milanés M. Regulation of Pleiotrophin, Midkine, Receptor Protein Tyrosine Phosphatase β/ζ, and Their Intracellular Signaling Cascades in the Nucleus Accumbens During Opiate Administration. Int J Neuropsychopharmacol. 2015;19: pubmed publisher
  234. Gorojod R, Alaimo A, Porte Alcon S, Pomilio C, Saravia F, Kotler M. The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions. Free Radic Biol Med. 2015;87:237-51 pubmed publisher
  235. Wu C, Jiao H, Lai Y, Zheng W, Chen K, Qu H, et al. Kindlin-2 controls TGF-β signalling and Sox9 expression to regulate chondrogenesis. Nat Commun. 2015;6:7531 pubmed publisher
  236. Chen K, Tsai M, Wu C, Jou M, Wei I, Huang C. AMPA Receptor-mTOR Activation is Required for the Antidepressant-Like Effects of Sarcosine during the Forced Swim Test in Rats: Insertion of AMPA Receptor may Play a Role. Front Behav Neurosci. 2015;9:162 pubmed publisher
  237. Su X, Yu Y, Zhong Y, Giannopoulou E, Hu X, Liu H, et al. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol. 2015;16:838-849 pubmed publisher
  238. Zhao L, Liu S, Che X, Hou K, Ma Y, Li C, et al. Bufalin inhibits TGF-β-induced epithelial-to-mesenchymal transition and migration in human lung cancer A549 cells by downregulating TGF-β receptors. Int J Mol Med. 2015;36:645-52 pubmed publisher
  239. Seo G, Ho M, Bui N, Kim Y, Koh D, Lim Y, et al. Novel naphthochalcone derivative accelerate dermal wound healing through induction of epithelial-mesenchymal transition of keratinocyte. J Biomed Sci. 2015;22:47 pubmed publisher
  240. He L, Zang A, Du M, Ma D, Yuan C, Zhou C, et al. mTOR regulates TLR-induced c-fos and Th1 responses to HBV and HCV vaccines. Virol Sin. 2015;30:174-89 pubmed publisher
  241. Roda D, Castillo J, Telechea Fernández M, Gil A, López Rodas G, Franco L, et al. EGF-Induced Acetylation of Heterogeneous Nuclear Ribonucleoproteins Is Dependent on KRAS Mutational Status in Colorectal Cancer Cells. PLoS ONE. 2015;10:e0130543 pubmed publisher
  242. Pickard A, McDade S, McFarland M, McCluggage W, Wheeler C, McCance D. HPV16 Down-Regulates the Insulin-Like Growth Factor Binding Protein 2 to Promote Epithelial Invasion in Organotypic Cultures. PLoS Pathog. 2015;11:e1004988 pubmed publisher
  243. Choi J, Kim J, Kim T, Park J, Lee J, Kim H, et al. TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors. Neuropharmacology. 2015;97:346-56 pubmed publisher
  244. Wang S, Awad K, Elinoff J, Dougherty E, Ferreyra G, Wang J, et al. G Protein-coupled Receptor 40 (GPR40) and Peroxisome Proliferator-activated Receptor γ (PPARγ): AN INTEGRATED TWO-RECEPTOR SIGNALING PATHWAY. J Biol Chem. 2015;290:19544-57 pubmed publisher
  245. Chen M, Yen C, Cheng C, Wu R, Huang S, Yu C, et al. Identification of SPHK1 as a therapeutic target and marker of poor prognosis in cholangiocarcinoma. Oncotarget. 2015;6:23594-608 pubmed
  246. Wu P, Yen J, Kou M, Wu M. Luteolin and Apigenin Attenuate 4-Hydroxy-2-Nonenal-Mediated Cell Death through Modulation of UPR, Nrf2-ARE and MAPK Pathways in PC12 Cells. PLoS ONE. 2015;10:e0130599 pubmed publisher
  247. Faggi F, Codenotti S, Poliani P, Cominelli M, Chiarelli N, Colombi M, et al. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line. PLoS ONE. 2015;10:e0130287 pubmed publisher
  248. Condelli V, Maddalena F, Sisinni L, Lettini G, Matassa D, Piscazzi A, et al. Targeting TRAP1 as a downstream effector of BRAF cytoprotective pathway: a novel strategy for human BRAF-driven colorectal carcinoma. Oncotarget. 2015;6:22298-309 pubmed
  249. Gopinathan G, Milagre C, Pearce O, Reynolds L, Hodivala Dilke K, Leinster D, et al. Interleukin-6 Stimulates Defective Angiogenesis. Cancer Res. 2015;75:3098-107 pubmed publisher
  250. Lee W, Shen S, Shih Y, Chou C, Tseng J, Chin S, et al. Early decline in serum phospho-CSE1L levels in vemurafenib/sunitinib-treated melanoma and sorafenib/lapatinib-treated colorectal tumor xenografts. J Transl Med. 2015;13:191 pubmed publisher
  251. García Cano J, Ambroise G, Pascual Serra R, Carrión M, Serrano Oviedo L, Ortega Muelas M, et al. Exploiting the potential of autophagy in cisplatin therapy: A new strategy to overcome resistance. Oncotarget. 2015;6:15551-65 pubmed
  252. Li T, Lu H, Mukherjee D, Lahiri S, Shen C, Yu L, et al. Identification of epidermal growth factor receptor and its inhibitory microRNA141 as novel targets of Krüppel-like factor 8 in breast cancer. Oncotarget. 2015;6:21428-42 pubmed
  253. Luan Q, Jin L, Jiang C, Tay K, Lai F, Liu X, et al. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy. Autophagy. 2015;11:975-94 pubmed publisher
  254. Yen C, Chiang W, Liu S, Lin C, Liao K, Lin C, et al. Impacts of autophagy-inducing ingredient of areca nut on tumor cells. PLoS ONE. 2015;10:e0128011 pubmed publisher
  255. Korotkevych N, Labyntsev A, Kolybo D, Komisarenko S. The Soluble Heparin-Binding EGF-Like Growth Factor Stimulates EGF Receptor Trafficking to the Nucleus. PLoS ONE. 2015;10:e0127887 pubmed publisher
  256. Reigada D, Nieto Díaz M, Navarro Ruiz R, Caballero López M, Del Águila A, Muñoz Galdeano T, et al. Acute administration of ucf-101 ameliorates the locomotor impairments induced by a traumatic spinal cord injury. Neuroscience. 2015;300:404-17 pubmed publisher
  257. Sun L, Xu C, Chen G, Yu M, Yang S, Qiu Y, et al. A Novel Role of OS-9 in the Maintenance of Intestinal Barrier Function from Hypoxia-induced Injury via p38-dependent Pathway. Int J Biol Sci. 2015;11:664-71 pubmed publisher
  258. Bargut T, Mandarim de Lacerda C, Aguila M. A high-fish-oil diet prevents adiposity and modulates white adipose tissue inflammation pathways in mice. J Nutr Biochem. 2015;26:960-9 pubmed publisher
  259. Li P, Sheu M, Ma W, Pan C, Sheu J, Wu C. Anti-Restenotic Roles of Dihydroaustrasulfone Alcohol Involved in Inhibiting PDGF-BB-Stimulated Proliferation and Migration of Vascular Smooth Muscle Cells. Mar Drugs. 2015;13:3046-60 pubmed publisher
  260. Wong T, Lin S, Leung L. The flavone apigenin blocks nuclear translocation of sterol regulatory element-binding protein-2 in the hepatic cells WRL-68. Br J Nutr. 2015;113:1844-52 pubmed publisher
  261. Cong X, Zhang Y, Li J, Mei M, Ding C, Xiang R, et al. Claudin-4 is required for modulation of paracellular permeability by muscarinic acetylcholine receptor in epithelial cells. J Cell Sci. 2015;128:2271-86 pubmed publisher
  262. Waters A, Stewart J, Atigadda V, Mroczek Musulman E, Muccio D, Grubbs C, et al. Preclinical Evaluation of a Novel RXR Agonist for the Treatment of Neuroblastoma. Mol Cancer Ther. 2015;14:1559-69 pubmed publisher
  263. Yu Y, Koehn C, Yue Y, Li S, Thiele G, Hearth Holmes M, et al. Celastrol inhibits inflammatory stimuli-induced neutrophil extracellular trap formation. Curr Mol Med. 2015;15:401-10 pubmed
  264. Zhang L, Wang H, Ding K, Xu J. FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol Lett. 2015;236:43-59 pubmed publisher
  265. Lee E, Park E, Mun H, Chang E, Ko J, Kim D, et al. Soluble receptor for advanced glycation end products inhibits disease progression in autosomal dominant polycystic kidney disease by down-regulating cell proliferation. FASEB J. 2015;29:3506-14 pubmed publisher
  266. Bhang S, Han J, Jang H, Noh M, La W, Yi M, et al. pH-triggered release of manganese from MnAu nanoparticles that enables cellular neuronal differentiation without cellular toxicity. Biomaterials. 2015;55:33-43 pubmed publisher
  267. Pasqualon T, Pruessmeyer J, Weidenfeld S, Babendreyer A, Groth E, Schumacher J, et al. A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation. Cell Mol Life Sci. 2015;72:3783-801 pubmed publisher
  268. Daniele S, Da Pozzo E, Zappelli E, Martini C. Trazodone treatment protects neuronal-like cells from inflammatory insult by inhibiting NF-?B, p38 and JNK. Cell Signal. 2015;27:1609-29 pubmed publisher
  269. Kim H, Kim I, Dong Y, Lee I, Kim J, Kim J, et al. Melanogenesis-inducing effect of cirsimaritin through increases in microphthalmia-associated transcription factor and tyrosinase expression. Int J Mol Sci. 2015;16:8772-88 pubmed publisher
  270. Huang L, Counter C. Reduced HRAS G12V-Driven Tumorigenesis of Cell Lines Expressing KRAS C118S. PLoS ONE. 2015;10:e0123918 pubmed publisher
  271. Yang Z, Zheng B, Zhang Y, He M, Zhang X, Ma D, et al. miR-155-dependent regulation of mammalian sterile 20-like kinase 2 (MST2) coordinates inflammation, oxidative stress and proliferation in vascular smooth muscle cells. Biochim Biophys Acta. 2015;1852:1477-89 pubmed publisher
  272. Selvaraj N, Kedage V, Hollenhorst P. Comparison of MAPK specificity across the ETS transcription factor family identifies a high-affinity ERK interaction required for ERG function in prostate cells. Cell Commun Signal. 2015;13:12 pubmed publisher
  273. Wilson C, Jurk D, Fullard N, Banks P, Page A, Luli S, et al. NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat Commun. 2015;6:6818 pubmed publisher
  274. Zhang X, Liang D, Chi Z, Chu Q, Zhao C, Ma R, et al. Effect of zinc on high glucose-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells. Int J Mol Med. 2015;35:1747-54 pubmed publisher
  275. Zhang D, Zhu L, Li C, Mu J, Fu Y, Zhu Q, et al. Sialyltransferase7A, a Klf4-responsive gene, promotes cardiomyocyte apoptosis during myocardial infarction. Basic Res Cardiol. 2015;110:28 pubmed publisher
  276. Witkiewicz A, McMillan E, Balaji U, Baek G, Lin W, Mansour J, et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun. 2015;6:6744 pubmed publisher
  277. Kim T, Lawson M. GnRH Regulates Gonadotropin Gene Expression Through NADPH/Dual Oxidase-Derived Reactive Oxygen Species. Endocrinology. 2015;156:2185-99 pubmed publisher
  278. Boncompagni S, Arthurton L, Akujuru E, Pearson T, Steverding D, Protasi F, et al. Membrane glucocorticoid receptors are localised in the extracellular matrix and signal through the MAPK pathway in mammalian skeletal muscle fibres. J Physiol. 2015;593:2679-92 pubmed publisher
  279. Ko R, Park J, Ha H, Choi Y, Lee S. Glycogen synthase kinase 3β ubiquitination by TRAF6 regulates TLR3-mediated pro-inflammatory cytokine production. Nat Commun. 2015;6:6765 pubmed publisher
  280. Meena J, Cerutti A, Beichler C, Morita Y, Bruhn C, Kumar M, et al. Telomerase abrogates aneuploidy-induced telomere replication stress, senescence and cell depletion. EMBO J. 2015;34:1371-84 pubmed publisher
  281. Zhang Q, Kuang H, Chen C, Yan J, Do Umehara H, Liu X, et al. The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nat Immunol. 2015;16:458-66 pubmed publisher
  282. Graziani G, Artuso S, De Luca A, Muzi A, Rotili D, Scimeca M, et al. A new water soluble MAPK activator exerts antitumor activity in melanoma cells resistant to the BRAF inhibitor vemurafenib. Biochem Pharmacol. 2015;95:16-27 pubmed publisher
  283. Kawada M, Inoue H, Ohba S, Yoshida J, Masuda T, Yamasaki M, et al. Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction. PLoS ONE. 2015;10:e0119415 pubmed publisher
  284. Qu D, Chen Y, Xu X, Zhang M, Zhang Y, Li S. Cbl-b-regulated extracellular signal-regulated kinase signaling is involved in the shikonin-induced apoptosis of lung cancer cells in vitro. Exp Ther Med. 2015;9:1265-1270 pubmed
  285. Wang B, Wu S, Tang S, Lai C, Ou C, Wu M, et al. Benzo[a]pyrene-induced cell cycle progression occurs via ERK-induced Chk1 pathway activation in human lung cancer cells. Mutat Res. 2015;773:1-8 pubmed publisher
  286. Chen W, Wu J, Li L, Zhang Z, Ren J, Liang Y, et al. Ppm1b negatively regulates necroptosis through dephosphorylating Rip3. Nat Cell Biol. 2015;17:434-44 pubmed publisher
  287. Warren D, Tajsic T, Porter L, Minaisah R, Cobb A, Jacob A, et al. Nesprin-2-dependent ERK1/2 compartmentalisation regulates the DNA damage response in vascular smooth muscle cell ageing. Cell Death Differ. 2015;22:1540-50 pubmed publisher
  288. Kollar P, Bárta T, Keltošová S, Trnová P, Müller Závalová V, Šmejkal K, et al. Flavonoid 4'-O-Methylkuwanon E from Morus alba Induces the Differentiation of THP-1 Human Leukemia Cells. Evid Based Complement Alternat Med. 2015;2015:251895 pubmed publisher
  289. Kim S, Ka S, Lee Y, Park B, Fei X, Jung J, et al. The new 4-O-methylhonokiol analog GS12021 inhibits inflammation and macrophage chemotaxis: role of AMP-activated protein kinase α activation. PLoS ONE. 2015;10:e0117120 pubmed publisher
  290. Cheng Z, Liu F, Zhu S, Tian H, Wang L, Wang Y. A rapid and convenient method for fluorescence analysis of in vitro cultivated metacestode vesicles from Echinococcus multilocularis. PLoS ONE. 2015;10:e0118215 pubmed publisher
  291. Murrow L, Malhotra R, Debnath J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol. 2015;17:300-10 pubmed publisher
  292. Skarra D, Thackray V. FOXO1 is regulated by insulin and IGF1 in pituitary gonadotropes. Mol Cell Endocrinol. 2015;405:14-24 pubmed publisher
  293. Curcio M, Salazar I, Inácio A, Duarte E, Canzoniero L, Duarte C. Brain ischemia downregulates the neuroprotective GDNF-Ret signaling by a calpain-dependent mechanism in cultured hippocampal neurons. Cell Death Dis. 2015;6:e1645 pubmed publisher
  294. Fouladi F, Jehn L, Metzelder S, Hub F, Henkenius K, Burchert A, et al. Sorafenib induces paradoxical phosphorylation of the extracellular signal-regulated kinase pathway in acute myeloid leukemia cells lacking FLT3-ITD mutation. Leuk Lymphoma. 2015;56:2690-8 pubmed publisher
  295. Castorina A, Waschek J, Marzagalli R, Cardile V, Drago F. PACAP interacts with PAC1 receptors to induce tissue plasminogen activator (tPA) expression and activity in schwann cell-like cultures. PLoS ONE. 2015;10:e0117799 pubmed publisher
  296. Papadakis A, Sun C, Knijnenburg T, Xue Y, Grernrum W, Hölzel M, et al. SMARCE1 suppresses EGFR expression and controls responses to MET and ALK inhibitors in lung cancer. Cell Res. 2015;25:445-58 pubmed publisher
  297. Bai L, Mao R, Wang J, Ding L, Jiang S, Gao C, et al. ERK1/2 promoted proliferation and inhibited apoptosis of human cervical cancer cells and regulated the expression of c-Fos and c-Jun proteins. Med Oncol. 2015;32:57 pubmed publisher
  298. Kozlova N, Samoylenko A, Drobot L, Kietzmann T. Urokinase is a negative modulator of Egf-dependent proliferation and motility in the two breast cancer cell lines MCF-7 and MDA-MB-231. Mol Carcinog. 2016;55:170-81 pubmed publisher
  299. Hakanpaa L, Sipilä T, Leppänen V, Gautam P, Nurmi H, Jacquemet G, et al. Endothelial destabilization by angiopoietin-2 via integrin β1 activation. Nat Commun. 2015;6:5962 pubmed publisher
  300. Shaw A, Pickup M, Chytil A, Aakre M, Owens P, Moses H, et al. TGFβ signaling in myeloid cells regulates mammary carcinoma cell invasion through fibroblast interactions. PLoS ONE. 2015;10:e0117908 pubmed publisher
  301. Xu B, Zhang Y, Tong X, Liu Y. Characterization of microRNA profile in human cumulus granulosa cells: Identification of microRNAs that regulate Notch signaling and are associated with PCOS. Mol Cell Endocrinol. 2015;404:26-36 pubmed publisher
  302. Bele A, Mirza S, Zhang Y, Ahmad Mir R, Lin S, Kim J, et al. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells. Cell Cycle. 2015;14:990-1000 pubmed publisher
  303. Albanito L, Lappano R, Madeo A, Chimento A, Prossnitz E, Cappello A, et al. Effects of atrazine on estrogen receptor α- and G protein-coupled receptor 30-mediated signaling and proliferation in cancer cells and cancer-associated fibroblasts. Environ Health Perspect. 2015;123:493-9 pubmed publisher
  304. Seaberg B, Henslee G, Wang S, Paez Colasante X, Landreth G, Rimer M. Muscle-derived extracellular signal-regulated kinases 1 and 2 are required for the maintenance of adult myofibers and their neuromuscular junctions. Mol Cell Biol. 2015;35:1238-53 pubmed publisher
  305. Schäker K, Bartsch S, Patry C, Stoll S, Hillebrands J, Wieland T, et al. The bipartite rac1 Guanine nucleotide exchange factor engulfment and cell motility 1/dedicator of cytokinesis 180 (elmo1/dock180) protects endothelial cells from apoptosis in blood vessel development. J Biol Chem. 2015;290:6408-18 pubmed publisher
  306. Majuelos Melguizo J, Rodríguez M, López Jiménez L, Rodríguez Vargas J, Martí Martín Consuegra J, Serrano Sáenz S, et al. PARP targeting counteracts gliomagenesis through induction of mitotic catastrophe and aggravation of deficiency in homologous recombination in PTEN-mutant glioma. Oncotarget. 2015;6:4790-803 pubmed
  307. Cheng Y, Chen P, Chiang H, Suen C, Hwang M, Lin T, et al. Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT. Cell Death Dis. 2015;6:e1584 pubmed publisher
  308. Zanotto Filho A, Braganhol E, Klafke K, Figueiró F, Terra S, Paludo F, et al. Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett. 2015;358:220-31 pubmed publisher
  309. Passos E, Pereira C, Gonçalves I, Rocha Rodrigues S, Silva N, Guimarães J, et al. Role of physical exercise on hepatic insulin, glucocorticoid and inflammatory signaling pathways in an animal model of non-alcoholic steatohepatitis. Life Sci. 2015;123:51-60 pubmed publisher
  310. Kim E, Kim S, Jin X, Ham S, Kim J, Park J, et al. Epidermal growth factor receptor variant III renders glioma cancer cells less differentiated by JAGGED1. Tumour Biol. 2015;36:2921-8 pubmed publisher
  311. Jilg C, Ketscher A, Metzger E, Hummel B, Willmann D, Rüsseler V, et al. PRK1/PKN1 controls migration and metastasis of androgen-independent prostate cancer cells. Oncotarget. 2014;5:12646-64 pubmed
  312. Delloye Bourgeois C, Jacquier A, Charoy C, Reynaud F, Nawabi H, Thoinet K, et al. PlexinA1 is a new Slit receptor and mediates axon guidance function of Slit C-terminal fragments. Nat Neurosci. 2015;18:36-45 pubmed publisher
  313. Bernusso V, Machado Neto J, Pericole F, Vieira K, Duarte A, Traina F, et al. Imatinib restores VASP activity and its interaction with Zyxin in BCR-ABL leukemic cells. Biochim Biophys Acta. 2015;1853:388-95 pubmed publisher
  314. Xu T, Pan Z, Dong M, Yu C, Niu Y. Ferulic acid suppresses activation of hepatic stellate cells through ERK1/2 and Smad signaling pathways in vitro. Biochem Pharmacol. 2015;93:49-58 pubmed publisher
  315. Tang D, Yu Y, Zhao X, Schachner M, Zhao W. Single chain fragment variable antibodies developed by using as target the 3rd fibronectin type III homologous repeat fragment of human neural cell adhesion molecule L1 promote cell migration and neuritogenesis. Exp Cell Res. 2015;330:336-45 pubmed publisher
  316. Giovannini C, Minguzzi M, Baglioni M, Fornari F, Giannone F, Ravaioli M, et al. Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma. Oncotarget. 2014;5:10607-20 pubmed
  317. Heynen G, Fonfara A, Bernards R. Resistance to targeted cancer drugs through hepatocyte growth factor signaling. Cell Cycle. 2014;13:3808-17 pubmed publisher
  318. Li X, Sun Q, Li X, Cai D, Sui S, Jia Y, et al. Dietary betaine supplementation to gestational sows enhances hippocampal IGF2 expression in newborn piglets with modified DNA methylation of the differentially methylated regions. Eur J Nutr. 2015;54:1201-10 pubmed publisher
  319. Janardhan S, Marks R, Gajewski T. Primary murine CD4+ T cells fail to acquire the ability to produce effector cytokines when active Ras is present during Th1/Th2 differentiation. PLoS ONE. 2014;9:e112831 pubmed publisher
  320. Huang L, Carney J, Cardona D, Counter C. Decreased tumorigenesis in mice with a Kras point mutation at C118. Nat Commun. 2014;5:5410 pubmed publisher
  321. Li Y, Kim B, Cho S, Bang M, Kim S, Park D. 6,7-di-O-acetylsinococuline (FK-3000) induces G2/M phase arrest in breast carcinomas through p38 MAPK phosphorylation and CDC25B dephosphorylation. Int J Oncol. 2015;46:578-86 pubmed publisher
  322. Tao W, Moore R, Smith E, Xu X. Hormonal induction and roles of Disabled-2 in lactation and involution. PLoS ONE. 2014;9:e110737 pubmed publisher
  323. Wang Y, Xiao X, Li N, Yang D, Xing Y, Huo R, et al. Oestrogen inhibits BMP4-induced BMP4 expression in cardiomyocytes: a potential mechanism of oestrogen-mediated protection against cardiac hypertrophy. Br J Pharmacol. 2015;172:5586-95 pubmed publisher
  324. Rutkowska A, Preuss I, Gessier F, Sailer A, Dev K. EBI2 regulates intracellular signaling and migration in human astrocyte. Glia. 2015;63:341-51 pubmed publisher
  325. Wang Y, Kuramitsu Y, Tokuda K, Baron B, Kitagawa T, Akada J, et al. Gemcitabine induces poly (ADP-ribose) polymerase-1 (PARP-1) degradation through autophagy in pancreatic cancer. PLoS ONE. 2014;9:e109076 pubmed publisher
  326. Kannike K, Sepp M, Zuccato C, Cattaneo E, Timmusk T. Forkhead transcription factor FOXO3a levels are increased in Huntington disease because of overactivated positive autofeedback loop. J Biol Chem. 2014;289:32845-57 pubmed publisher
  327. Zhang X, Zhang Q, Tu J, Zhu Y, Yang F, Liu B, et al. Prosurvival NMDA 2A receptor signaling mediates postconditioning neuroprotection in the hippocampus. Hippocampus. 2015;25:286-96 pubmed publisher
  328. Zhou X, Tao Y, Wang J, Liang C, Wang J, Li H, et al. Roles of FGF-2 and TGF-beta/FGF-2 on differentiation of human mesenchymal stem cells towards nucleus pulposus-like phenotype. Growth Factors. 2015;33:23-30 pubmed publisher
  329. Zhao X, Zhu L, Chang Q, Jiang C, You Y, Luo T, et al. C-type lectin receptor dectin-3 mediates trehalose 6,6'-dimycolate (TDM)-induced Mincle expression through CARD9/Bcl10/MALT1-dependent nuclear factor (NF)-κB activation. J Biol Chem. 2014;289:30052-62 pubmed publisher
  330. Dou W, Zhang J, Ren G, Ding L, Sun A, Deng C, et al. Mangiferin attenuates the symptoms of dextran sulfate sodium-induced colitis in mice via NF-κB and MAPK signaling inactivation. Int Immunopharmacol. 2014;23:170-8 pubmed publisher
  331. Pilchova I, Klacanova K, Chomova M, Tatarkova Z, Dobrota D, Racay P. Possible contribution of proteins of Bcl-2 family in neuronal death following transient global brain ischemia. Cell Mol Neurobiol. 2015;35:23-31 pubmed publisher
  332. Gruol D, Vo K, Bray J. Increased astrocyte expression of IL-6 or CCL2 in transgenic mice alters levels of hippocampal and cerebellar proteins. Front Cell Neurosci. 2014;8:234 pubmed publisher
  333. Huang S, Lee C, Wang H, Chang Y, Lin C, Chen C, et al. 6-Dehydrogingerdione restrains lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages. J Agric Food Chem. 2014;62:9171-9 pubmed publisher
  334. Sa S, Wong L, McCloskey K. Combinatorial fibronectin and laminin signaling promote highly efficient cardiac differentiation of human embryonic stem cells. Biores Open Access. 2014;3:150-61 pubmed publisher
  335. Han P, Zhou X, Chang N, Xiao C, Yan S, Ren H, et al. Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell Res. 2014;24:1091-107 pubmed publisher
  336. Tang S, Chen T, Yu Z, Zhu X, Yang M, Xie B, et al. RasGRP3 limits Toll-like receptor-triggered inflammatory response in macrophages by activating Rap1 small GTPase. Nat Commun. 2014;5:4657 pubmed publisher
  337. Yu B, Chang J, Liu Y, Li J, Kevork K, Al Hezaimi K, et al. Wnt4 signaling prevents skeletal aging and inflammation by inhibiting nuclear factor-?B. Nat Med. 2014;20:1009-17 pubmed publisher
  338. Li L, Wu P, Lee J, Li P, Hsieh W, Ho C, et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS ONE. 2014;9:e104203 pubmed publisher
  339. Zhang S, Ren M, Zeng X, He P, Ma X, Qiao S. Leucine stimulates ASCT2 amino acid transporter expression in porcine jejunal epithelial cell line (IPEC-J2) through PI3K/Akt/mTOR and ERK signaling pathways. Amino Acids. 2014;46:2633-42 pubmed publisher
  340. Castorina A, Giunta S. Mucin 1 (MUC1) signalling contributes to increase the resistance to cell death in human bronchial epithelial cells exposed to nickel acetate. Biometals. 2014;27:1149-58 pubmed publisher
  341. Kurz D, Payeli S, Greutert H, Briand Schumacher S, Luscher T, Tanner F. Epigenetic regulation of tissue factor inducibility in endothelial cell senescence. Mech Ageing Dev. 2014;140:1-9 pubmed publisher
  342. Kapur N, Qiao X, Paruchuri V, Mackey E, Daly G, Ughreja K, et al. Reducing endoglin activity limits calcineurin and TRPC-6 expression and improves survival in a mouse model of right ventricular pressure overload. J Am Heart Assoc. 2014;3: pubmed publisher
  343. Maeda S, Wada H, Naito Y, Nagano H, Simmons S, Kagawa Y, et al. Interferon-? acts on the S/G2/M phases to induce apoptosis in the G1 phase of an IFNAR2-expressing hepatocellular carcinoma cell line. J Biol Chem. 2014;289:23786-95 pubmed publisher
  344. Martin V, Corso S, Comoglio P, Giordano S. Increase of MET gene copy number confers resistance to a monovalent MET antibody and establishes drug dependence. Mol Oncol. 2014;8:1561-74 pubmed publisher
  345. Hu J, Cheng Y, Li Y, Jin Z, Pan Y, Liu G, et al. microRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C. Eur J Cancer. 2014;50:2336-50 pubmed publisher
  346. Chondrogiannis G, Kastamoulas M, Kanavaros P, Vartholomatos G, Bai M, Baltogiannis D, et al. Cytokine effects on cell viability and death of prostate carcinoma cells. Biomed Res Int. 2014;2014:536049 pubmed publisher
  347. Chang P, Hung C, Wang S, Tsai P, Shih Y, Chen L, et al. Identification and characterization of two novel spliced genes located in the orf47-orf46-orf45 gene locus of Kaposi's sarcoma-associated herpesvirus. J Virol. 2014;88:10092-109 pubmed publisher
  348. Rathore K, Cekanova M. Animal model of naturally occurring bladder cancer: characterization of four new canine transitional cell carcinoma cell lines. BMC Cancer. 2014;14:465 pubmed publisher
  349. Fischer A, Zelinka C, Gallina D, Scott M, Todd L. Reactive microglia and macrophage facilitate the formation of Müller glia-derived retinal progenitors. Glia. 2014;62:1608-28 pubmed publisher
  350. Ishikawa D, Shimada M, Utsunomiya T, Morine Y, Imura S, Ikemoto T, et al. Effect of Twist and Bmi1 on intraductal papillary mucinous neoplasm of the pancreas. J Gastroenterol Hepatol. 2014;29:2032-7 pubmed publisher
  351. Zielniok K, Motyl T, Gajewska M. Functional interactions between 17 ? -estradiol and progesterone regulate autophagy during acini formation by bovine mammary epithelial cells in 3D cultures. Biomed Res Int. 2014;2014:382653 pubmed publisher
  352. Enjoji S, Ohama T, Sato K. Regulation of epithelial cell tight junctions by protease-activated receptor 2. J Vet Med Sci. 2014;76:1225-9 pubmed
  353. Mena H, Lokajczyk A, Dizier B, Strier S, Voto L, Boisson Vidal C, et al. Acidic preconditioning improves the proangiogenic responses of endothelial colony forming cells. Angiogenesis. 2014;17:867-79 pubmed publisher
  354. Attarha S, Andersson S, Mints M, Souchelnytskyi S. Mammalian sterile-like 1 kinase inhibits TGF? and EGF?dependent regulation of invasiveness, migration and proliferation of HEC-1-A endometrial cancer cells. Int J Oncol. 2014;45:853-60 pubmed publisher
  355. Jiang Y, Kou Z, Wu T, An W, Zhou R, Wang H, et al. Xist deficiency and disorders of X-inactivation in rabbit embryonic stem cells can be rescued by transcription-factor-mediated conversion. Stem Cells Dev. 2014;23:2283-96 pubmed publisher
  356. Gruol D, Vo K, Bray J, Roberts A. CCL2-ethanol interactions and hippocampal synaptic protein expression in a transgenic mouse model. Front Integr Neurosci. 2014;8:29 pubmed publisher
  357. Cazanave S, Wang X, Zhou H, Rahmani M, Grant S, Durrant D, et al. Degradation of Keap1 activates BH3-only proteins Bim and PUMA during hepatocyte lipoapoptosis. Cell Death Differ. 2014;21:1303-12 pubmed publisher
  358. Tamaki S, Tokumoto Y. Overexpression of cyclin dependent kinase inhibitor P27/Kip1 increases oligodendrocyte differentiation from induced pluripotent stem cells. In Vitro Cell Dev Biol Anim. 2014;50:778-85 pubmed publisher
  359. Kerdivel G, Boudot A, Habauzit D, Percevault F, Demay F, Pakdel F, et al. Activation of the MKL1/actin signaling pathway induces hormonal escape in estrogen-responsive breast cancer cell lines. Mol Cell Endocrinol. 2014;390:34-44 pubmed publisher
  360. Lamprecht M, Morrison B. GPR30 activation is neither necessary nor sufficient for acute neuroprotection by 17?-estradiol after an ischemic injury in organotypic hippocampal slice cultures. Brain Res. 2014;1563:131-7 pubmed publisher
  361. Smith I, Godinez G, Singh B, McCaughey K, Alcantara R, Gururaja T, et al. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction. FASEB J. 2014;28:2790-803 pubmed publisher
  362. Wei N, Chu E, Wipf P, Schmitz J. Protein kinase d as a potential chemotherapeutic target for colorectal cancer. Mol Cancer Ther. 2014;13:1130-41 pubmed publisher
  363. Yu P, Laird A, Du X, Wu J, Won K, Yamaguchi K, et al. Characterization of the activity of the PI3K/mTOR inhibitor XL765 (SAR245409) in tumor models with diverse genetic alterations affecting the PI3K pathway. Mol Cancer Ther. 2014;13:1078-91 pubmed publisher
  364. Wang Q, Shen B, Chen L, Zheng P, Feng H, Hao Q, et al. Extracellular calumenin suppresses ERK1/2 signaling and cell migration by protecting fibulin-1 from MMP-13-mediated proteolysis. Oncogene. 2015;34:1006-18 pubmed publisher
  365. Linke R, Pries R, Könnecke M, Bruchhage K, Böscke R, Gebhard M, et al. The MEK1/2-ERK1/2 pathway is activated in chronic rhinosinusitis with nasal polyps. Arch Immunol Ther Exp (Warsz). 2014;62:217-29 pubmed publisher
  366. Son J, Jeong H, Kim H, Kim Y, Lee E, Lee H, et al. Pelargonidin attenuates PDGF-BB-induced aortic smooth muscle cell proliferation and migration by direct inhibition of focal adhesion kinase. Biochem Pharmacol. 2014;89:236-45 pubmed publisher
  367. Ihunnah C, Wada T, Philips B, Ravuri S, Gibbs R, Kirisci L, et al. Estrogen sulfotransferase/SULT1E1 promotes human adipogenesis. Mol Cell Biol. 2014;34:1682-94 pubmed publisher
  368. Wang Y, Kuramitsu Y, Tokuda K, Okada F, Baron B, Akada J, et al. Proteomic analysis indicates that overexpression and nuclear translocation of lactoylglutathione lyase (GLO1) is associated with tumor progression in murine fibrosarcoma. Electrophoresis. 2014;35:2195-202 pubmed publisher
  369. Bernet J, Doles J, Hall J, Kelly Tanaka K, Carter T, Olwin B. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med. 2014;20:265-71 pubmed publisher
  370. Willemen H, Campos P, Lucas E, Morreale A, Gil Redondo R, Agut J, et al. A novel p38 MAPK docking-groove-targeted compound is a potent inhibitor of inflammatory hyperalgesia. Biochem J. 2014;459:427-39 pubmed publisher
  371. Park E, Kim B, Lee E, Chang E, Kim D, Choi S, et al. Targeting of receptor for advanced glycation end products suppresses cyst growth in polycystic kidney disease. J Biol Chem. 2014;289:9254-62 pubmed publisher
  372. Bloch O, Amit Vazina M, Yona E, Molad Y, Rapoport M. Increased ERK and JNK activation and decreased ERK/JNK ratio are associated with long-term organ damage in patients with systemic lupus erythematosus. Rheumatology (Oxford). 2014;53:1034-42 pubmed
  373. Jin Y, Wi H, Choi M, Hong S, Bae Y. Regulation of anti-inflammatory cytokines IL-10 and TGF-? in mouse dendritic cells through treatment with Clonorchis sinensis crude antigen. Exp Mol Med. 2014;46:e74 pubmed publisher
  374. Shin Y, Huh Y, Kim K, Kim S, Park K, Koh J, et al. Low-density lipoprotein receptor-related protein 5 governs Wnt-mediated osteoarthritic cartilage destruction. Arthritis Res Ther. 2014;16:R37 pubmed publisher
  375. Gámez M, Calvo M, Selgas M, García M, Erler K, Böhm V, et al. Effect of E-beam treatment on the chemistry and on the antioxidant activity of lycopene from dry tomato peel and tomato powder. J Agric Food Chem. 2014;62:1557-63 pubmed publisher
  376. Joannes A, Grelet S, Duca L, Gilles C, Kileztky C, Dalstein V, et al. Fhit regulates EMT targets through an EGFR/Src/ERK/Slug signaling axis in human bronchial cells. Mol Cancer Res. 2014;12:775-83 pubmed publisher
  377. Cao M, Hou D, Liang H, Gong F, Wang Y, Yan X, et al. miR-150 promotes the proliferation and migration of lung cancer cells by targeting SRC kinase signalling inhibitor 1. Eur J Cancer. 2014;50:1013-24 pubmed publisher
  378. Murcia Belmonte V, Medina Rodríguez E, Bribian A, De Castro F, Esteban P. ERK1/2 signaling is essential for the chemoattraction exerted by human FGF2 and human anosmin-1 on newborn rat and mouse OPCs via FGFR1. Glia. 2014;62:374-86 pubmed publisher
  379. Krishna S, Luan C, Mishra R, Xu L, Scheidt K, Anderson W, et al. A fluorescence-based thermal shift assay identifies inhibitors of mitogen activated protein kinase kinase 4. PLoS ONE. 2013;8:e81504 pubmed publisher
  380. Xu C, Chen H, Wang X, Gao J, Che Y, Li Y, et al. S100A14, a member of the EF-hand calcium-binding proteins, is overexpressed in breast cancer and acts as a modulator of HER2 signaling. J Biol Chem. 2014;289:827-37 pubmed publisher
  381. Castorina A, Scuderi S, D Amico A, Drago F, D Agata V. PACAP and VIP increase the expression of myelin-related proteins in rat schwannoma cells: involvement of PAC1/VPAC2 receptor-mediated activation of PI3K/Akt signaling pathways. Exp Cell Res. 2014;322:108-21 pubmed publisher
  382. Lee J, Park J, Kwon O, Kim H, Fornace A, Cha H. Off-target response of a Wip1 chemical inhibitor in skin keratinocytes. J Dermatol Sci. 2014;73:125-34 pubmed publisher
  383. Evans C, Cook S, Coleman M, Gilley J. MEK inhibitor U0126 reverses protection of axons from Wallerian degeneration independently of MEK-ERK signaling. PLoS ONE. 2013;8:e76505 pubmed publisher
  384. Lu Q, Harris V, Sun X, Hou Y, Black S. Ca²?/calmodulin-dependent protein kinase II contributes to hypoxic ischemic cell death in neonatal hippocampal slice cultures. PLoS ONE. 2013;8:e70750 pubmed publisher
  385. Bittner S, Ruck T, Schuhmann M, Herrmann A, Moha Ou Maati H, Bobak N, et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med. 2013;19:1161-5 pubmed publisher
  386. Hauerslev S, Sveen M, Vissing J, Krag T. Protein turnover and cellular stress in mildly and severely affected muscles from patients with limb girdle muscular dystrophy type 2I. PLoS ONE. 2013;8:e66929 pubmed publisher
  387. Moberly S, Mather K, Berwick Z, Owen M, Goodwill A, Casalini E, et al. Impaired cardiometabolic responses to glucagon-like peptide 1 in obesity and type 2 diabetes mellitus. Basic Res Cardiol. 2013;108:365 pubmed publisher
  388. Zhou X, Wang H, Burg M, Ferraris J. High NaCl-induced inhibition of PTG contributes to activation of NFAT5 through attenuation of the negative effect of SHP-1. Am J Physiol Renal Physiol. 2013;305:F362-9 pubmed publisher
  389. Wickert L, Blanchette J, Waldschmidt N, Bertics P, Denu J, Denlinger L, et al. The C-terminus of human nucleotide receptor P2X7 is critical for receptor oligomerization and N-linked glycosylation. PLoS ONE. 2013;8:e63789 pubmed publisher
  390. Aoshiba K, Tsuji T, Kameyama S, Itoh M, Semba S, Yamaguchi K, et al. Senescence-associated secretory phenotype in a mouse model of bleomycin-induced lung injury. Exp Toxicol Pathol. 2013;65:1053-62 pubmed publisher
  391. Maeda Y, Fukushima K, Omichi R, Kariya S, Nishizaki K. Time courses of changes in phospho- and total- MAP kinases in the cochlea after intense noise exposure. PLoS ONE. 2013;8:e58775 pubmed publisher
  392. Taylor D, Moser R, Regulier E, Breuillaud L, Dixon M, Beesen A, et al. MAP kinase phosphatase 1 (MKP-1/DUSP1) is neuroprotective in Huntington's disease via additive effects of JNK and p38 inhibition. J Neurosci. 2013;33:2313-25 pubmed publisher
  393. Lin S, Hoffmann K, Xiao Z, Jin N, Galli U, Mohr E, et al. MEK inhibition induced downregulation of MRP1 and MRP3 expression in experimental hepatocellular carcinoma. Cancer Cell Int. 2013;13:3 pubmed publisher
  394. Slowik A, Merres J, Elfgen A, Jansen S, Mohr F, Wruck C, et al. Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)--and amyloid beta 1-42-induced signal transduction in glial cells. Mol Neurodegener. 2012;7:55 pubmed publisher
  395. Brandenburg L, Jansen S, Albrecht L, Merres J, Gerber J, Pufe T, et al. CpG oligodeoxynucleotides induce the expression of the antimicrobial peptide cathelicidin in glial cells. J Neuroimmunol. 2013;255:18-31 pubmed publisher
  396. Muller M, Triaca V, Besusso D, Costanzi M, Horn J, Koudelka J, et al. Loss of NGF-TrkA signaling from the CNS is not sufficient to induce cognitive impairments in young adult or intermediate-aged mice. J Neurosci. 2012;32:14885-98 pubmed publisher
  397. Kim J, Hwang I, Choi S, Lee H, Lee Y, Goo J, et al. Aqueous extract of Liriope platyphylla, a traditional Chinese medicine, significantly inhibits abdominal fat accumulation and improves glucose regulation in OLETF type II diabetes model rats. Lab Anim Res. 2012;28:181-91 pubmed publisher
  398. Jarosz M, Robbez Masson L, Chioni A, Cross B, Rosewell I, Grose R. Fibroblast growth factor 22 is not essential for skin development and repair but plays a role in tumorigenesis. PLoS ONE. 2012;7:e39436 pubmed publisher
  399. Joaquin M, Gubern A, Gonzalez Nunez D, Josué Ruiz E, Ferreiro I, de Nadal E, et al. The p57 CDKi integrates stress signals into cell-cycle progression to promote cell survival upon stress. EMBO J. 2012;31:2952-64 pubmed publisher
  400. Iio W, Matsukawa N, Tsukahara T, Toyoda A. The effects of oral taurine administration on behavior and hippocampal signal transduction in rats. Amino Acids. 2012;43:2037-46 pubmed publisher
  401. Yoo S, Starnes T, Deng Q, Huttenlocher A. Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature. 2011;480:109-12 pubmed publisher
  402. Gruol D, Puro A, Hao C, Blakely P, Janneke E, Vo K. Neuroadaptive changes in cerebellar neurons induced by chronic exposure to IL-6. J Neuroimmunol. 2011;239:28-36 pubmed publisher
  403. Machado Neto J, Favaro P, Lazarini M, Costa F, Olalla Saad S, Traina F. Knockdown of insulin receptor substrate 1 reduces proliferation and downregulates Akt/mTOR and MAPK pathways in K562 cells. Biochim Biophys Acta. 2011;1813:1404-11 pubmed publisher
  404. Urbanet R, Pilon C, Giorgino F, Vettor R, Fallo F. Insulin signaling in adipose tissue of patients with primary aldosteronism. J Endocrinol Invest. 2011;34:86-9 pubmed
  405. Witte K, Schuh A, Hegermann J, Sarkeshik A, Mayers J, Schwarze K, et al. TFG-1 function in protein secretion and oncogenesis. Nat Cell Biol. 2011;13:550-8 pubmed publisher
  406. Chang J, Adams M, Clifton M, Liao M, Brooks J, Hasdemir B, et al. Urocortin 1 modulates immunosignaling in a rat model of colitis via corticotropin-releasing factor receptor 2. Am J Physiol Gastrointest Liver Physiol. 2011;300:G884-94 pubmed publisher
  407. Modi H, Li L, Chu S, Rossi J, Yee J, Bhatia R. Inhibition of Grb2 expression demonstrates an important role in BCR-ABL-mediated MAPK activation and transformation of primary human hematopoietic cells. Leukemia. 2011;25:305-12 pubmed publisher
  408. Grassian A, Schafer Z, Brugge J. ErbB2 stabilizes epidermal growth factor receptor (EGFR) expression via Erk and Sprouty2 in extracellular matrix-detached cells. J Biol Chem. 2011;286:79-90 pubmed publisher
  409. Brusevold I, Husvik C, Schreurs O, Schenck K, Bryne M, Søland T. Induction of invasion in an organotypic oral cancer model by CoCl2, a hypoxia mimetic. Eur J Oral Sci. 2010;118:168-76 pubmed publisher
  410. Yang L, Zhang Q, Zhou C, Yang F, Zhang Y, Wang R, et al. Extranuclear estrogen receptors mediate the neuroprotective effects of estrogen in the rat hippocampus. PLoS ONE. 2010;5:e9851 pubmed publisher
  411. Lu Z, Cox Hipkin M, Windsor W, Boyapati A. 3-phosphoinositide-dependent protein kinase-1 regulates proliferation and survival of cancer cells with an activated mitogen-activated protein kinase pathway. Mol Cancer Res. 2010;8:421-32 pubmed publisher
  412. Musumeci G, Sciarretta C, Rodríguez Moreno A, Al Banchaabouchi M, Negrete Díaz V, Costanzi M, et al. TrkB modulates fear learning and amygdalar synaptic plasticity by specific docking sites. J Neurosci. 2009;29:10131-43 pubmed publisher
  413. Molad Y, Amit Vasina M, Bloch O, Yona E, Rapoport M. Increased ERK and JNK activities correlate with disease activity in patients with systemic lupus erythematosus. Ann Rheum Dis. 2010;69:175-80 pubmed publisher
  414. Bajova H, Nelson T, Gruol D. Chronic CXCL10 alters the level of activated ERK1/2 and transcriptional factors CREB and NF-kappaB in hippocampal neuronal cell culture. J Neuroimmunol. 2008;195:36-46 pubmed publisher
  415. Søland T, Husvik C, Koppang H, Boysen M, Sandvik L, Clausen O, et al. A study of phosphorylated ERK1/2 and COX-2 in early stage (T1-T2) oral squamous cell carcinomas. J Oral Pathol Med. 2008;37:535-42 pubmed publisher
  416. Rauh Adelmann C, Moskow J, Graham J, Yen L, Boucher J, Murphy C, et al. Quantitative measurement of epidermal growth factor receptor-mitogen-activated protein kinase signal transduction using a nine-plex, peptide-based immunoassay. Anal Biochem. 2008;375:255-64 pubmed publisher
  417. Klees R, Salasznyk R, Ward D, Crone D, Williams W, Harris M, et al. Dissection of the osteogenic effects of laminin-332 utilizing specific LG domains: LG3 induces osteogenic differentiation, but not mineralization. Exp Cell Res. 2008;314:763-73 pubmed publisher
  418. Lefloch R, Pouyssegur J, Lenormand P. Single and combined silencing of ERK1 and ERK2 reveals their positive contribution to growth signaling depending on their expression levels. Mol Cell Biol. 2008;28:511-27 pubmed
  419. Wu J, Jin Y, Calaf G, Huang W, Yin Y. PAC1 is a direct transcription target of E2F-1 in apoptotic signaling. Oncogene. 2007;26:6526-35 pubmed
  420. Zha Y, Marks R, Ho A, Peterson A, Janardhan S, Brown I, et al. T cell anergy is reversed by active Ras and is regulated by diacylglycerol kinase-alpha. Nat Immunol. 2006;7:1166-73 pubmed
  421. Salasznyk R, Klees R, Boskey A, Plopper G. Activation of FAK is necessary for the osteogenic differentiation of human mesenchymal stem cells on laminin-5. J Cell Biochem. 2007;100:499-514 pubmed
  422. Zhu M, Feng J, Lucchinetti E, Fischer G, Xu L, Pedrazzini T, et al. Ischemic postconditioning protects remodeled myocardium via the PI3K-PKB/Akt reperfusion injury salvage kinase pathway. Cardiovasc Res. 2006;72:152-62 pubmed
  423. Hao H, Schwaber J. Epidermal growth factor receptor induced Erk phosphorylation in the suprachiasmatic nucleus. Brain Res. 2006;1088:45-8 pubmed
  424. Carulli M, Ong V, Ponticos M, Shiwen X, Abraham D, Black C, et al. Chemokine receptor CCR2 expression by systemic sclerosis fibroblasts: evidence for autocrine regulation of myofibroblast differentiation. Arthritis Rheum. 2005;52:3772-82 pubmed
  425. Riemenschneider M, Mueller W, Betensky R, Mohapatra G, Louis D. In situ analysis of integrin and growth factor receptor signaling pathways in human glioblastomas suggests overlapping relationships with focal adhesion kinase activation. Am J Pathol. 2005;167:1379-87 pubmed
  426. Auger R, Motta I, Benihoud K, Ojcius D, Kanellopoulos J. A role for mitogen-activated protein kinase(Erk1/2) activation and non-selective pore formation in P2X7 receptor-mediated thymocyte death. J Biol Chem. 2005;280:28142-51 pubmed
  427. Lo I, Shih J, Jiang M. Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. J Biomed Sci. 2005;12:377-88 pubmed
  428. Tsai M, Jiang M. Extracellular signal-regulated kinase1/2 in contraction of vascular smooth muscle. Life Sci. 2005;76:877-88 pubmed
  429. Usui S, Sugimoto N, Takuwa N, Sakagami S, Takata S, Kaneko S, et al. Blood lipid mediator sphingosine 1-phosphate potently stimulates platelet-derived growth factor-A and -B chain expression through S1P1-Gi-Ras-MAPK-dependent induction of Kruppel-like factor 5. J Biol Chem. 2004;279:12300-11 pubmed
  430. Farnier C, Krief S, Blache M, Diot Dupuy F, Mory G, Ferre P, et al. Adipocyte functions are modulated by cell size change: potential involvement of an integrin/ERK signalling pathway. Int J Obes Relat Metab Disord. 2003;27:1178-86 pubmed
  431. Hernandez M, Barrero M, Crespo M, Nieto M. Lysophosphatidic acid inhibits Ca2+ signaling in response to epidermal growth factor receptor stimulation in human astrocytoma cells by a mechanism involving phospholipase C(gamma) and a G(alphai) protein. J Neurochem. 2000;75:1575-82 pubmed
  432. Chan E, Stang S, Bottorff D, Stone J. Hypothermic stress leads to activation of Ras-Erk signaling. J Clin Invest. 1999;103:1337-44 pubmed
  433. Korneyev A. Stress-induced tau phosphorylation in mouse strains with different brain Erk 1 + 2 immunoreactivity. Neurochem Res. 1998;23:1539-43 pubmed
  434. Webb C, Van Aelst L, Wigler M, Vande Woude G. Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc Natl Acad Sci U S A. 1998;95:8773-8 pubmed
  435. Duesbery N, Webb C, Leppla S, Gordon V, Klimpel K, Copeland T, et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science. 1998;280:734-7 pubmed
  436. Hidari K, Weyrich A, Zimmerman G, McEver R. Engagement of P-selectin glycoprotein ligand-1 enhances tyrosine phosphorylation and activates mitogen-activated protein kinases in human neutrophils. J Biol Chem. 1997;272:28750-6 pubmed