This is a Validated Antibody Database (VAD) review about human NKG2A, based on 41 published articles (read how Labome selects the articles), using NKG2A antibody in all methods. It is aimed to help Labome visitors find the most suited NKG2A antibody. Please note the number of articles fluctuates since newly identified citations are added and citations for discontinued catalog numbers are removed regularly.
NKG2A synonym: CD159A; NKG2; NKG2A

R&D Systems
mouse monoclonal (131411)
R&D Systems NKG2A antibody (R&D Systems, 131411) was used . Nat Commun (2020) ncbi
Miltenyi Biotec
human monoclonal (REA110)
  • flow cytometry; human; loading ...; fig 7g
Miltenyi Biotec NKG2A antibody (Miltenyi Biotec, REA110) was used in flow cytometry on human samples (fig 7g). J Exp Med (2020) ncbi
Beckman Coulter
mouse monoclonal (Z199)
  • flow cytometry; human; loading ...
Beckman Coulter NKG2A antibody (Beckman Coulter, Z199) was used in flow cytometry on human samples . elife (2020) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human; 1:100; loading ...; fig 2a
Beckman Coulter NKG2A antibody (Beckman Coulter, A60797) was used in flow cytometry on human samples at 1:100 (fig 2a). elife (2020) ncbi
mouse monoclonal (Z199)
  • flow cytometry; African green monkey; loading ...; fig s3d
Beckman Coulter NKG2A antibody (Beckman Coulter, A60797) was used in flow cytometry on African green monkey samples (fig s3d). PLoS Pathog (2020) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human; loading ...; fig 2a
Beckman Coulter NKG2A antibody (Beckman Coulter, Z199) was used in flow cytometry on human samples (fig 2a). Front Immunol (2019) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human; loading ...; fig 5c
Beckman Coulter NKG2A antibody (Beckman Coulter, A60797) was used in flow cytometry on human samples (fig 5c). Cell (2018) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human; loading ...; tbl s1
Beckman Coulter NKG2A antibody (Beckman-Coulter, Z199) was used in flow cytometry on human samples (tbl s1). Proc Natl Acad Sci U S A (2018) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human; loading ...; fig s2c
Beckman Coulter NKG2A antibody (Beckman Coulter, Z199) was used in flow cytometry on human samples (fig s2c). J Infect Dis (2019) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human; loading ...; fig 2b
Beckman Coulter NKG2A antibody (Beckman Coulter, Z199) was used in flow cytometry on human samples (fig 2b). Front Immunol (2018) ncbi
mouse monoclonal (Z199)
  • flow cytometry; rhesus macaque; fig 1b
Beckman Coulter NKG2A antibody (Beckman Coulter, Z199) was used in flow cytometry on rhesus macaque samples (fig 1b). AIDS (2018) ncbi
mouse monoclonal (Z199)
  • immunocytochemistry; African green monkey; loading ...; fig s9d
Beckman Coulter NKG2A antibody (Beckman Coulter, COIM2750) was used in immunocytochemistry on African green monkey samples (fig s9d). J Clin Invest (2018) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human; loading ...; fig 3a
Beckman Coulter NKG2A antibody (Beckman Coulter, z199) was used in flow cytometry on human samples (fig 3a). Cancer Immunol Res (2018) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human; loading ...; fig s1
Beckman Coulter NKG2A antibody (Beckman Coulter, Z199) was used in flow cytometry on human samples (fig s1). Eur J Immunol (2018) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human; fig 2
In order to study the involvement of Notch signaling in NK cell lineage determination, Beckman Coulter NKG2A antibody (Beckman Coulter, Z199) was used in flow cytometry on human samples (fig 2). J Immunol (2017) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human; loading ...; fig 3c
Beckman Coulter NKG2A antibody (Beckman Coulter, Z199) was used in flow cytometry on human samples (fig 3c). Immun Ageing (2017) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human; loading ...; fig 1a
Beckman Coulter NKG2A antibody (Beckman Coulter, Z199) was used in flow cytometry on human samples (fig 1a). PLoS ONE (2016) ncbi
mouse monoclonal (Z199)
  • flow cytometry; rhesus macaque; loading ...; fig 1a
Beckman Coulter NKG2A antibody (Beckman Coulter, Z199) was used in flow cytometry on rhesus macaque samples (fig 1a). Front Immunol (2016) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human; loading ...; fig 4d
Beckman Coulter NKG2A antibody (Beckman&Coulter, Z199) was used in flow cytometry on human samples (fig 4d). J Clin Invest (2016) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human; loading ...; fig 1c
Beckman Coulter NKG2A antibody (Beckman-Coulter, Z199) was used in flow cytometry on human samples (fig 1c). J Immunol (2016) ncbi
mouse monoclonal (Z199)
  • flow cytometry; rhesus macaque; loading ...; fig 4b
In order to report the effect of IL-15 inhibition on T and natural killer cell dynamics in rhesus macaques, Beckman Coulter NKG2A antibody (Beckman Coulter, Z199) was used in flow cytometry on rhesus macaque samples (fig 4b). J Immunol (2016) ncbi
mouse monoclonal (Z199)
  • flow cytometry; rhesus macaque; loading ...
In order to optimize vaccination with Aventis Pasteur's canarypox vector-HIV, Beckman Coulter NKG2A antibody (Beckman Coulter, PN A60797) was used in flow cytometry on rhesus macaque samples . Nat Med (2016) ncbi
mouse monoclonal (Z199)
  • flow cytometry; African green monkey; loading ...; fig 2a
In order to discuss the use of flow cytometry to examine common marmosets, Beckman Coulter NKG2A antibody (Beckman Coulter, Z 199.1) was used in flow cytometry on African green monkey samples (fig 2a). J Med Primatol (2016) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human; loading ...; fig 2a
Beckman Coulter NKG2A antibody (Beckman Coulter, Z199) was used in flow cytometry on human samples (fig 2a). J Leukoc Biol (2016) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human; loading ...
In order to examine if pregnancy-related changes in disease activity are associated with changes in T cell populations, Beckman Coulter NKG2A antibody (Beckman Coulter, Z199) was used in flow cytometry on human samples . Arthritis Res Ther (2016) ncbi
mouse monoclonal (Z199)
  • flow cytometry; rhesus macaque; loading ...; fig 5a
In order to investigate the effects of microbial products on the liver, Beckman Coulter NKG2A antibody (Beckman-Coulter, Z199) was used in flow cytometry on rhesus macaque samples (fig 5a). J Infect Dis (2016) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human; fig 6
In order to investigate the dynamics and characteristics of natural killer cell types in the human ocular mucosal surface in situ during infection with group D human adenoviruses, Beckman Coulter NKG2A antibody (Beckman, Z199) was used in flow cytometry on human samples (fig 6). Mucosal Immunol (2016) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human
Beckman Coulter NKG2A antibody (Beckman Coulter, Z199) was used in flow cytometry on human samples . J Immunol (2015) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human; fig 2
Beckman Coulter NKG2A antibody (Beckman Coulter, Z199) was used in flow cytometry on human samples (fig 2). J Immunol (2015) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human; tbl s5
In order to investigate when Vgamma9Vdelta2 T cells develop, Beckman Coulter NKG2A antibody (Beckman Coulter, Z199) was used in flow cytometry on human samples (tbl s5). Proc Natl Acad Sci U S A (2015) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human
Beckman Coulter NKG2A antibody (Beckman Coulter, Z199) was used in flow cytometry on human samples . Arthritis Rheumatol (2015) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human
Beckman Coulter NKG2A antibody (Beckman Coulter, Z199) was used in flow cytometry on human samples . J Immunol (2014) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human
Beckman Coulter NKG2A antibody (Beckman, Z199) was used in flow cytometry on human samples . Clin Cancer Res (2014) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human
Beckman Coulter NKG2A antibody (Beckman Coulter, Z199) was used in flow cytometry on human samples . Cytotherapy (2015) ncbi
mouse monoclonal (Z199)
  • flow cytometry; African green monkey; fig s1
Beckman Coulter NKG2A antibody (Coulter, Z199) was used in flow cytometry on African green monkey samples (fig s1). PLoS Pathog (2014) ncbi
mouse monoclonal (Z199)
  • blocking or activating experiments; human
Beckman Coulter NKG2A antibody (Beckman Coulter, Z199) was used in blocking or activating experiments on human samples . EMBO J (2014) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human
Beckman Coulter NKG2A antibody (Beckman Coulter, clone z199) was used in flow cytometry on human samples . Mol Ther (2014) ncbi
mouse monoclonal (Z199)
  • flow cytometry; chimpanzee
In order to study the in vitro response of gammadelta T-cell subsets from HIV1-infected and control chimpanzees to T-cell activators, Beckman Coulter NKG2A antibody (Beckman Coulter, Z199) was used in flow cytometry on chimpanzee samples . J Med Primatol (2014) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human; fig 3
In order to assess how invariant natural killer T cells distribute, differentiate, and function in fetal peripheral lymphoid and non-lymphoid organs, Beckman Coulter NKG2A antibody (Beckman Coulter, Z199) was used in flow cytometry on human samples (fig 3). Mucosal Immunol (2014) ncbi
mouse monoclonal (Z199)
  • flow cytometry; African green monkey; loading ...; fig 9
Beckman Coulter NKG2A antibody (Beckman Coulter, Z199) was used in flow cytometry on African green monkey samples (fig 9). J Immunol (2014) ncbi
mouse monoclonal (Z199)
  • flow cytometry; human
Beckman Coulter NKG2A antibody (Beckman-Coulter, Z199) was used in flow cytometry on human samples . J Infect Dis (2014) ncbi
Articles Reviewed
  1. Tseng H, Xiong W, Badeti S, Yang Y, Ma M, Liu T, et al. Efficacy of anti-CD147 chimeric antigen receptors targeting hepatocellular carcinoma. Nat Commun. 2020;11:4810 pubmed publisher
  2. Hood S, Cosma G, Foulds G, Johnson C, Reeder S, McArdle S, et al. Identifying prostate cancer and its clinical risk in asymptomatic men using machine learning of high dimensional peripheral blood flow cytometric natural killer cell subset phenotyping data. elife. 2020;9: pubmed publisher
  3. Bennstein S, Weinhold S, Manser A, Scherenschlich N, Noll A, Raba K, et al. Umbilical cord blood-derived ILC1-like cells constitute a novel precursor for mature KIR+NKG2A- NK cells. elife. 2020;9: pubmed publisher
  4. Beziat V, Tavernier S, Chen Y, Ma C, Materna M, Laurence A, et al. Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome. J Exp Med. 2020;217: pubmed publisher
  5. Raehtz K, Barrenas F, Xu C, Busman Sahay K, Valentine A, Law L, et al. African green monkeys avoid SIV disease progression by preventing intestinal dysfunction and maintaining mucosal barrier integrity. PLoS Pathog. 2020;16:e1008333 pubmed publisher
  6. Ingegnere T, Mariotti F, Pelosi A, Quintarelli C, De Angelis B, Tumino N, et al. Human CAR NK Cells: A New Non-viral Method Allowing High Efficient Transfection and Strong Tumor Cell Killing. Front Immunol. 2019;10:957 pubmed publisher
  7. Andre P, Denis C, Soulas C, Bourbon Caillet C, Lopez J, Arnoux T, et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell. 2018;175:1731-1743.e13 pubmed publisher
  8. Dias J, Boulouis C, Gorin J, van den Biggelaar R, Lal K, Gibbs A, et al. The CD4-CD8- MAIT cell subpopulation is a functionally distinct subset developmentally related to the main CD8+ MAIT cell pool. Proc Natl Acad Sci U S A. 2018;115:E11513-E11522 pubmed publisher
  9. van Erp E, Feyaerts D, Duijst M, Mulder H, Wicht O, Luytjes W, et al. Respiratory Syncytial Virus Infects Primary Neonatal and Adult Natural Killer Cells and Affects Their Antiviral Effector Function. J Infect Dis. 2019;219:723-733 pubmed publisher
  10. Mahaweni N, Ehlers F, Sarkar S, Janssen J, Tilanus M, Bos G, et al. NKG2A Expression Is Not per se Detrimental for the Anti-Multiple Myeloma Activity of Activated Natural Killer Cells in an In Vitro System Mimicking the Tumor Microenvironment. Front Immunol. 2018;9:1415 pubmed publisher
  11. Manickam C, Nwanze C, Ram D, Shah S, Smith S, Jones R, et al. Progressive lentivirus infection induces natural killer cell receptor-expressing B cells in the gastrointestinal tract. AIDS. 2018;32:1571-1578 pubmed publisher
  12. Ferrando Martinez S, Moysi E, Pegu A, Andrews S, Nganou Makamdop K, Ambrozak D, et al. Accumulation of follicular CD8+ T cells in pathogenic SIV infection. J Clin Invest. 2018;128:2089-2103 pubmed publisher
  13. Oei V, Siernicka M, Graczyk Jarzynka A, Hoel H, Yang W, Palacios D, et al. Intrinsic Functional Potential of NK-Cell Subsets Constrains Retargeting Driven by Chimeric Antigen Receptors. Cancer Immunol Res. 2018;6:467-480 pubmed publisher
  14. Chan Y, Zuo J, Inman C, Croft W, Begum J, Croudace J, et al. NK cells produce high levels of IL-10 early after allogeneic stem cell transplantation and suppress development of acute GVHD. Eur J Immunol. 2018;48:316-329 pubmed publisher
  15. Kyoizumi S, Kubo Y, Kajimura J, Yoshida K, Hayashi T, Nakachi K, et al. Fate Decision Between Group 3 Innate Lymphoid and Conventional NK Cell Lineages by Notch Signaling in Human Circulating Hematopoietic Progenitors. J Immunol. 2017;199:2777-2793 pubmed publisher
  16. van der Geest K, Wang Q, Eijsvogels T, Koenen H, Joosten I, Brouwer E, et al. Changes in peripheral immune cell numbers and functions in octogenarian walkers - an acute exercise study. Immun Ageing. 2017;14:5 pubmed publisher
  17. Isitman G, Tremblay McLean A, Lisovsky I, Bruneau J, Lebouché B, Routy J, et al. NK Cells Expressing the Inhibitory Killer Immunoglobulin-Like Receptors (iKIR) KIR2DL1, KIR2DL3 and KIR3DL1 Are Less Likely to Be CD16+ than Their iKIR Negative Counterparts. PLoS ONE. 2016;11:e0164517 pubmed publisher
  18. Vargas Inchaustegui D, Ying O, Demberg T, Robert Guroff M. Evaluation of Functional NK Cell Responses in Vaccinated and SIV-Infected Rhesus Macaques. Front Immunol. 2016;7:340 pubmed publisher
  19. Landtwing V, Raykova A, Pezzino G, Beziat V, Marcenaro E, Graf C, et al. Cognate HLA absence in trans diminishes human NK cell education. J Clin Invest. 2016;126:3772-3782 pubmed publisher
  20. Hervier B, Perez M, Allenbach Y, Devilliers H, Cohen F, Uzunhan Y, et al. Involvement of NK Cells and NKp30 Pathway in Antisynthetase Syndrome. J Immunol. 2016;197:1621-30 pubmed publisher
  21. DeGottardi M, Okoye A, Vaidya M, Talla A, Konfe A, Reyes M, et al. Effect of Anti-IL-15 Administration on T Cell and NK Cell Homeostasis in Rhesus Macaques. J Immunol. 2016;197:1183-98 pubmed publisher
  22. Vaccari M, Gordon S, Fourati S, Schifanella L, Liyanage N, Cameron M, et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nat Med. 2016;22:762-70 pubmed publisher
  23. Neumann B, Shi T, Gan L, Klippert A, Daskalaki M, Stolte Leeb N, et al. Comprehensive panel of cross-reacting monoclonal antibodies for analysis of different immune cells and their distribution in the common marmoset (Callithrix jacchus). J Med Primatol. 2016;45:139-46 pubmed publisher
  24. Rettman P, Willem C, David G, Riou R, Legrand N, Esbelin J, et al. New insights on the natural killer cell repertoire from a thorough analysis of cord blood cells. J Leukoc Biol. 2016;100:471-9 pubmed publisher
  25. Tham M, Schlör G, Yerly D, Mueller C, Surbek D, Villiger P, et al. Reduced pro-inflammatory profile of γδT cells in pregnant patients with rheumatoid arthritis. Arthritis Res Ther. 2016;18:26 pubmed publisher
  26. Evans T, Li H, Schafer J, Klatt N, Hao X, Traslavina R, et al. SIV-induced Translocation of Bacterial Products in the Liver Mobilizes Myeloid Dendritic and Natural Killer Cells Associated With Liver Damage. J Infect Dis. 2016;213:361-9 pubmed publisher
  27. Yawata N, Selva K, Liu Y, Tan K, Lee A, Siak J, et al. Dynamic change in natural killer cell type in the human ocular mucosa in situ as means of immune evasion by adenovirus infection. Mucosal Immunol. 2016;9:159-70 pubmed publisher
  28. Zhou J, Amran F, Kramski M, Angelovich T, Elliott J, Hearps A, et al. An NK Cell Population Lacking FcRγ Is Expanded in Chronically Infected HIV Patients. J Immunol. 2015;194:4688-97 pubmed publisher
  29. Marquardt N, Béziat V, Nyström S, Hengst J, Ivarsson M, Kekäläinen E, et al. Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J Immunol. 2015;194:2467-71 pubmed publisher
  30. Dimova T, Brouwer M, Gosselin F, Tassignon J, Leo O, Donner C, et al. Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. Proc Natl Acad Sci U S A. 2015;112:E556-65 pubmed publisher
  31. Hagberg N, Theorell J, Hjorton K, Spee P, Eloranta M, Bryceson Y, et al. Functional anti-CD94/NKG2A and anti-CD94/NKG2C autoantibodies in patients with systemic lupus erythematosus. Arthritis Rheumatol. 2015;67:1000-11 pubmed publisher
  32. Lim D, Yawata N, Selva K, Li N, Tsai C, Yeong L, et al. The combination of type I IFN, TNF-α, and cell surface receptor engagement with dendritic cells enables NK cells to overcome immune evasion by dengue virus. J Immunol. 2014;193:5065-75 pubmed publisher
  33. Sullivan E, Jeha S, Kang G, Cheng C, Rooney B, Holladay M, et al. NK cell genotype and phenotype at diagnosis of acute lymphoblastic leukemia correlate with postinduction residual disease. Clin Cancer Res. 2014;20:5986-94 pubmed publisher
  34. Alnabhan R, Madrigal A, Saudemont A. Differential activation of cord blood and peripheral blood natural killer cells by cytokines. Cytotherapy. 2015;17:73-85 pubmed publisher
  35. Jacquelin B, Petitjean G, Kunkel D, Liovat A, Jochems S, Rogers K, et al. Innate immune responses and rapid control of inflammation in African green monkeys treated or not with interferon-alpha during primary SIVagm infection. PLoS Pathog. 2014;10:e1004241 pubmed publisher
  36. Celis Gutierrez J, Boyron M, Walzer T, Pandolfi P, Jonjic S, Olive D, et al. Dok1 and Dok2 proteins regulate natural killer cell development and function. EMBO J. 2014;33:1928-40 pubmed publisher
  37. Ito S, Bollard C, Carlsten M, Melenhorst J, Biancotto A, Wang E, et al. Ultra-low dose interleukin-2 promotes immune-modulating function of regulatory T cells and natural killer cells in healthy volunteers. Mol Ther. 2014;22:1388-1395 pubmed publisher
  38. Hodara V, Parodi L, Chavez D, Smith L, Lanford R, Giavedoni L. Characterization of ??T cells in naïve and HIV-infected chimpanzees and their responses to T-cell activators in vitro. J Med Primatol. 2014;43:258-71 pubmed publisher
  39. Loh L, Ivarsson M, Michaelsson J, Sandberg J, Nixon D. Invariant natural killer T cells developing in the human fetus accumulate and mature in the small intestine. Mucosal Immunol. 2014;7:1233-43 pubmed publisher
  40. Trist H, Tan P, Wines B, Ramsland P, Orlowski E, Stubbs J, et al. Polymorphisms and interspecies differences of the activating and inhibitory Fc?RII of Macaca nemestrina influence the binding of human IgG subclasses. J Immunol. 2014;192:792-803 pubmed publisher
  41. Cairo C, Longinaker N, Cappelli G, Leke R, Ondo M, Djokam R, et al. Cord blood V?2V?2 T cells provide a molecular marker for the influence of pregnancy-associated malaria on neonatal immunity. J Infect Dis. 2014;209:1653-62 pubmed publisher