This is a Validated Antibody Database (VAD) review about human KRT10, based on 144 published articles (read how Labome selects the articles), using KRT10 antibody in all methods. It is aimed to help Labome visitors find the most suited KRT10 antibody. Please note the number of articles fluctuates since newly identified citations are added and citations for discontinued catalog numbers are removed regularly.
KRT10 synonym: BCIE; BIE; CK10; EHK; K10; KPP

Knockout validation
Progen
mouse monoclonal (DE-K10)
  • immunohistochemistry knockout validation; mouse; 1:10; fig 1
  • western blot knockout validation; mouse; 1:10; fig 1
Progen KRT10 antibody (Progen, DE-K10) was used in immunohistochemistry knockout validation on mouse samples at 1:10 (fig 1) and in western blot knockout validation on mouse samples at 1:10 (fig 1). J Cell Sci (2012) ncbi
Invitrogen
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; mouse; 1:500; loading ...; fig 2b
Invitrogen KRT10 antibody (Lab Vision, MS-343-P) was used in immunohistochemistry - paraffin section on mouse samples at 1:500 (fig 2b). Sci Adv (2021) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; loading ...; fig 4a
Invitrogen KRT10 antibody (eBioscience, AE1/AE3) was used in immunohistochemistry - paraffin section on human samples (fig 4a). Proc Natl Acad Sci U S A (2020) ncbi
mouse monoclonal (DE-K10)
  • immunohistochemistry - paraffin section; human; 1:100; loading ...; fig 4e
Invitrogen KRT10 antibody (Invitrogen, MA5-13705) was used in immunohistochemistry - paraffin section on human samples at 1:100 (fig 4e). Biomolecules (2020) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; rhesus macaque; 0.2 ug/ml; loading ...; fig 4g
Invitrogen KRT10 antibody (Thermo Fisher, 41-9003-82) was used in immunohistochemistry - paraffin section on rhesus macaque samples at 0.2 ug/ml (fig 4g). Science (2020) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:500; loading ...; fig 1a
Invitrogen KRT10 antibody (eBioscience, 53-9003-80) was used in immunohistochemistry - paraffin section on human samples at 1:500 (fig 1a). Nat Cell Biol (2020) ncbi
mouse monoclonal (AE1/AE3)
  • immunocytochemistry; human; fig 4, 5
Invitrogen KRT10 antibody (eBioscience, AE1/AE3) was used in immunocytochemistry on human samples (fig 4, 5). Breast Cancer Res (2019) ncbi
mouse monoclonal (RKSE60)
  • immunohistochemistry; dogs; loading ...; fig 5a
Invitrogen KRT10 antibody (Thermo Fisher, RKSE60) was used in immunohistochemistry on dogs samples (fig 5a). J Histochem Cytochem (2019) ncbi
mouse monoclonal (PAN-CK)
  • immunocytochemistry; human; loading ...; fig s1b
In order to study the suppressive effect of DNAJB6 and Hsp70 on alpha-synuclein aggregation, Invitrogen KRT10 antibody (Thermo Fischer, MA5-13203) was used in immunocytochemistry on human samples (fig s1b). Sci Rep (2017) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:150; loading ...; tbl 2
In order to describe the differences between Xp11 translocation renal cell carcinoma and the corresponding mesenchymal neoplasm, Invitrogen KRT10 antibody (Zymed, AE1/AE3) was used in immunohistochemistry - paraffin section on human samples at 1:150 (tbl 2). Hum Pathol (2017) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry; human; loading ...; fig 3d
In order to discuss a case of mixed adenoneuroendocrine carcinoma of stomach with tubular adenoma and well-differentiated neuroendocrine tumor in the primary tumor in the stomach, Invitrogen KRT10 antibody (Thermo Scientific, AE1-AE3) was used in immunohistochemistry on human samples (fig 3d). Case Rep Pathol (2016) ncbi
mouse monoclonal (34betaE12)
  • immunohistochemistry - paraffin section; human; 1:100; tbl 2
In order to use MAML2 staining to distinguish cases of hyalinizing clear cell carcinoma from mucoepidermoid carcinoma, Invitrogen KRT10 antibody (Thermo Scientific, 34betaE12) was used in immunohistochemistry - paraffin section on human samples at 1:100 (tbl 2). Hum Pathol (2017) ncbi
mouse monoclonal (PAN-CK)
  • immunocytochemistry; mouse; loading ...; fig 3c
  • western blot; mouse; loading ...; fig 3d
In order to identify keratin-associated protein 5-5 as a driver of endothelial monolayer invasion, Invitrogen KRT10 antibody (Thermo Scientific, MA5-13203) was used in immunocytochemistry on mouse samples (fig 3c) and in western blot on mouse samples (fig 3d). Oncogene (2017) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; loading ...; fig 5b
In order to investigate inflammatory responses present at the breast cancer biopsy wound site, Invitrogen KRT10 antibody (Thermo Scientific, AE1/AE3) was used in immunohistochemistry - paraffin section on human samples (fig 5b). Breast Cancer Res Treat (2016) ncbi
mouse monoclonal (AE1/AE3)
  • immunocytochemistry; human; 1:50; fig 1
In order to analyze the induction of apoptosis in ovarian stromal cells obtained from cryopreserved human ovarian tissue by cisplatin and doxorubicin, Invitrogen KRT10 antibody (ThermoFisher Scientific, MA5-13156) was used in immunocytochemistry on human samples at 1:50 (fig 1). Future Oncol (2016) ncbi
mouse monoclonal (RKSE60)
  • immunohistochemistry - frozen section; mouse; 1:1000
In order to identify factors that regulate epidermal spreading, Invitrogen KRT10 antibody (Thermo, MAI-06319) was used in immunohistochemistry - frozen section on mouse samples at 1:1000. J Cell Sci (2016) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; fig s3
In order to test if the operating room environment contains human skin bacteria that could be seeding C-section born infants, Invitrogen KRT10 antibody (Molecular Probes, 985542A) was used in immunohistochemistry - paraffin section on human samples (fig s3). Microbiome (2015) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry; human; fig s3
In order to determine how sensitivity is restored in resistant ovarian cancer cells by targeting the Ras-MAPK pathway by miR-634, Invitrogen KRT10 antibody (Neomarkers, MS-343-P) was used in immunohistochemistry on human samples (fig s3). Mol Cancer (2015) ncbi
mouse monoclonal (PAN-CK)
  • immunohistochemistry - paraffin section; mouse; fig 4
In order to describe functionally enriched ES cell transgenics, Invitrogen KRT10 antibody (Thermo Scientific, MA5-13203) was used in immunohistochemistry - paraffin section on mouse samples (fig 4). Sci Rep (2015) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:50; fig 3
In order to determine the desmoplastic interface in xenograft tumor in mice comprised of stromal and endothelial cells, Invitrogen KRT10 antibody (Zymed, AE1/AE3) was used in immunohistochemistry - paraffin section on human samples at 1:50 (fig 3). Pathol Res Pract (2015) ncbi
mouse monoclonal (AE1/AE3)
  • immunocytochemistry; mouse; 1:100; loading ...; tbl 2
In order to investigate if conditioned medium from proliferating fibroblasts induce a subset of hematopoietic cells to become adherent fibroblast-like cells, Invitrogen KRT10 antibody (eBioscience, 41-9003) was used in immunocytochemistry on mouse samples at 1:100 (tbl 2). J Cell Physiol (2016) ncbi
mouse monoclonal (DE-K10)
  • immunohistochemistry - paraffin section; mouse; 1:400; fig 5
In order to discuss Cx26 knockout in DMBA-induced mouse models and breast cancer, Invitrogen KRT10 antibody (Thermo Fisher Scientific, MS-611-P1) was used in immunohistochemistry - paraffin section on mouse samples at 1:400 (fig 5). Oncotarget (2015) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry; human; tbl 2
In order to study a northern New England hospital and increased utilization, verification, and clinical implications of immunocytochemistry, Invitrogen KRT10 antibody (Thermo Scientific, AE1/AE3) was used in immunohistochemistry on human samples (tbl 2). Diagn Cytopathol (2015) ncbi
mouse monoclonal (AE1/AE3)
  • immunocytochemistry; carp
In order to establish and characterize a new cell line generated from the caudal fin tissue of ornamental common carp, Invitrogen KRT10 antibody (Life Technologies, MA5-13156) was used in immunocytochemistry on carp samples . In Vitro Cell Dev Biol Anim (2015) ncbi
mouse monoclonal (AE1/AE3)
  • flow cytometry; human
  • immunocytochemistry; human; 1 ul
Invitrogen KRT10 antibody (eBioscience, 53-9003-82) was used in flow cytometry on human samples and in immunocytochemistry on human samples at 1 ul. Nanomedicine (2015) ncbi
mouse monoclonal (DE-K10)
  • immunohistochemistry - paraffin section; domestic horse; 1:100; fig 1
  • western blot; domestic horse; 1:1000; fig 2
In order to characterize localization and expression of epithelial stem cell and differentiation markers in equine eye, hoof, and skin, Invitrogen KRT10 antibody (Thermo Scientific, DE-K10) was used in immunohistochemistry - paraffin section on domestic horse samples at 1:100 (fig 1) and in western blot on domestic horse samples at 1:1000 (fig 2). Vet Dermatol (2015) ncbi
mouse monoclonal (C11)
  • western blot; human; 1:1000
In order to develop an immunofluorescence method to assess MCT1 and MCT4 in circulating tumor cells and as them as biomarkers of AZD3965 in cancer patients, Invitrogen KRT10 antibody (Thermo Scientific, 4545) was used in western blot on human samples at 1:1000. BMC Cancer (2015) ncbi
mouse monoclonal (PAN-CK)
  • western blot; human
In order to study the impact of TNF-alpha and IL-1beta on the inflammatory phenotype of cancer-associated fibroblasts and mesenchymal stem/stromal cells, Invitrogen KRT10 antibody (Thermo Fisher Scientific, MA5-13203) was used in western blot on human samples . Stem Cell Res Ther (2015) ncbi
mouse monoclonal (AE1/AE3)
In order to generate and characterize a thymic cell line derived from Channa striatus, Invitrogen KRT10 antibody (Invitrogen, AE1/AE3) was used . In Vitro Cell Dev Biol Anim (2015) ncbi
mouse monoclonal (DE-K10)
  • immunohistochemistry; human; 1:100
In order to develop a 3D human skin equivalent containing blood and lymph-like capillary networks, Invitrogen KRT10 antibody (NeoMarkers, MS611P1) was used in immunohistochemistry on human samples at 1:100. J Biomed Mater Res A (2015) ncbi
mouse monoclonal (DE-K10)
  • immunohistochemistry - paraffin section; human; fig 2b
In order to use an in vitro three dimensional human organotypic skin tissue model to examine the effects of low doses of high linear energy transfer oxygen, silicon, and iron ions, Invitrogen KRT10 antibody (Thermo Fisher, DE-K10) was used in immunohistochemistry - paraffin section on human samples (fig 2b). Mutat Res (2015) ncbi
mouse monoclonal (AE1/AE3)
  • immunocytochemistry; domestic horse; 1:100
In order to discuss using induced pluripotent stem cells to promote wound healing in various animals, Invitrogen KRT10 antibody (Fisher Scientific, MA1-82041) was used in immunocytochemistry on domestic horse samples at 1:100. Equine Vet J (2016) ncbi
mouse monoclonal (DE-K10)
  • immunohistochemistry - paraffin section; human; 1:100
Invitrogen KRT10 antibody (Labvision, DE-K10) was used in immunohistochemistry - paraffin section on human samples at 1:100. Cell Tissue Res (2015) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 10-20 ug/ml
In order to identify biomarkers for nasopharyngeal carcinoma, Invitrogen KRT10 antibody (Lab.Vision, Ab-1) was used in immunohistochemistry - paraffin section on human samples at 10-20 ug/ml. Asian Pac J Cancer Prev (2015) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; mouse; 1:100; fig s6
In order to study how redox-dependent senescence is induced by fumarate to modify glutathione metabolism, Invitrogen KRT10 antibody (Thermo, MS-34) was used in immunohistochemistry - paraffin section on mouse samples at 1:100 (fig s6). Nat Commun (2015) ncbi
mouse monoclonal (AE1)
  • immunohistochemistry - paraffin section; mouse; 1:100; fig s6
In order to study how redox-dependent senescence is induced by fumarate to modify glutathione metabolism, Invitrogen KRT10 antibody (Thermo, MS-34) was used in immunohistochemistry - paraffin section on mouse samples at 1:100 (fig s6). Nat Commun (2015) ncbi
mouse monoclonal (AE1/AE3)
  • flow cytometry; zebrafish ; 1:100; fig 5
In order to report that mice and zebrafish exposed to high-fat or high-cholesterol diets develop acute innate inflammatory responses in the intestine, Invitrogen KRT10 antibody (Thermo Fisher Scientific, MA1-82041) was used in flow cytometry on zebrafish samples at 1:100 (fig 5). Nat Commun (2014) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; mouse; 1:200; fig 5
In order to determine the link between cell cycle control and proliferative potential of epidermal progenitor cells by the carboxy-terminus of p63, Invitrogen KRT10 antibody (ThermoFisher Scientific, AE1/AE3) was used in immunohistochemistry - paraffin section on mouse samples at 1:200 (fig 5). Development (2015) ncbi
mouse monoclonal (AE-1)
  • immunohistochemistry; human; ready-to-use
In order to describe a tumor from a patient with oncocytic cystadenoma, Invitrogen KRT10 antibody (Thermo Scientific, AE1) was used in immunohistochemistry on human samples at ready-to-use. Medicine (Baltimore) (2014) ncbi
mouse monoclonal (AE1)
  • immunohistochemistry; human; ready-to-use
In order to describe a tumor from a patient with oncocytic cystadenoma, Invitrogen KRT10 antibody (Thermo Scientific, AE1) was used in immunohistochemistry on human samples at ready-to-use. Medicine (Baltimore) (2014) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:100
In order to assess the prognostic value of immunohistochemical markers in nonhuman primates, Invitrogen KRT10 antibody (Neo Markers, MS343) was used in immunohistochemistry - paraffin section on human samples at 1:100. Comp Med (2014) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:200; fig 3
In order to study juxtacrine signaling from macrophages and monocytes and a breast cancer stem cell niche, Invitrogen KRT10 antibody (eBioscience, 53-9003-80) was used in immunohistochemistry - paraffin section on human samples at 1:200 (fig 3). Nat Cell Biol (2014) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:100
Invitrogen KRT10 antibody (Zymed, AE1/AE3) was used in immunohistochemistry - paraffin section on human samples at 1:100. Hum Pathol (2014) ncbi
mouse monoclonal (34betaE12)
  • immunohistochemistry - paraffin section; human; 1:50
In order to describe two cases of trichilemmal carcinoma, Invitrogen KRT10 antibody (Thermo Fisher Scientific, 34betaE12) was used in immunohistochemistry - paraffin section on human samples at 1:50. Rom J Morphol Embryol (2014) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:100
Invitrogen KRT10 antibody (Thermo Fisher Scientific, AE1/AE3) was used in immunohistochemistry - paraffin section on human samples at 1:100. Rom J Morphol Embryol (2014) ncbi
mouse monoclonal (DE-K10)
  • western blot; human; 1:200
In order to investigate the role of delta-opioid receptor in human keratinocytes, Invitrogen KRT10 antibody (Thermo Fisher Scientific, MS-611) was used in western blot on human samples at 1:200. J Invest Dermatol (2015) ncbi
mouse monoclonal (AE1/AE3)
  • immunocytochemistry; human
In order to determine the role of myofibroblasts in salivary gland adenoid cystic carcinoma invasiveness, Invitrogen KRT10 antibody (Invitrogen, AE1/AE3) was used in immunocytochemistry on human samples . Histopathology (2015) ncbi
mouse monoclonal (DE-K10)
  • immunohistochemistry; human; fig 1
In order to establish an in vitro system to study three-dimensional corneal differentiation, Invitrogen KRT10 antibody (Thermo Fisher Scientific, MS611P0) was used in immunohistochemistry on human samples (fig 1). Nature (2014) ncbi
mouse monoclonal (DE-K10)
  • immunohistochemistry - paraffin section; human; 1:600; tbl 3
In order to analyze LRIG3 expression through immunohistochemical studies in cervical intraepithelial neoplasia and invasive squamous cell cervical cancer and the association with tumor markers, hormones, high-risk HPV infection, smoking, and patient outcome, Invitrogen KRT10 antibody (Lab Vision/Neo Markers, MS-611) was used in immunohistochemistry - paraffin section on human samples at 1:600 (tbl 3). Eur J Histochem (2014) ncbi
mouse monoclonal (DE-K10)
  • immunocytochemistry; human; 1:200; fig 6
In order to characterize primary, non-transformed breast epithelial cells by immunohistochemistry, flow cytometry, and in vitro cell culture, Invitrogen KRT10 antibody (Thermo Scientific, DE-K10) was used in immunocytochemistry on human samples at 1:200 (fig 6). BMC Cell Biol (2014) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry; human
In order to test if computed tomography-lymphography distinguishes sentinel nodes from non-sentinel nodes in patients with breast cancer, Invitrogen KRT10 antibody (Thermo, AE1/AE3) was used in immunohistochemistry on human samples . BMC Med Imaging (2013) ncbi
mouse monoclonal (AE1/AE3)
  • immunocytochemistry; human
Invitrogen KRT10 antibody (Thermo Fisher, AE1/AE3) was used in immunocytochemistry on human samples . Biomed Mater (2013) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human
In order to determine the predictive criteria of the size of nodal metastases with superparamagnetic iron oxide-enhanced MR imaging in breast cancer, Invitrogen KRT10 antibody (Thermoelectron, AE1/AE3) was used in immunohistochemistry - paraffin section on human samples . BMC Med Imaging (2013) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:100; tbl 2
In order to report the clinicopathological features of 9 breast malignant fibrous histiocytoma patients, Invitrogen KRT10 antibody (Invitrogen, AE1/AE3) was used in immunohistochemistry - paraffin section on human samples at 1:100 (tbl 2). Sci Rep (2013) ncbi
mouse monoclonal (AE1/AE3)
  • immunocytochemistry; human; 1:100; fig 1
Invitrogen KRT10 antibody (eBioscience, AE1/AE3) was used in immunocytochemistry on human samples at 1:100 (fig 1). PLoS ONE (2013) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry; human; tbl 1
In order to characterize a case of malignant ossifying fibromyxoid tumor in the tongue, Invitrogen KRT10 antibody (Invitrogen, AE1/AE3) was used in immunohistochemistry on human samples (tbl 1). Head Face Med (2013) ncbi
mouse monoclonal (DE-K10)
In order to study the effects of conditional epidermal knockout of HDAC-1 and -2 on murine ectodermal organ morphogenesis, Invitrogen KRT10 antibody (Lab Vision, MS-611) was used . J Invest Dermatol (2014) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry; human; 1:200; fig 4
In order to present the third case of thymoma and the second invasive thymoma to metastasize to the cavernous sinus and adjacent to the pituitary, Invitrogen KRT10 antibody (Zymed, AE1-AE3) was used in immunohistochemistry on human samples at 1:200 (fig 4). Surg Neurol Int (2013) ncbi
mouse monoclonal (DE-K10)
  • immunocytochemistry; human; 1:100; fig 6
In order to describe conditions that promote development of hPSC-derived simple epithelial cells, Invitrogen KRT10 antibody (Thermo Scientific, MS-611-P0) was used in immunocytochemistry on human samples at 1:100 (fig 6). PLoS ONE (2013) ncbi
mouse monoclonal (DE-K10)
  • immunocytochemistry; human
In order to develop a telomerase-imortalized human primary gingival epithelial cell line, Invitrogen KRT10 antibody (Thermo Scientific, DE-K10) was used in immunocytochemistry on human samples . J Periodontal Res (2013) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry; human; fig 2
In order to present a case of not otherwise specified-type sarcoma with CD10 expression in the left breast, Invitrogen KRT10 antibody (Invitrogen, AE1/AE3) was used in immunohistochemistry on human samples (fig 2). Diagn Pathol (2013) ncbi
mouse monoclonal (AE1/AE3)
  • immunocytochemistry; Atlantic salmon; 1:50; fig 2
In order to study cell tropism of infectious salmon anemia virus, Invitrogen KRT10 antibody (Invitrogen, AE1/AE3) was used in immunocytochemistry on Atlantic salmon samples at 1:50 (fig 2). Virol J (2013) ncbi
mouse monoclonal (DE-K10)
  • immunohistochemistry; human; 1:200
In order to study the role of the long non-coding RNA TINCR in somatic cell differentiation, Invitrogen KRT10 antibody (Neomarkers, MS-611-P) was used in immunohistochemistry on human samples at 1:200. Nature (2013) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:100
In order to review features of choroid plexus carcinoma, Invitrogen KRT10 antibody (Invitrogen, AE1/AE3) was used in immunohistochemistry - paraffin section on human samples at 1:100. Med Sci Monit (2012) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; mouse
In order to investigate the positioning of taste buds in circumvallate papilla and branching morphogenesis of von Ebners' gland in tongue development, Invitrogen KRT10 antibody (Thermo Scientific, MS-343) was used in immunohistochemistry - paraffin section on mouse samples . Anat Cell Biol (2011) ncbi
mouse monoclonal (C-11)
  • immunohistochemistry - paraffin section; human; 1:100
  • immunocytochemistry; human; 1:100
In order to investigate epithelial to mesenchymal transition during metastasis of pancreatic cancer, Invitrogen KRT10 antibody (Labvision, MS-149) was used in immunohistochemistry - paraffin section on human samples at 1:100 and in immunocytochemistry on human samples at 1:100. Br J Cancer (2012) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:200
In order to examine the suitability of PAXgene tissue fixation for (immuno)histological methods, Invitrogen KRT10 antibody (Neomarkers, MS 343-P) was used in immunohistochemistry - paraffin section on human samples at 1:200. PLoS ONE (2011) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry; human; 0.4 ug/ul; fig 1
In order to develop an in vitro model for experimental studies of cancer cell invasion, Invitrogen KRT10 antibody (NeoMarkers, MS-343) was used in immunohistochemistry on human samples at 0.4 ug/ul (fig 1). Eur J Oral Sci (2010) ncbi
mouse monoclonal (DE-K10)
  • immunohistochemistry - paraffin section; human; 1:600; tbl 1
In order to study tissue tumor marker expression in smokers with cervical intraepithelial neoplasia or normal squamous cervical epithelium, Invitrogen KRT10 antibody (Lab Vision, MS-611) was used in immunohistochemistry - paraffin section on human samples at 1:600 (tbl 1). Am J Obstet Gynecol (2010) ncbi
mouse monoclonal (AE1)
  • immunohistochemistry - paraffin section; human; 1:300; tbl 2
In order to characterize feline endometrial adenocarcinomas immunohistochemically, Invitrogen KRT10 antibody (Zymed, AE1) was used in immunohistochemistry - paraffin section on human samples at 1:300 (tbl 2). J Comp Pathol (2009) ncbi
mouse monoclonal (AE-1)
  • immunohistochemistry - paraffin section; human; 1:300; tbl 2
In order to characterize feline endometrial adenocarcinomas immunohistochemically, Invitrogen KRT10 antibody (Zymed, AE1) was used in immunohistochemistry - paraffin section on human samples at 1:300 (tbl 2). J Comp Pathol (2009) ncbi
mouse monoclonal (C-11)
  • western blot; mouse
In order to develop and characterize a murine model to study enterotoxigenic Bacteroides fragilis infection, Invitrogen KRT10 antibody (Invitrogen, C-11) was used in western blot on mouse samples . Infect Immun (2009) ncbi
mouse monoclonal (C11)
  • western blot; mouse
In order to develop and characterize a murine model to study enterotoxigenic Bacteroides fragilis infection, Invitrogen KRT10 antibody (Invitrogen, C-11) was used in western blot on mouse samples . Infect Immun (2009) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:200
In order to discuss the morphological diversity of glioblastomas, Invitrogen KRT10 antibody (Zymed, AE1/AE3) was used in immunohistochemistry - paraffin section on human samples at 1:200. Cancer (2008) ncbi
mouse monoclonal (AE1/AE3)
  • western blot; human; fig 5
In order to investigate the effect of COX-2 overexpression on inhibiting proliferation, apoptosis and differentiation, Invitrogen KRT10 antibody (Lab Vision, MS-343-P) was used in western blot on human samples (fig 5). Int J Cancer (2005) ncbi
mouse monoclonal (C11)
  • western blot; mouse
In order to study the role of keratins in modulating cFlip and ERK1/2 apoptotic signaling in epithelial cells, Invitrogen KRT10 antibody (NeoMarkers, C-11) was used in western blot on mouse samples . Mol Cell Biol (2004) ncbi
mouse monoclonal (C-11)
  • western blot; mouse
In order to study the role of keratins in modulating cFlip and ERK1/2 apoptotic signaling in epithelial cells, Invitrogen KRT10 antibody (NeoMarkers, C-11) was used in western blot on mouse samples . Mol Cell Biol (2004) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:80; tbl 1
In order to describe four cases of oncocytic adrenocortical carcinomas, Invitrogen KRT10 antibody (Zymed, AE1/AE3) was used in immunohistochemistry - paraffin section on human samples at 1:80 (tbl 1). Pathol Int (2004) ncbi
mouse monoclonal (AE1/AE3)
  • western blot; human; 1:1000; fig 2
In order to study how cell-matrix interactions influence the invasive behavior of a novel, primary peritoneal carcinosarcoma cell line, Invitrogen KRT10 antibody (Zymed, AE1/AE3) was used in western blot on human samples at 1:1000 (fig 2). Gynecol Oncol (2003) ncbi
Santa Cruz Biotechnology
mouse monoclonal (AE1/AE3)
  • immunohistochemistry; dogs; 1:200; loading ...; fig 4c
Santa Cruz Biotechnology KRT10 antibody (Santa Cruz Biotech, AE1/AE3) was used in immunohistochemistry on dogs samples at 1:200 (fig 4c). Animals (Basel) (2021) ncbi
mouse monoclonal (RKSE60)
  • immunohistochemistry; mouse; loading ...; fig 3a
Santa Cruz Biotechnology KRT10 antibody (Santa Cruz Biotechnology, sc-23877) was used in immunohistochemistry on mouse samples (fig 3a). Cell Death Differ (2020) ncbi
mouse monoclonal (D-12)
  • immunohistochemistry - frozen section; human; loading ...; fig 1j
Santa Cruz Biotechnology KRT10 antibody (Santa Cruz, sc-17843) was used in immunohistochemistry - frozen section on human samples (fig 1j). Oncogene (2019) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; loading ...; fig 1d
Santa Cruz Biotechnology KRT10 antibody (Santa, sc81714) was used in immunohistochemistry - paraffin section on human samples (fig 1d). Br J Cancer (2019) ncbi
mouse monoclonal (RKSE60)
  • immunohistochemistry - paraffin section; mouse; 1:50; loading ...; fig 4e
Santa Cruz Biotechnology KRT10 antibody (Santa Cruz Biotechnology Inc, sc-23877) was used in immunohistochemistry - paraffin section on mouse samples at 1:50 (fig 4e). Cell Death Dis (2018) ncbi
mouse monoclonal (4A27)
  • immunohistochemistry - paraffin section; mouse; 1:500; loading ...; fig 3b
  • western blot; mouse; 1:500; loading ...; fig s5c
Santa Cruz Biotechnology KRT10 antibody (Santa, SC-70907) was used in immunohistochemistry - paraffin section on mouse samples at 1:500 (fig 3b) and in western blot on mouse samples at 1:500 (fig s5c). Nat Med (2018) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; mouse; loading ...; fig 9a
Santa Cruz Biotechnology KRT10 antibody (SantaCruz, AE1/AE3) was used in immunohistochemistry - paraffin section on mouse samples (fig 9a). Histochem Cell Biol (2017) ncbi
mouse monoclonal (C11)
  • western blot; human; loading ...; fig 3b
Santa Cruz Biotechnology KRT10 antibody (SantaCruz, sc-8018) was used in western blot on human samples (fig 3b). Eur J Pharmacol (2017) ncbi
mouse monoclonal (LH2)
  • western blot; human; loading ...; fig 4a
Santa Cruz Biotechnology KRT10 antibody (Santa Cruz, sc-53252) was used in western blot on human samples (fig 4a). Exp Mol Med (2017) ncbi
mouse monoclonal (DE-K10)
  • western blot; human; loading ...; fig 1c
In order to determine that HPV activates the Fanconi anemia pathway, leading to the accumulation of a key regulatory protein, FANCD2, in large nuclear foci, Santa Cruz Biotechnology KRT10 antibody (Santa Cruz, sc52318) was used in western blot on human samples (fig 1c). MBio (2017) ncbi
mouse monoclonal (VIK-10)
  • immunohistochemistry - paraffin section; human; loading ...; fig 2e
In order to examine calcium-regulating protein expression in the plaques of patients with psoriasis vulgaris with or without joint inflammation, Santa Cruz Biotechnology KRT10 antibody (Santa Cruz, sc-51581) was used in immunohistochemistry - paraffin section on human samples (fig 2e). Int J Mol Med (2016) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:500; loading ...; fig 7a
In order to assess the potential of combining biodegradable poly-L-lactide/poly-ethylene glycol scaffolds and human amniotic mesenchymal cells for repairing urethral defects, Santa Cruz Biotechnology KRT10 antibody (Santa Cruz, sc-81714) was used in immunohistochemistry - paraffin section on human samples at 1:500 (fig 7a). Int J Mol Sci (2016) ncbi
mouse monoclonal (RKSE60)
  • immunohistochemistry - paraffin section; mouse; 1:250; fig 4C
Santa Cruz Biotechnology KRT10 antibody (Santa Cruz, sc-23877) was used in immunohistochemistry - paraffin section on mouse samples at 1:250 (fig 4C). Stem Cell Res Ther (2016) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; mouse; 1:100; fig 1
In order to learn the requirement for epithelial cell fate decision in the lower mullerian duct by FGFR2IIIb-MAPK activity, Santa Cruz Biotechnology KRT10 antibody (Santa Cruz, sc-81714) was used in immunohistochemistry - paraffin section on mouse samples at 1:100 (fig 1). Mol Endocrinol (2016) ncbi
mouse monoclonal (C11)
  • immunohistochemistry - frozen section; human; fig 2
  • western blot; human; fig 1
Santa Cruz Biotechnology KRT10 antibody (Santa Cruz, sc-8018) was used in immunohistochemistry - frozen section on human samples (fig 2) and in western blot on human samples (fig 1). PLoS ONE (2016) ncbi
mouse monoclonal (C11)
  • immunocytochemistry; rat; 1:10; fig 3
Santa Cruz Biotechnology KRT10 antibody (Santa Cruz, sc-8018) was used in immunocytochemistry on rat samples at 1:10 (fig 3). Front Physiol (2016) ncbi
mouse monoclonal (C11)
  • immunohistochemistry - paraffin section; mouse; loading ...; fig 1d
Santa Cruz Biotechnology KRT10 antibody (Santa Cruz, sc-8018) was used in immunohistochemistry - paraffin section on mouse samples (fig 1d). Int J Biol Sci (2016) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry; human; 1:500; fig 2
Santa Cruz Biotechnology KRT10 antibody (Santa Cruz Biotechnology, sc-81714) was used in immunohistochemistry on human samples at 1:500 (fig 2). BMC Cancer (2016) ncbi
mouse monoclonal (C11)
  • immunocytochemistry; rat; 1:50; fig 6
In order to develop a bioreactor to culture polarized respiratory epithelium, Santa Cruz Biotechnology KRT10 antibody (Santa Cruz Biotechnology, sc-8018) was used in immunocytochemistry on rat samples at 1:50 (fig 6). Cell Med (2015) ncbi
mouse monoclonal (DE-K13)
  • immunocytochemistry; human; 1:400; loading ...; fig 3f
In order to optimize conditions to generate human pluripotent stem cell-derived limbal epithelial stem cells, Santa Cruz Biotechnology KRT10 antibody (Santa Cruz, sc-6258) was used in immunocytochemistry on human samples at 1:400 (fig 3f). Exp Eye Res (2016) ncbi
mouse monoclonal (C11)
  • western blot; human; fig s1
Santa Cruz Biotechnology KRT10 antibody (Santa, sc-8018) was used in western blot on human samples (fig s1). PLoS ONE (2015) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - frozen section; human; 1:50
  • western blot; human; 1:100
Santa Cruz Biotechnology KRT10 antibody (Santa, AE1/AE3) was used in immunohistochemistry - frozen section on human samples at 1:50 and in western blot on human samples at 1:100. PLoS ONE (2015) ncbi
mouse monoclonal (RKSE60)
  • immunohistochemistry; human; 1:100
In order to investigate the role of opioid receptor delta in skin differentiation and barrier function repair, Santa Cruz Biotechnology KRT10 antibody (Santa-Cruz, SC-23877) was used in immunohistochemistry on human samples at 1:100. Int J Cosmet Sci (2015) ncbi
mouse monoclonal (LH2)
  • immunocytochemistry; human; fig 4
  • western blot; human; fig 4
Santa Cruz Biotechnology KRT10 antibody (Santa Cruz, sc-53252) was used in immunocytochemistry on human samples (fig 4) and in western blot on human samples (fig 4). J Biol Chem (2015) ncbi
mouse monoclonal (AE1/AE3)
  • immunocytochemistry; human
Santa Cruz Biotechnology KRT10 antibody (Santa Cruz, sc-81714) was used in immunocytochemistry on human samples . Breast Cancer Res (2014) ncbi
mouse monoclonal (RKSE60)
  • immunohistochemistry - frozen section; human; 1:100; fig 4
Santa Cruz Biotechnology KRT10 antibody (Santa Cruz, SC-23877) was used in immunohistochemistry - frozen section on human samples at 1:100 (fig 4). PLoS ONE (2014) ncbi
mouse monoclonal (AE1/AE3)
  • immunocytochemistry; human
Santa Cruz Biotechnology KRT10 antibody (Santa-Cruz, sc-81714) was used in immunocytochemistry on human samples . Acta Naturae (2014) ncbi
mouse monoclonal (C11)
  • western blot; human; 1:1000
In order to develop and characterize a novel three-dimensional cell culture model of ovarian endometriosis, Santa Cruz Biotechnology KRT10 antibody (Santa, sc-8018) was used in western blot on human samples at 1:1000. J Ovarian Res (2014) ncbi
Abcam
domestic rabbit monoclonal (EP1607IHCY)
  • western blot; human; 1:3000; loading ...; fig 4b
  • immunohistochemistry - paraffin section; mouse; 1:3000; loading ...; fig 3c
  • western blot; mouse; 1:3000; loading ...; fig 4a
Abcam KRT10 antibody (Abcam, ab76318) was used in western blot on human samples at 1:3000 (fig 4b), in immunohistochemistry - paraffin section on mouse samples at 1:3000 (fig 3c) and in western blot on mouse samples at 1:3000 (fig 4a). Biomol Ther (Seoul) (2019) ncbi
domestic rabbit monoclonal (EP1607IHCY)
  • immunohistochemistry - frozen section; mouse; 1:200; loading ...; fig 5b
Abcam KRT10 antibody (Abcam, ab76318) was used in immunohistochemistry - frozen section on mouse samples at 1:200 (fig 5b). Stem Cell Res Ther (2019) ncbi
domestic rabbit monoclonal (EP1607IHCY)
  • immunohistochemistry - frozen section; mouse; fig 3l
  • western blot; human; 1:2000; fig 6j
Abcam KRT10 antibody (Abcam, ab76318) was used in immunohistochemistry - frozen section on mouse samples (fig 3l) and in western blot on human samples at 1:2000 (fig 6j). Sci Rep (2018) ncbi
domestic rabbit monoclonal (EP1607IHCY)
  • flow cytometry; rat; loading ...; fig 1
Abcam KRT10 antibody (Abcam, ab76318) was used in flow cytometry on rat samples (fig 1). Am J Transl Res (2016) ncbi
domestic rabbit polyclonal
  • immunohistochemistry - paraffin section; human; 1:200; fig 2
  • western blot; human; 1:1000; fig 5
Abcam KRT10 antibody (Abcam, ab111447) was used in immunohistochemistry - paraffin section on human samples at 1:200 (fig 2) and in western blot on human samples at 1:1000 (fig 5). Int J Mol Med (2016) ncbi
domestic rabbit monoclonal (EP1607IHCY)
  • immunohistochemistry - frozen section; mouse; 1:100; fig 1
Abcam KRT10 antibody (Abcam, ab76318) was used in immunohistochemistry - frozen section on mouse samples at 1:100 (fig 1). J Cell Biol (2016) ncbi
Dako
mouse monoclonal (DE-K10)
  • immunohistochemistry; human; 1:100; loading ...
Dako KRT10 antibody (Dako, M7002) was used in immunohistochemistry on human samples at 1:100. Dev Cell (2020) ncbi
mouse monoclonal (DE-K10)
  • immunocytochemistry; dogs; 1:100; tbl 5
In order to establish canine mammary tissue derived cell lines and study claudin expression, Dako KRT10 antibody (Dako, DE-K10) was used in immunocytochemistry on dogs samples at 1:100 (tbl 5). Int J Mol Sci (2016) ncbi
mouse monoclonal (DE-K10)
  • immunohistochemistry; human; loading ...; fig 2b
In order to investigate the effects of manufacturing protocols and donor sources on the quality of skin models generated from fibroblasts and keratinocytes derived from juvenile foreskins, Dako KRT10 antibody (Dako, M7002) was used in immunohistochemistry on human samples (fig 2b). Biotechnol J (2016) ncbi
mouse monoclonal (DE-K10)
  • immunohistochemistry - paraffin section; human; 1:400; fig 1
In order to investigate evidence for two distinct pathogenetic pathways by studing the squamous cell carcinoma of the oral cavity and cytokeratin and protein expression patterns, Dako KRT10 antibody (Dako, M7002) was used in immunohistochemistry - paraffin section on human samples at 1:400 (fig 1). Oncol Lett (2016) ncbi
mouse monoclonal (DE-K10)
  • immunohistochemistry - paraffin section; human; 1:50
Dako KRT10 antibody (DAKO, DE-k10) was used in immunohistochemistry - paraffin section on human samples at 1:50. Br J Cancer (2013) ncbi
Biogenex
mouse monoclonal (AE1)
  • immunohistochemistry - paraffin section; zebrafish ; 1:100; loading ...; fig 2
Biogenex KRT10 antibody (BioGenex, AE1) was used in immunohistochemistry - paraffin section on zebrafish samples at 1:100 (fig 2). J Histochem Cytochem (2019) ncbi
mouse monoclonal (AE1)
  • immunohistochemistry - paraffin section; human
In order to investigate the clinical and pathological features in a girl with common variable immunodeficiency, Biogenex KRT10 antibody (BioGenex, AE1) was used in immunohistochemistry - paraffin section on human samples . Int J Surg Pathol (2014) ncbi
Progen
mouse monoclonal (DE-K10)
  • immunohistochemistry knockout validation; mouse; 1:10; fig 1
  • western blot knockout validation; mouse; 1:10; fig 1
Progen KRT10 antibody (Progen, DE-K10) was used in immunohistochemistry knockout validation on mouse samples at 1:10 (fig 1) and in western blot knockout validation on mouse samples at 1:10 (fig 1). J Cell Sci (2012) ncbi
MilliporeSigma
mouse monoclonal (C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • immunohistochemistry - paraffin section; mouse; 1:500; loading ...; fig 2h
MilliporeSigma KRT10 antibody (Sigma-Aldrich, C2562) was used in immunohistochemistry - paraffin section on mouse samples at 1:500 (fig 2h). J Clin Invest (2021) ncbi
mouse monoclonal (C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • immunohistochemistry - paraffin section; human; 1:500; loading ...; fig 1a
MilliporeSigma KRT10 antibody (Sigma, C2562) was used in immunohistochemistry - paraffin section on human samples at 1:500 (fig 1a). Cancer Immunol Immunother (2020) ncbi
mouse monoclonal (C-11)
  • immunohistochemistry; human; loading ...; fig 7a
MilliporeSigma KRT10 antibody (Sigma, C2931) was used in immunohistochemistry on human samples (fig 7a). Cell Rep (2018) ncbi
mouse monoclonal (C-11)
  • immunohistochemistry - frozen section; mouse; loading ...; fig 2a
MilliporeSigma KRT10 antibody (Sigma, C-11) was used in immunohistochemistry - frozen section on mouse samples (fig 2a). PLoS ONE (2018) ncbi
mouse monoclonal (C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • immunohistochemistry; mouse; 1:50; fig 3a
MilliporeSigma KRT10 antibody (Sigma-Aldrich, C2562) was used in immunohistochemistry on mouse samples at 1:50 (fig 3a). Science (2018) ncbi
mouse monoclonal (C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • immunohistochemistry - frozen section; mouse; 1:500; fig s4a
In order to discover that myoepithelial cells born early during submucosal gland morphogenesis are multipotent progenitors with the capacity to differentiate into other glandular cell types, MilliporeSigma KRT10 antibody (Sigma-Aldrich, C2562) was used in immunohistochemistry - frozen section on mouse samples at 1:500 (fig s4a). Am J Respir Cell Mol Biol (2017) ncbi
mouse monoclonal (C-11)
  • immunocytochemistry; human; 1:100; loading ...; fig 6a
In order to discuss the relevance of vasculogenic mimicry in small cell lung cancer, MilliporeSigma KRT10 antibody (Sigma, C-11) was used in immunocytochemistry on human samples at 1:100 (fig 6a). Nat Commun (2016) ncbi
mouse monoclonal (C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • immunohistochemistry - paraffin section; mouse; fig 6
In order to study the role of Tsc2 in normal and pathological kidney and lung functions, MilliporeSigma KRT10 antibody (Sigma, C2562) was used in immunohistochemistry - paraffin section on mouse samples (fig 6). Am J Pathol (2016) ncbi
mouse monoclonal (C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • immunohistochemistry - paraffin section; human; 1:500; loading ...; fig 2a
In order to test if metastasis can be reduced by targeting cancer-associated fibroblasts with Pirfenidone, MilliporeSigma KRT10 antibody (Sigma, C2562) was used in immunohistochemistry - paraffin section on human samples at 1:500 (fig 2a). Oncotarget (2016) ncbi
mouse monoclonal (C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • immunohistochemistry - paraffin section; human; loading ...; fig s5a
In order to study how tumor hypoxia affects DNA methylation, MilliporeSigma KRT10 antibody (Sigma, C2562) was used in immunohistochemistry - paraffin section on human samples (fig s5a). Nature (2016) ncbi
mouse monoclonal (C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • immunohistochemistry - paraffin section; pigs ; 1:100; loading ...; fig 5h
In order to build and characterize a novel bioreactor platform, MilliporeSigma KRT10 antibody (Sigma, C2562) was used in immunohistochemistry - paraffin section on pigs samples at 1:100 (fig 5h). Biotechnol J (2017) ncbi
mouse monoclonal (C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • immunohistochemistry; mouse; 1:200
In order to investigate the roles of NF2, LATS1/2, and YAP in the branching morphogenesis of the mouse kidney, MilliporeSigma KRT10 antibody (Sigma, C2562) was used in immunohistochemistry on mouse samples at 1:200. Nat Commun (2016) ncbi
mouse monoclonal (C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • immunohistochemistry; human; loading ...; fig 2b
MilliporeSigma KRT10 antibody (Sigma, c2562) was used in immunohistochemistry on human samples (fig 2b). Nat Biotechnol (2016) ncbi
mouse monoclonal (C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • immunocytochemistry; human; 1:200; fig 5
MilliporeSigma KRT10 antibody (Sigma, C2562) was used in immunocytochemistry on human samples at 1:200 (fig 5). BMC Biol (2016) ncbi
mouse monoclonal (C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • immunohistochemistry; human; 1:4000; tbl 2
In order to measure the extent of squamous metaplasia in bronchial biopsies and correlate it to the presence of chronic obstructive pulmonary disease, MilliporeSigma KRT10 antibody (Sigma, C2562) was used in immunohistochemistry on human samples at 1:4000 (tbl 2). PLoS ONE (2016) ncbi
mouse monoclonal (C-11)
  • western blot; human; 1:1000; fig 1
MilliporeSigma KRT10 antibody (Sigma, C-2931) was used in western blot on human samples at 1:1000 (fig 1). PLoS ONE (2016) ncbi
mouse monoclonal (C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • immunocytochemistry; mouse; fig 2
In order to characterize induction of lactation-specific tight junctions concurrent with beta-casein expression in mammary epithelial cells due to prolactin and glucocorticoid signaling, MilliporeSigma KRT10 antibody (Sigma, C2562) was used in immunocytochemistry on mouse samples (fig 2). Biochim Biophys Acta (2016) ncbi
mouse monoclonal (C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • immunocytochemistry; mouse; 1:100; fig 2
In order to study a model of immune functions of the mouse blood-cerebrospinal fluid barrier in vitro using primary epithelial cells better suited to study immune cell migration across the brain barrier, MilliporeSigma KRT10 antibody (Sigma, C2562) was used in immunocytochemistry on mouse samples at 1:100 (fig 2). Fluids Barriers CNS (2016) ncbi
mouse monoclonal (C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • immunohistochemistry - paraffin section; human; 1:400; fig 2
MilliporeSigma KRT10 antibody (Sigma, C2562) was used in immunohistochemistry - paraffin section on human samples at 1:400 (fig 2). Clin Cancer Res (2016) ncbi
mouse monoclonal (C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • immunocytochemistry; mouse
MilliporeSigma KRT10 antibody (Sigma, C2562) was used in immunocytochemistry on mouse samples . PLoS ONE (2015) ncbi
mouse monoclonal (C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • immunohistochemistry; mouse; 1:800; fig 5
MilliporeSigma KRT10 antibody (Sigma, C2562) was used in immunohistochemistry on mouse samples at 1:800 (fig 5). Dis Model Mech (2015) ncbi
mouse monoclonal (C-11)
  • western blot; rat
In order to characterize two new cell lines with the potential to be used to study portal (myo)fibroblasts, MilliporeSigma KRT10 antibody (Sigma-Aldrich, clone C-11) was used in western blot on rat samples . PLoS ONE (2015) ncbi
mouse monoclonal (C-11)
  • immunocytochemistry; domestic sheep; 10 ug/ml; loading ...
In order to study the reprogramming of ovine induced pluripotent stem cells, MilliporeSigma KRT10 antibody (Sigma, C2931) was used in immunocytochemistry on domestic sheep samples at 10 ug/ml. Cell Reprogram (2015) ncbi
mouse monoclonal (C-11)
  • immunocytochemistry; Xenopus laevis
MilliporeSigma KRT10 antibody (Sigma, C2931) was used in immunocytochemistry on Xenopus laevis samples . Zygote (2015) ncbi
mouse monoclonal (C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • immunohistochemistry - paraffin section; human; 1:2000
In order to develop and validate a mouse model of endometriosis, MilliporeSigma KRT10 antibody (Sigma-Aldrich, #C2562) was used in immunohistochemistry - paraffin section on human samples at 1:2000. Am J Pathol (2014) ncbi
mouse monoclonal (C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • western blot; rat
MilliporeSigma KRT10 antibody (Sigma, C2562) was used in western blot on rat samples . Carcinogenesis (2014) ncbi
mouse monoclonal (C-11)
  • immunohistochemistry - paraffin section; domestic rabbit; 1:100
MilliporeSigma KRT10 antibody (Sigma-Aldrich, C-11) was used in immunohistochemistry - paraffin section on domestic rabbit samples at 1:100. Biomaterials (2014) ncbi
mouse monoclonal (C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • western blot; human; 1:10000
  • western blot; pigs
MilliporeSigma KRT10 antibody (Sigma-Aldrich, C 2562) was used in western blot on human samples at 1:10000 and in western blot on pigs samples . Mol Oncol (2014) ncbi
mouse monoclonal (C-11)
  • immunohistochemistry - paraffin section; Gallot's lizard; 1:400
In order to study the histogenesis of the lizard visual system, MilliporeSigma KRT10 antibody (Sigma-Aldrich, C2931) was used in immunohistochemistry - paraffin section on Gallot's lizard samples at 1:400. J Comp Neurol (2012) ncbi
Articles Reviewed
  1. Barthet V, Brucoli M, Ladds M, Nössing C, Kiourtis C, Baudot A, et al. Autophagy suppresses the formation of hepatocyte-derived cancer-initiating ductular progenitor cells in the liver. Sci Adv. 2021;7: pubmed publisher
  2. Carter P, Schnell U, Chaney C, TONG B, Pan X, ye J, et al. Deletion of Lats1/2 in adult kidney epithelia leads to renal cell carcinoma. J Clin Invest. 2021;131: pubmed publisher
  3. Sfacteria A, Napoli E, Rifici C, Commisso D, Giambrone G, Mazzullo G, et al. Immune Cells and Immunoglobulin Expression in the Mammary Gland Tumors of Dog. Animals (Basel). 2021;11: pubmed publisher
  4. Biasci D, Smoragiewicz M, Connell C, Wang Z, Gao Y, Thaventhiran J, et al. CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response. Proc Natl Acad Sci U S A. 2020;117:28960-28970 pubmed publisher
  5. Ashcroft F, Mahammad N, Midtun Flatekvål H, Jullumstrø Feuerherm A, Johansen B. cPLA2α Enzyme Inhibition Attenuates Inflammation and Keratinocyte Proliferation. Biomolecules. 2020;10: pubmed publisher
  6. Dabelsteen S, Pallesen E, Marinova I, Nielsen M, Adamopoulou M, Rømer T, et al. Essential Functions of Glycans in Human Epithelia Dissected by a CRISPR-Cas9-Engineered Human Organotypic Skin Model. Dev Cell. 2020;54:669-684.e7 pubmed publisher
  7. Chandrashekar A, Liu J, Martinot A, McMahan K, Mercado N, Peter L, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020;: pubmed publisher
  8. Costanzo Garvey D, Keeley T, Case A, Watson G, Alsamraae M, Yu Y, et al. Neutrophils are mediators of metastatic prostate cancer progression in bone. Cancer Immunol Immunother. 2020;69:1113-1130 pubmed publisher
  9. Sanz Gómez N, de Pedro I, Ortigosa B, Santamaria D, Malumbres M, de Carcer G, et al. Squamous differentiation requires G2/mitosis slippage to avoid apoptosis. Cell Death Differ. 2020;27:2451-2467 pubmed publisher
  10. Gaglia G, Rashid R, Yapp C, Joshi G, Li C, Lindquist S, et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol. 2020;22:151-158 pubmed publisher
  11. Zhou Q, Wu X, Wang X, Yu Z, Pan T, Li Z, et al. The reciprocal interaction between tumor cells and activated fibroblasts mediated by TNF-α/IL-33/ST2L signaling promotes gastric cancer metastasis. Oncogene. 2019;: pubmed publisher
  12. Jeong H, Lim K, Goldenring J, Nam K. Rab25 Deficiency Perturbs Epidermal Differentiation and Skin Barrier Function in Mice. Biomol Ther (Seoul). 2019;27:553-561 pubmed publisher
  13. Ramani V, Lemaire C, Triboulet M, Casey K, Heirich K, Renier C, et al. Investigating circulating tumor cells and distant metastases in patient-derived orthotopic xenograft models of triple-negative breast cancer. Breast Cancer Res. 2019;21:98 pubmed publisher
  14. Capulli M, Hristova D, Valbret Z, Carys K, Arjan R, Maurizi A, et al. Notch2 pathway mediates breast cancer cellular dormancy and mobilisation in bone and contributes to haematopoietic stem cell mimicry. Br J Cancer. 2019;121:157-171 pubmed publisher
  15. Zhou H, Wang L, Zhang C, Hu J, Chen J, Du W, et al. Feasibility of repairing full-thickness skin defects by iPSC-derived epithelial stem cells seeded on a human acellular amniotic membrane. Stem Cell Res Ther. 2019;10:155 pubmed publisher
  16. Schulz A, Brendler J, Blaschuk O, Landgraf K, Krueger M, Ricken A. Non-pathological Chondrogenic Features of Valve Interstitial Cells in Normal Adult Zebrafish. J Histochem Cytochem. 2019;67:361-373 pubmed publisher
  17. Barros Silva J, Linn D, Steiner I, Guo G, Ali A, Pakula H, et al. Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and Cancer. Cell Rep. 2018;25:3504-3518.e6 pubmed publisher
  18. Goldie S, Cottle D, Tan F, Roslan S, Srivastava S, Brady R, et al. Loss of GRHL3 leads to TARC/CCL17-mediated keratinocyte proliferation in the epidermis. Cell Death Dis. 2018;9:1072 pubmed publisher
  19. Pin D, Pendaries V, Keita Alassane S, Froment C, Amalric N, Cadiergues M, et al. Refined Immunochemical Characterization in Healthy Dog Skin of the Epidermal Cornification Proteins, Filaggrin, and Corneodesmosin. J Histochem Cytochem. 2019;67:85-97 pubmed publisher
  20. Thyagarajan H, Lancaster J, Lira S, Ehrlich L. CCR8 is expressed by post-positive selection CD4-lineage thymocytes but is dispensable for central tolerance induction. PLoS ONE. 2018;13:e0200765 pubmed publisher
  21. Zhang Z, Zi Z, Lee E, Zhao J, Contreras D, South A, et al. Differential glucose requirement in skin homeostasis and injury identifies a therapeutic target for psoriasis. Nat Med. 2018;24:617-627 pubmed publisher
  22. Pereira E, Kedrin D, Seano G, Gautier O, Meijer E, Jones D, et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science. 2018;359:1403-1407 pubmed publisher
  23. Komori T, Ono M, Hara E, Ueda J, Nguyen H, Nguyen H, et al. Type IV collagen α6 chain is a regulator of keratin 10 in keratinization of oral mucosal epithelium. Sci Rep. 2018;8:2612 pubmed publisher
  24. Aprile F, Källstig E, Limorenko G, Vendruscolo M, Ron D, Hansen C. The molecular chaperones DNAJB6 and Hsp70 cooperate to suppress α-synuclein aggregation. Sci Rep. 2017;7:9039 pubmed publisher
  25. Katsumata O, Mori M, Sawane Y, Niimura T, Ito A, Okamoto H, et al. Cellular and subcellular localization of ADP-ribosylation factor 6 in mouse peripheral tissues. Histochem Cell Biol. 2017;148:577-596 pubmed publisher
  26. Wang X, Xia Q, Ni H, Ye S, Li R, Wang X, et al. SFPQ/PSF-TFE3 renal cell carcinoma: a clinicopathologic study emphasizing extended morphology and reviewing the differences between SFPQ-TFE3 RCC and the corresponding mesenchymal neoplasm despite an identical gene fusion. Hum Pathol. 2017;63:190-200 pubmed publisher
  27. Hennenberg M, Tamalunas A, Wang Y, Keller P, Schott M, Strittmatter F, et al. Inhibition of agonist-induced smooth muscle contraction by picotamide in the male human lower urinary tract outflow region. Eur J Pharmacol. 2017;803:39-47 pubmed publisher
  28. Seo G, Lim Y, Koh D, Huh J, Hyun C, Kim Y, et al. TMF and glycitin act synergistically on keratinocytes and fibroblasts to promote wound healing and anti-scarring activity. Exp Mol Med. 2017;49:e302 pubmed publisher
  29. Spriggs C, Laimins L. FANCD2 Binds Human Papillomavirus Genomes and Associates with a Distinct Set of DNA Repair Proteins to Regulate Viral Replication. MBio. 2017;8: pubmed publisher
  30. Anderson P, Lynch T, Engelhardt J. Multipotent Myoepithelial Progenitor Cells Are Born Early during Airway Submucosal Gland Development. Am J Respir Cell Mol Biol. 2017;56:716-726 pubmed publisher
  31. Zhu J, Wang P, Yu Z, Lai W, Cao Y, Huang P, et al. Advanced glycosylation end product promotes forkhead box O1 and inhibits Wnt pathway to suppress capacities of epidermal stem cells. Am J Transl Res. 2016;8:5569-5579 pubmed
  32. De Luca Johnson J, Zenali M. A Previously Undescribed Presentation of Mixed Adenoneuroendocrine Carcinoma. Case Rep Pathol. 2016;2016:9063634 pubmed
  33. Williamson S, Metcalf R, Trapani F, Mohan S, Antonello J, Abbott B, et al. Vasculogenic mimicry in small cell lung cancer. Nat Commun. 2016;7:13322 pubmed publisher
  34. Hsieh M, Wang H, Lee Y, Ko J, Chang Y. Reevaluation of MAML2 fusion-negative mucoepidermoid carcinoma: a subgroup being actually hyalinizing clear cell carcinoma of the salivary gland with EWSR1 translocation. Hum Pathol. 2017;61:9-18 pubmed publisher
  35. Ren S, Luo Y, Chen H, Warburton D, Lam H, Wang L, et al. Inactivation of Tsc2 in Mesoderm-Derived Cells Causes Polycystic Kidney Lesions and Impairs Lung Alveolarization. Am J Pathol. 2016;186:3261-3272 pubmed publisher
  36. Takai K, Le A, Weaver V, Werb Z. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget. 2016;7:82889-82901 pubmed publisher
  37. Hammer S, Becker A, Rateitschak K, Mohr A, Lüder Ripoli F, Hennecke S, et al. Longitudinal Claudin Gene Expression Analyses in Canine Mammary Tissues and Thereof Derived Primary Cultures and Cell Lines. Int J Mol Sci. 2016;17: pubmed
  38. Lange J, Weil F, Riegler C, Groeber F, Rebhan S, Kurdyn S, et al. Interactions of donor sources and media influence the histo-morphological quality of full-thickness skin models. Biotechnol J. 2016;11:1352-1361 pubmed publisher
  39. Cubillos S, Norgauer J. Low vitamin D-modulated calcium-regulating proteins in psoriasis vulgaris plaques: S100A7 overexpression depends on joint involvement. Int J Mol Med. 2016;38:1083-92 pubmed publisher
  40. Thienpont B, Steinbacher J, Zhao H, D Anna F, Kuchnio A, Ploumakis A, et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature. 2016;537:63-68 pubmed publisher
  41. Lv X, Guo Q, Han F, Chen C, Ling C, Chen W, et al. Electrospun Poly(l-lactide)/Poly(ethylene glycol) Scaffolds Seeded with Human Amniotic Mesenchymal Stem Cells for Urethral Epithelium Repair. Int J Mol Sci. 2016;17: pubmed publisher
  42. Schuerlein S, Schwarz T, Krziminski S, Gätzner S, Hoppensack A, Schwedhelm I, et al. A versatile modular bioreactor platform for Tissue Engineering. Biotechnol J. 2017;12: pubmed publisher
  43. Reginensi A, Enderle L, Gregorieff A, Johnson R, Wrana J, McNeill H. A critical role for NF2 and the Hippo pathway in branching morphogenesis. Nat Commun. 2016;7:12309 pubmed publisher
  44. Iacovides D, Rizki G, Lapathitis G, Strati K. Direct conversion of mouse embryonic fibroblasts into functional keratinocytes through transient expression of pluripotency-related genes. Stem Cell Res Ther. 2016;7:98 pubmed publisher
  45. Chen H, Wei Z, Sun J, Bhattacharya A, Savage D, Serda R, et al. A recellularized human colon model identifies cancer driver genes. Nat Biotechnol. 2016;34:845-51 pubmed publisher
  46. Berens E, Sharif G, Schmidt M, Yan G, Shuptrine C, Weiner L, et al. Keratin-associated protein 5-5 controls cytoskeletal function and cancer cell vascular invasion. Oncogene. 2017;36:593-605 pubmed publisher
  47. Frohwitter G, Buerger H, van Diest P, Korsching E, Kleinheinz J, Fillies T. Cytokeratin and protein expression patterns in squamous cell carcinoma of the oral cavity provide evidence for two distinct pathogenetic pathways. Oncol Lett. 2016;12:107-113 pubmed
  48. Toneff M, Sreekumar A, Tinnirello A, Hollander P, Habib S, Li S, et al. The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states. BMC Biol. 2016;14:47 pubmed publisher
  49. Szalayova G, Ogrodnik A, Spencer B, Wade J, Bunn J, Ambaye A, et al. Human breast cancer biopsies induce eosinophil recruitment and enhance adjacent cancer cell proliferation. Breast Cancer Res Treat. 2016;157:461-74 pubmed publisher
  50. Rigden H, Alias A, Havelock T, O Donnell R, Djukanovic R, Davies D, et al. Squamous Metaplasia Is Increased in the Bronchial Epithelium of Smokers with Chronic Obstructive Pulmonary Disease. PLoS ONE. 2016;11:e0156009 pubmed publisher
  51. Fabbri R, Macciocca M, Vicenti R, Paradisi R, Klinger F, Pasquinelli G, et al. Doxorubicin and cisplatin induce apoptosis in ovarian stromal cells obtained from cryopreserved human ovarian tissue. Future Oncol. 2016;12:1699-711 pubmed publisher
  52. Terakawa J, Rocchi A, Serna V, Bottinger E, Graff J, Kurita T. FGFR2IIIb-MAPK Activity Is Required for Epithelial Cell Fate Decision in the Lower Müllerian Duct. Mol Endocrinol. 2016;30:783-95 pubmed publisher
  53. Alaee M, Danesh G, Pasdar M. Plakoglobin Reduces the in vitro Growth, Migration and Invasion of Ovarian Cancer Cells Expressing N-Cadherin and Mutant p53. PLoS ONE. 2016;11:e0154323 pubmed publisher
  54. Kobayashi K, Tsugami Y, Matsunaga K, Oyama S, Kuki C, Kumura H. Prolactin and glucocorticoid signaling induces lactation-specific tight junctions concurrent with ?-casein expression in mammary epithelial cells. Biochim Biophys Acta. 2016;1863:2006-16 pubmed publisher
  55. Wang Y, Gratzke C, Tamalunas A, Wiemer N, Ciotkowska A, Rutz B, et al. P21-Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscle Contraction in the Human Prostate. PLoS ONE. 2016;11:e0153312 pubmed publisher
  56. El Mourabit H, Loeuillard E, Lemoinne S, Cadoret A, Housset C. Culture Model of Rat Portal Myofibroblasts. Front Physiol. 2016;7:120 pubmed publisher
  57. Holloway K, Sinha V, Bu W, Toneff M, Dong J, Peng Y, et al. Targeting Oncogenes into a Defined Subset of Mammary Cells Demonstrates That the Initiating Oncogenic Mutation Defines the Resulting Tumor Phenotype. Int J Biol Sci. 2016;12:381-8 pubmed publisher
  58. Panousopoulou E, Hobbs C, Mason I, Green J, Formstone C. Epiboly generates the epidermal basal monolayer and spreads the nascent mammalian skin to enclose the embryonic body. J Cell Sci. 2016;129:1915-27 pubmed publisher
  59. Yang S, Sun Y, Geng Z, Ma K, Sun X, Fu X. Abnormalities in the basement membrane structure promote basal keratinocytes in the epidermis of hypertrophic scars to adopt a proliferative phenotype. Int J Mol Med. 2016;37:1263-73 pubmed publisher
  60. Naipal K, Verkaik N, Sánchez H, van Deurzen C, Den Bakker M, Hoeijmakers J, et al. Tumor slice culture system to assess drug response of primary breast cancer. BMC Cancer. 2016;16:78 pubmed publisher
  61. Raredon M, Ghaedi M, Calle E, Niklason L. A Rotating Bioreactor for Scalable Culture and Differentiation of Respiratory Epithelium. Cell Med. 2015;7:109-21 pubmed publisher
  62. Lazarevic I, Engelhardt B. Modeling immune functions of the mouse blood-cerebrospinal fluid barrier in vitro: primary rather than immortalized mouse choroid plexus epithelial cells are suited to study immune cell migration across this brain barrier. Fluids Barriers CNS. 2016;13:2 pubmed publisher
  63. Mardaryev A, Liu B, Rapisarda V, Poterlowicz K, Malashchuk I, Rudolf J, et al. Cbx4 maintains the epithelial lineage identity and cell proliferation in the developing stratified epithelium. J Cell Biol. 2016;212:77-89 pubmed publisher
  64. Mikhailova A, Ilmarinen T, Ratnayake A, Petrovski G, Uusitalo H, Skottman H, et al. Human pluripotent stem cell-derived limbal epithelial stem cells on bioengineered matrices for corneal reconstruction. Exp Eye Res. 2016;146:26-34 pubmed publisher
  65. Shin H, Pei Z, Martinez K, Rivera Viñas J, Méndez K, Cavallin H, et al. The first microbial environment of infants born by C-section: the operating room microbes. Microbiome. 2015;3:59 pubmed publisher
  66. van Jaarsveld M, van Kuijk P, Boersma A, Helleman J, Van Ijcken W, Mathijssen R, et al. miR-634 restores drug sensitivity in resistant ovarian cancer cells by targeting the Ras-MAPK pathway. Mol Cancer. 2015;14:196 pubmed publisher
  67. Gao L, Jiang Y, Mu L, Liu Y, Wang F, Wang P, et al. Efficient Generation of Mice with Consistent Transgene Expression by FEEST. Sci Rep. 2015;5:16284 pubmed publisher
  68. Jung M, Ryu Y, Kang G. Investigation of the origin of stromal and endothelial cells at the desmoplastic interface in xenograft tumor in mice. Pathol Res Pract. 2015;211:925-30 pubmed publisher
  69. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed publisher
  70. Hurley P, Sundi D, Shinder B, Simons B, Hughes R, Miller R, et al. Germline Variants in Asporin Vary by Race, Modulate the Tumor Microenvironment, and Are Differentially Associated with Metastatic Prostate Cancer. Clin Cancer Res. 2016;22:448-58 pubmed publisher
  71. Stewart M, Bechberger J, Welch I, Naus C, Laird D. Cx26 knockout predisposes the mammary gland to primary mammary tumors in a DMBA-induced mouse model of breast cancer. Oncotarget. 2015;6:37185-99 pubmed publisher
  72. Sauter J, Ambaye A, Mount S. Increased utilization, verification, and clinical implications of immunocytochemistry: Experience in a northern New England hospital. Diagn Cytopathol. 2015;43:688-95 pubmed publisher
  73. Yuri S, Nishikawa M, Yanagawa N, Jo O, Yanagawa N. Maintenance of Mouse Nephron Progenitor Cells in Aggregates with Gamma-Secretase Inhibitor. PLoS ONE. 2015;10:e0129242 pubmed publisher
  74. Berry R, Ozdemir D, Aronow B, Lindström N, Dudnakova T, Thornburn A, et al. Deducing the stage of origin of Wilms' tumours from a developmental series of Wt1-mutant mice. Dis Model Mech. 2015;8:903-17 pubmed publisher
  75. Swaminathan T, Basheer V, Kumar R, Kathirvelpandian A, Sood N, Jena J. Establishment and characterization of fin-derived cell line from ornamental carp, Cyprinus carpio koi, for virus isolation in India. In Vitro Cell Dev Biol Anim. 2015;51:705-13 pubmed publisher
  76. Muhanna N, Mepham A, Mohamadi R, Chan H, Khan T, Akens M, et al. Nanoparticle-based sorting of circulating tumor cells by epithelial antigen expression during disease progression in an animal model. Nanomedicine. 2015;11:1613-20 pubmed publisher
  77. Linardi R, Megee S, Mainardi S, Senoo M, Galantino Homer H. Expression and localization of epithelial stem cell and differentiation markers in equine skin, eye and hoof. Vet Dermatol. 2015;26:213-e47 pubmed publisher
  78. Kershaw S, Cummings J, Morris K, Tugwood J, Dive C. Optimisation of immunofluorescence methods to determine MCT1 and MCT4 expression in circulating tumour cells. BMC Cancer. 2015;15:387 pubmed publisher
  79. Katanov C, Lerrer S, Liubomirski Y, Leider Trejo L, Meshel T, Bar J, et al. Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-? and the NF-?B pathway. Stem Cell Res Ther. 2015;6:87 pubmed publisher
  80. Sood N, Chaudhary D, Pradhan P, Verma D, Raja Swaminathan T, Kushwaha B, et al. Establishment and characterization of a continuous cell line from thymus of striped snakehead, Channa striatus (Bloch 1793). In Vitro Cell Dev Biol Anim. 2015;51:787-96 pubmed publisher
  81. Matsusaki M, Fujimoto K, Shirakata Y, Hirakawa S, Hashimoto K, Akashi M. Development of full-thickness human skin equivalents with blood and lymph-like capillary networks by cell coating technology. J Biomed Mater Res A. 2015;103:3386-96 pubmed publisher
  82. von Neubeck C, Geniza M, Kauer P, Robinson R, Chrisler W, Sowa M. The effect of low dose ionizing radiation on homeostasis and functional integrity in an organotypic human skin model. Mutat Res. 2015;775:10-8 pubmed publisher
  83. Fausther M, Goree J, Lavoie Ã, Graham A, Sévigny J, Dranoff J. Establishment and characterization of rat portal myofibroblast cell lines. PLoS ONE. 2015;10:e0121161 pubmed publisher
  84. Kawada M, Inoue H, Ohba S, Yoshida J, Masuda T, Yamasaki M, et al. Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction. PLoS ONE. 2015;10:e0119415 pubmed publisher
  85. Aguiar C, Therrien J, Lemire P, Segura M, Smith L, Theoret C. Differentiation of equine induced pluripotent stem cells into a keratinocyte lineage. Equine Vet J. 2016;48:338-45 pubmed publisher
  86. van Drongelen V, Danso M, Out J, Mulder A, Lavrijsen A, Bouwstra J, et al. Explant cultures of atopic dermatitis biopsies maintain their epidermal characteristics in vitro. Cell Tissue Res. 2015;361:789-97 pubmed publisher
  87. Xu Y, Fu W, Wang Z, Li G, Zhang X. A tissue-specific scaffold for tissue engineering-based ureteral reconstruction. PLoS ONE. 2015;10:e0120244 pubmed publisher
  88. Ahmed H, Abdul Gader Suliman R, Abd El Aziz M, Alshammari F. Immunohistochemical expression of cytokeratins and epithelial membrane protein 2 in nasopharyngeal carcinoma and its potential implications. Asian Pac J Cancer Prev. 2015;16:653-6 pubmed
  89. Chajra H, Amstutz B, Schweikert K, Auriol D, Redziniak G, Lefèvre F. Opioid receptor delta as a global modulator of skin differentiation and barrier function repair. Int J Cosmet Sci. 2015;37:386-94 pubmed publisher
  90. Zheng L, Cardaci S, Jerby L, MacKenzie E, Sciacovelli M, Johnson T, et al. Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nat Commun. 2015;6:6001 pubmed publisher
  91. Petrosyan A, Ali M, Cheng P. Keratin 1 plays a critical role in golgi localization of core 2 N-acetylglucosaminyltransferase M via interaction with its cytoplasmic tail. J Biol Chem. 2015;290:6256-69 pubmed publisher
  92. Progatzky F, Sangha N, Yoshida N, McBrien M, Cheung J, Shia A, et al. Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation. Nat Commun. 2014;5:5864 pubmed publisher
  93. German S, Campbell K, Thornton E, McLachlan G, Sweetman D, Alberio R. Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer. Cell Reprogram. 2015;17:19-27 pubmed publisher
  94. Suzuki D, Sahu R, Leu N, Senoo M. The carboxy-terminus of p63 links cell cycle control and the proliferative potential of epidermal progenitor cells. Development. 2015;142:282-90 pubmed publisher
  95. BaÅŸak K, KiroÄŸlu K. Multiple oncocytic cystadenoma with intraluminal crystalloids in parotid gland: case report. Medicine (Baltimore). 2014;93:e246 pubmed publisher
  96. Beck A, Brooks A, Zeiss C. Invasive ductular carcinoma in 2 rhesus macaques (Macaca mulatta). Comp Med. 2014;64:314-22 pubmed
  97. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed publisher
  98. Ghaffari A, Hoskin V, Szeto A, Hum M, Liaghati N, Nakatsu K, et al. A novel role for ezrin in breast cancer angio/lymphangiogenesis. Breast Cancer Res. 2014;16:438 pubmed publisher
  99. Chierchia L, Tussellino M, Guarino D, Carotenuto R, DeMarco N, Campanella C, et al. Cytoskeletal proteins associate with components of the ribosomal maturation and translation apparatus in Xenopus stage I oocytes. Zygote. 2015;23:669-82 pubmed publisher
  100. Li L, Fan X, Xia Q, Rao Q, Liu B, Yu B, et al. Concurrent loss of INI1, PBRM1, and BRM expression in epithelioid sarcoma: implications for the cocontributions of multiple SWI/SNF complex members to pathogenesis. Hum Pathol. 2014;45:2247-54 pubmed publisher
  101. Sajin M, Luchian M, Hodorogea Prisăcaru A, Dumitru A, Pătraşcu O, Costache D, et al. Trichilemmal carcinoma - a rare cutaneous malignancy: report of two cases. Rom J Morphol Embryol. 2014;55:687-91 pubmed
  102. Costache M, Pătraşcu O, Dumitru A, Costache D, Voinea L, Simionescu O, et al. Histopathological findings concerning ocular melanomas. Rom J Morphol Embryol. 2014;55:649-53 pubmed
  103. Neumann C, Bigliardi Qi M, Widmann C, Bigliardi P. The δ-opioid receptor affects epidermal homeostasis via ERK-dependent inhibition of transcription factor POU2F3. J Invest Dermatol. 2015;135:471-480 pubmed publisher
  104. Guan H, Tan J, Zhang F, Gao L, Bai L, Qi D, et al. Myofibroblasts from salivary gland adenoid cystic carcinomas promote cancer invasion by expressing MMP2 and CXCL12. Histopathology. 2015;66:781-90 pubmed publisher
  105. Ouyang H, Xue Y, Lin Y, Zhang X, Xi L, Patel S, et al. WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis. Nature. 2014;511:358-61 pubmed publisher
  106. Rabeony H, Petit Paris I, Garnier J, Barrault C, Pedretti N, Guilloteau K, et al. Inhibition of keratinocyte differentiation by the synergistic effect of IL-17A, IL-22, IL-1?, TNF? and oncostatin M. PLoS ONE. 2014;9:e101937 pubmed publisher
  107. Lindström A, Hellberg D. Immunohistochemical LRIG3 expression in cervical intraepithelial neoplasia and invasive squamous cell cervical cancer: association with expression of tumor markers, hormones, high-risk HPV-infection, smoking and patient outcome. Eur J Histochem. 2014;58:2227 pubmed publisher
  108. Sauder C, Koziel J, Choi M, Fox M, Grimes B, Badve S, et al. Phenotypic plasticity in normal breast derived epithelial cells. BMC Cell Biol. 2014;15:20 pubmed publisher
  109. Greaves E, Cousins F, Murray A, Esnal Zufiaurre A, Fassbender A, Horne A, et al. A novel mouse model of endometriosis mimics human phenotype and reveals insights into the inflammatory contribution of shed endometrium. Am J Pathol. 2014;184:1930-9 pubmed publisher
  110. Muchkaeva I, Dashinimaev E, Artyuhov A, Myagkova E, Vorotelyak E, Yegorov Y, et al. Generation of iPS Cells from Human Hair Follice Dermal Papilla Cells. Acta Naturae. 2014;6:45-53 pubmed
  111. Ryszawy D, Sarna M, Rak M, Szpak K, Kedracka Krok S, Michalik M, et al. Functional links between Snail-1 and Cx43 account for the recruitment of Cx43-positive cells into the invasive front of prostate cancer. Carcinogenesis. 2014;35:1920-30 pubmed publisher
  112. Brueggmann D, Templeman C, Starzinski Powitz A, Rao N, Gayther S, Lawrenson K. Novel three-dimensional in vitro models of ovarian endometriosis. J Ovarian Res. 2014;7:17 pubmed publisher
  113. Liu Z, Yu N, Holz F, Yang F, Stanzel B. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials. 2014;35:2837-50 pubmed publisher
  114. Stratmann A, Fecher D, Wangorsch G, Göttlich C, Walles T, Walles H, et al. Establishment of a human 3D lung cancer model based on a biological tissue matrix combined with a Boolean in silico model. Mol Oncol. 2014;8:351-65 pubmed publisher
  115. Motomura K, Sumino H, Noguchi A, Horinouchi T, Nakanishi K. Sentinel nodes identified by computed tomography-lymphography accurately stage the axilla in patients with breast cancer. BMC Med Imaging. 2013;13:42 pubmed publisher
  116. Trietsch M, Peters A, Gaarenstroom K, van Koningsbrugge S, Ter Haar N, Osse E, et al. Spindle cell morphology is related to poor prognosis in vulvar squamous cell carcinoma. Br J Cancer. 2013;109:2259-65 pubmed publisher
  117. Bulysheva A, Bowlin G, Petrova S, Yeudall W. Enhanced chemoresistance of squamous carcinoma cells grown in 3D cryogenic electrospun scaffolds. Biomed Mater. 2013;8:055009 pubmed publisher
  118. Motomura K, Izumi T, Tateishi S, Sumino H, Noguchi A, Horinouchi T, et al. Correlation between the area of high-signal intensity on SPIO-enhanced MR imaging and the pathologic size of sentinel node metastases in breast cancer patients with positive sentinel nodes. BMC Med Imaging. 2013;13:32 pubmed publisher
  119. Qiu S, Wei X, Huang W, Wu M, Qin Y, Li Y, et al. Diagnostic and therapeutic strategy and the most efficient prognostic factors of breast malignant fibrous histiocytoma. Sci Rep. 2013;3:2529 pubmed publisher
  120. Hosokawa M, Kenmotsu H, Koh Y, Yoshino T, Yoshikawa T, Naito T, et al. Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system. PLoS ONE. 2013;8:e67466 pubmed publisher
  121. Ohta K, Taki M, Ogawa I, Ono S, Mizuta K, Fujimoto S, et al. Malignant ossifying fibromyxoid tumor of the tongue: case report and review of the literature. Head Face Med. 2013;9:16 pubmed publisher
  122. Hughes M, Jiang T, Lin S, Leung Y, Kobielak K, Widelitz R, et al. Disrupted ectodermal organ morphogenesis in mice with a conditional histone deacetylase 1, 2 deletion in the epidermis. J Invest Dermatol. 2014;134:24-32 pubmed publisher
  123. Nassiri F, Scheithauer B, Corwin D, Kaplan H, Mayberg M, Cusimano M, et al. Invasive thymoma metastatic to the cavernous sinus. Surg Neurol Int. 2013;4:74 pubmed publisher
  124. Lian X, Selekman J, Bao X, Hsiao C, Zhu K, Palecek S. A small molecule inhibitor of SRC family kinases promotes simple epithelial differentiation of human pluripotent stem cells. PLoS ONE. 2013;8:e60016 pubmed publisher
  125. Moffatt Jauregui C, Robinson B, de Moya A, Brockman R, Roman A, Cash M, et al. Establishment and characterization of a telomerase immortalized human gingival epithelial cell line. J Periodontal Res. 2013;48:713-21 pubmed publisher
  126. Yang G, Li J, Jin H, Ding H. Is mammary not otherwise specified-type sarcoma with CD10 expression a distinct entity? A rare case report with immunohistochemical and ultrastructural study. Diagn Pathol. 2013;8:14 pubmed publisher
  127. Weli S, Aamelfot M, Dale O, Koppang E, Falk K. Infectious salmon anaemia virus infection of Atlantic salmon gill epithelial cells. Virol J. 2013;10:5 pubmed publisher
  128. Kretz M, Siprashvili Z, Chu C, Webster D, Zehnder A, Qu K, et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature. 2013;493:231-5 pubmed publisher
  129. Lv S, Song Y, Xu J, Shu H, Zhou Z, An N, et al. A novel TP53 somatic mutation involved in the pathogenesis of pediatric choroid plexus carcinoma. Med Sci Monit. 2012;18:CS37-41 pubmed
  130. Wallace L, Roberts Thompson L, Reichelt J. Deletion of K1/K10 does not impair epidermal stratification but affects desmosomal structure and nuclear integrity. J Cell Sci. 2012;125:1750-8 pubmed publisher
  131. Sohn W, Gwon G, An C, Moon C, Bae Y, Yamamoto H, et al. Morphological evidences in circumvallate papilla and von Ebners' gland development in mice. Anat Cell Biol. 2011;44:274-83 pubmed publisher
  132. Khoja L, Backen A, Sloane R, Menasce L, Ryder D, Krebs M, et al. A pilot study to explore circulating tumour cells in pancreatic cancer as a novel biomarker. Br J Cancer. 2012;106:508-16 pubmed publisher
  133. Romero Alemán M, Monzon Mayor M, Santos E, Lang D, Yanes C. Neuronal and glial differentiation during lizard (Gallotia galloti) visual system ontogeny. J Comp Neurol. 2012;520:2163-84 pubmed publisher
  134. Kap M, Smedts F, Oosterhuis W, Winther R, Christensen N, Reischauer B, et al. Histological assessment of PAXgene tissue fixation and stabilization reagents. PLoS ONE. 2011;6:e27704 pubmed publisher
  135. Petrilli G, Lorenzi L, Paracchini R, Ubiali A, Schumacher R, Cabassa P, et al. Epstein-Barr virus-associated adrenal smooth muscle tumors and disseminated diffuse large B-cell lymphoma in a child with common variable immunodeficiency: a case report and review of the literature. Int J Surg Pathol. 2014;22:712-21 pubmed publisher
  136. Brusevold I, Husvik C, Schreurs O, Schenck K, Bryne M, Søland T. Induction of invasion in an organotypic oral cancer model by CoCl2, a hypoxia mimetic. Eur J Oral Sci. 2010;118:168-76 pubmed publisher
  137. Samir R, Asplund A, Tot T, Pekar G, Hellberg D. Tissue tumor marker expression in smokers, including serum cotinine concentrations, in women with cervical intraepithelial neoplasia or normal squamous cervical epithelium. Am J Obstet Gynecol. 2010;202:579.e1-7 pubmed publisher
  138. Gil da Costa R, Santos M, Amorim I, Lopes C, Pereira P, Faustino A. An immunohistochemical study of feline endometrial adenocarcinoma. J Comp Pathol. 2009;140:254-9 pubmed publisher
  139. Rhee K, Wu S, Wu X, Huso D, Karim B, Franco A, et al. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun. 2009;77:1708-18 pubmed publisher
  140. Rodriguez F, Scheithauer B, Giannini C, Bryant S, Jenkins R. Epithelial and pseudoepithelial differentiation in glioblastoma and gliosarcoma: a comparative morphologic and molecular genetic study. Cancer. 2008;113:2779-89 pubmed publisher
  141. Lu S, Yu G, Zhu Y, Archer M. Cyclooxygenase-2 overexpression in MCF-10F human breast epithelial cells inhibits proliferation, apoptosis and differentiation, and causes partial transformation. Int J Cancer. 2005;116:847-52 pubmed
  142. Gilbert S, Loranger A, Marceau N. Keratins modulate c-Flip/extracellular signal-regulated kinase 1 and 2 antiapoptotic signaling in simple epithelial cells. Mol Cell Biol. 2004;24:7072-81 pubmed
  143. Song S, Park S, Kim S, Suh Y. Oncocytic adrenocortical carcinomas: a pathological and immunohistochemical study of four cases in comparison with conventional adrenocortical carcinomas. Pathol Int. 2004;54:603-10 pubmed
  144. Kokenyesi R, Murray K, Benshushan A, Huntley E, Kao M. Invasion of interstitial matrix by a novel cell line from primary peritoneal carcinosarcoma, and by established ovarian carcinoma cell lines: role of cell-matrix adhesion molecules, proteinases, and E-cadherin expression. Gynecol Oncol. 2003;89:60-72 pubmed