This is a Validated Antibody Database (VAD) review about domestic s.. ACTA2, based on 31 published articles (read how Labome selects the articles), using ACTA2 antibody in all methods. It is aimed to help Labome visitors find the most suited ACTA2 antibody. Please note the number of articles fluctuates since newly identified citations are added and citations for discontinued catalog numbers are removed regularly.
Invitrogen
mouse monoclonal (mAbGEa)
  • western blot; mouse; 1:1000; loading ...; fig 1b
Invitrogen ACTA2 antibody (thermo fisher, MA1-744) was used in western blot on mouse samples at 1:1000 (fig 1b). Invest Ophthalmol Vis Sci (2020) ncbi
mouse monoclonal (1A4)
  • immunocytochemistry; human; loading ...; fig 2b
Invitrogen ACTA2 antibody (eBioscience, 1A4) was used in immunocytochemistry on human samples (fig 2b). BMC Cancer (2020) ncbi
mouse monoclonal (1A4)
  • immunohistochemistry; human; loading ...; fig 11a
In order to investigate the tumor microenvironment in tertiary lymphoid organs of prostate cancer patients, Invitrogen ACTA2 antibody (Thermo Fisher Scientific, 1A4) was used in immunohistochemistry on human samples (fig 11a). Front Immunol (2017) ncbi
mouse monoclonal (5C5.F8.C7 (alpha-Sr-1))
  • immunocytochemistry; mouse; 1:500; loading ...; fig s1c
  • western blot; mouse; 1:2500; loading ...; fig 3a
In order to clarify how actin isoforms modulate the axons of developing motoneurons, Invitrogen ACTA2 antibody (Thermo Fisher Scientific, MA5-12542) was used in immunocytochemistry on mouse samples at 1:500 (fig s1c) and in western blot on mouse samples at 1:2500 (fig 3a). J Cell Biol (2017) ncbi
mouse monoclonal (1A4)
  • western blot; human; fig 3e
In order to test if exogenous transfer of unphosphorylated phosphatase and tensin homologue deleted from chromosome 10 leads to reduce transforming growth factor beta-induced extracellular matrix expression in both epithelial cells and fibroblasts, Invitrogen ACTA2 antibody (Lab Vision, 1A4) was used in western blot on human samples (fig 3e). Wound Repair Regen (2017) ncbi
mouse monoclonal (mAbGEa)
  • western blot; brewer's yeast; fig 2
In order to investigate the connection between calorie restriction and magnesium, Invitrogen ACTA2 antibody (Thermo Scientific, MA1-744) was used in western blot on brewer's yeast samples (fig 2). Nucleic Acids Res (2016) ncbi
mouse monoclonal (1A4)
  • immunohistochemistry - paraffin section; human; loading ...; fig 3b
In order to characterize alterations in fibroblast populations in the skin of patients with systemic sclerosis, Invitrogen ACTA2 antibody (Thermo Scientific, 1A4) was used in immunohistochemistry - paraffin section on human samples (fig 3b). Am J Pathol (2016) ncbi
mouse monoclonal (mAbGEa)
  • western blot; human; 1:500; loading ...; fig 1a
In order to make mutant mice to determine the impact of REV3L catalytic activity, Invitrogen ACTA2 antibody (Pierce, MA1-744) was used in western blot on human samples at 1:500 (fig 1a). DNA Repair (Amst) (2016) ncbi
mouse monoclonal (mAbGEa)
  • immunoprecipitation; rat; fig 2
In order to analyze the formation of supramolecular complexes through non-overlapping binding sites for drebrin, ZO-1, and tubulin by connexin43, Invitrogen ACTA2 antibody (Thermo scientific, MA1-744) was used in immunoprecipitation on rat samples (fig 2). PLoS ONE (2016) ncbi
mouse monoclonal (mAbGEa)
  • western blot; thale cress; fig 1
In order to study the contribution to pattern-triggered immunity from the GSK3/Shaggy-like kinase ASKalpha, Invitrogen ACTA2 antibody (Thermo Scientific, MA1-744) was used in western blot on thale cress samples (fig 1). Plant Physiol (2016) ncbi
mouse monoclonal (mAbGEa)
  • western blot; pigs ; loading ...; fig 2c
In order to test if adipose tissues have epigenetically distinct subpopulations of adipocytes, Invitrogen ACTA2 antibody (Thermo Scientific, mAbGEa) was used in western blot on pigs samples (fig 2c). PLoS ONE (2016) ncbi
mouse monoclonal (mAbGEa)
  • western blot; brewer's yeast; 1:1000; fig 3
In order to regulating actin cable dynamics in budding yeast by fimbrin phosphorylation by metaphase Cdk1, Invitrogen ACTA2 antibody (Thermo Fisher scientific, mAbGEa) was used in western blot on brewer's yeast samples at 1:1000 (fig 3). Nat Commun (2016) ncbi
mouse monoclonal (1A4)
  • immunohistochemistry - paraffin section; human; fig 2
In order to study human lacrimal epithelium and histatin-1 expression, Invitrogen ACTA2 antibody (Thermo Scientific, MS-113-P0) was used in immunohistochemistry - paraffin section on human samples (fig 2). PLoS ONE (2016) ncbi
mouse monoclonal (mAbGEa)
  • western blot; mouse; fig 2
In order to identify factors that are altered in the lacrimal gland by comparing several mouse models of disease with healthy mice, Invitrogen ACTA2 antibody (Thermo Scientific, mAbGEa) was used in western blot on mouse samples (fig 2). Invest Ophthalmol Vis Sci (2015) ncbi
mouse monoclonal (1A4)
  • immunohistochemistry; human; 1:1000; fig 6
In order to present two cases of primary sclerosing epithelioid fibrosarcoma of the kidney, Invitrogen ACTA2 antibody (NeoMarkers, 1A4) was used in immunohistochemistry on human samples at 1:1000 (fig 6). Diagn Pathol (2015) ncbi
mouse monoclonal (mAbGEa)
  • western blot; brewer's yeast; 1:1000; fig 2, 4
In order to report roles for kinesin and nuclear pore complexes in DNA repair by break-induced replication, Invitrogen ACTA2 antibody (Fisher, MA1-744) was used in western blot on brewer's yeast samples at 1:1000 (fig 2, 4). Nat Commun (2015) ncbi
mouse monoclonal (mAbGEa)
  • western blot; thale cress; 1:1000; fig 1
In order to distinguish the effects of photoreceptor signaling on clock function from those of photosynthesis, Invitrogen ACTA2 antibody (Thermo Scientific, MA1-744) was used in western blot on thale cress samples at 1:1000 (fig 1). Plant Physiol (2015) ncbi
mouse monoclonal (1A4)
  • immunohistochemistry - paraffin section; rat; 1:5000
In order to study the epithelial and stromal alterations in prostate following cypermethrin administration in adult albino rats, Invitrogen ACTA2 antibody (Lab Vision Corporation, alpha-Actin) was used in immunohistochemistry - paraffin section on rat samples at 1:5000. Tissue Cell (2015) ncbi
mouse monoclonal (mAbGEa)
  • western blot; human; 1:1000; fig 6
In order to examine the effects of neokestose on cell proliferation, cell cycle, and apoptosis of colonic cells, Invitrogen ACTA2 antibody (Thermo Fisher, MA1-744) was used in western blot on human samples at 1:1000 (fig 6). Mol Med Rep (2015) ncbi
mouse monoclonal (1A4)
  • immunohistochemistry - paraffin section; human; 1:300
In order to identify and characterize vessels that encapsulated tumor clusters in hepatocellular carcinoma sections, Invitrogen ACTA2 antibody (Life Technologies, 1A4) was used in immunohistochemistry - paraffin section on human samples at 1:300. Hepatology (2015) ncbi
mouse monoclonal (mAbGEa)
In order to characterize the Las17 G-actin-binding motif in vitro and in vivo, Invitrogen ACTA2 antibody (Fisher, MA1-744) was used . Traffic (2015) ncbi
mouse monoclonal (1A4)
  • immunohistochemistry - paraffin section; rat; 1:200
In order to investigate the role of cannabinoid receptor type 2 (CB2R) during skeletal muscle regeneration, Invitrogen ACTA2 antibody (Lab Vision, MS-113) was used in immunohistochemistry - paraffin section on rat samples at 1:200. Histol Histopathol (2015) ncbi
mouse monoclonal (1A4)
In order to examine the adverse effect of prostaglandin F-receptor antagonist AS604872 on brain vasculature, Invitrogen ACTA2 antibody (Thermo Scientific, MS113) was used . J Pharmacol Sci (2014) ncbi
mouse monoclonal (1A4)
  • immunohistochemistry; human; 1:600
In order to identify tissue origin of the granular cell tumor using immunohistochemistry, Invitrogen ACTA2 antibody (LabVision, 1A4) was used in immunohistochemistry on human samples at 1:600. Arch Dermatol Res (2015) ncbi
mouse monoclonal (1A4)
  • immunohistochemistry - frozen section; mouse; 1:100; fig 1
In order to characterize PDGF-mediated skeletal muscle angiogenesis and the role of CD248 (Endosialin), Invitrogen ACTA2 antibody (NeoMarkers, 1A4) was used in immunohistochemistry - frozen section on mouse samples at 1:100 (fig 1). PLoS ONE (2014) ncbi
mouse monoclonal (1A4)
  • immunohistochemistry - paraffin section; human
In order to characterize stroma cells and ductal epithelium comparing chronic pancreatitis and pancreatic ductal adenocarcinoma, Invitrogen ACTA2 antibody (Fisher/Thermo Scientific, 1A4) was used in immunohistochemistry - paraffin section on human samples . PLoS ONE (2014) ncbi
mouse monoclonal (mAbGEa)
  • western blot; human
In order to determine how HER2/HER3 regulates extracellular acidification and cell migration, Invitrogen ACTA2 antibody (Thermo Scientific, MA1-744) was used in western blot on human samples . Cell Signal (2014) ncbi
mouse monoclonal (mAbGEa)
  • western blot; Xenopus laevis
In order to study metabolic regulation of CaMKII protein and caspases in Xenopus, Invitrogen ACTA2 antibody (Thermo Scientific, MA1-744) was used in western blot on Xenopus laevis samples . J Biol Chem (2013) ncbi
mouse monoclonal (1A4)
  • immunohistochemistry; mouse
In order to study the induction of inflammation, metaplasia and displasia following transgenic expression of IFN-gamma in the murine stomach, Invitrogen ACTA2 antibody (NeoMarkers, MS-113-P0) was used in immunohistochemistry on mouse samples . Am J Pathol (2012) ncbi
mouse monoclonal (1A4)
  • immunohistochemistry; human
  • immunohistochemistry; pigs ; fig 3
In order to investigate the effect of PEGDA hydrogel on the production of extracellular matrix from vocal fold fibroblasts, Invitrogen ACTA2 antibody (LabVision, 1A4) was used in immunohistochemistry on human samples and in immunohistochemistry on pigs samples (fig 3). Acta Biomater (2008) ncbi
mouse monoclonal (1A4)
  • immunohistochemistry - paraffin section; mouse; 34 ng/ml
In order to report that disruption of the mouse Par3 gene results in midgestational embryonic lethality with defective epicardial development, Invitrogen ACTA2 antibody (Zymed, 1A4) was used in immunohistochemistry - paraffin section on mouse samples at 34 ng/ml. Development (2006) ncbi
Articles Reviewed
  1. Gurley J, Gmyrek G, McClellan M, Hargis E, Hauck S, Dozmorov M, et al. Neuroretinal-Derived Caveolin-1 Promotes Endotoxin-Induced Inflammation in the Murine Retina. Invest Ophthalmol Vis Sci. 2020;61:19 pubmed publisher
  2. Ortiz Otero N, Marshall J, Lash B, King M. Chemotherapy-induced release of circulating-tumor cells into the bloodstream in collective migration units with cancer-associated fibroblasts in metastatic cancer patients. BMC Cancer. 2020;20:873 pubmed publisher
  3. Garcia Hernandez M, Uribe Uribe N, Espinosa González R, Kast W, Khader S, Rangel Moreno J. A Unique Cellular and Molecular Microenvironment Is Present in Tertiary Lymphoid Organs of Patients with Spontaneous Prostate Cancer Regression. Front Immunol. 2017;8:563 pubmed publisher
  4. Moradi M, Sivadasan R, Saal L, Lüningschrör P, Dombert B, Rathod R, et al. Differential roles of α-, β-, and γ-actin in axon growth and collateral branch formation in motoneurons. J Cell Biol. 2017;216:793-814 pubmed publisher
  5. Kimura M, Hashimoto N, Kusunose M, Aoyama D, Sakamoto K, Miyazaki S, et al. Exogenous induction of unphosphorylated PTEN reduces TGFβ-induced extracellular matrix expressions in lung fibroblasts. Wound Repair Regen. 2017;25:86-97 pubmed publisher
  6. Abraham K, Chan J, Salvi J, Ho B, Hall A, Vidya E, et al. Intersection of calorie restriction and magnesium in the suppression of genome-destabilizing RNA-DNA hybrids. Nucleic Acids Res. 2016;44:8870-8884 pubmed
  7. Nazari B, Rice L, Stifano G, Barron A, Wang Y, Korndorf T, et al. Altered Dermal Fibroblasts in Systemic Sclerosis Display Podoplanin and CD90. Am J Pathol. 2016;186:2650-64 pubmed publisher
  8. Fritzen R, Delbos F, De Smet A, Palancade B, Canman C, Aoufouchi S, et al. A single aspartate mutation in the conserved catalytic site of Rev3L generates a hypomorphic phenotype in vivo and in vitro. DNA Repair (Amst). 2016;46:37-46 pubmed publisher
  9. Ambrosi C, Ren C, Spagnol G, Cavin G, CONE A, Grintsevich E, et al. Connexin43 Forms Supramolecular Complexes through Non-Overlapping Binding Sites for Drebrin, Tubulin, and ZO-1. PLoS ONE. 2016;11:e0157073 pubmed publisher
  10. Stampfl H, Fritz M, Dal Santo S, Jonak C. The GSK3/Shaggy-Like Kinase ASKα Contributes to Pattern-Triggered Immunity. Plant Physiol. 2016;171:1366-77 pubmed publisher
  11. Yu P, Ji L, Lee K, Yu M, He C, Ambati S, et al. Subsets of Visceral Adipose Tissue Nuclei with Distinct Levels of 5-Hydroxymethylcytosine. PLoS ONE. 2016;11:e0154949 pubmed publisher
  12. Miao Y, Han X, Zheng L, Xie Y, Mu Y, Yates J, et al. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast. Nat Commun. 2016;7:11265 pubmed publisher
  13. Shah D, Ali M, Pasha Z, Jaboori A, Jassim S, Jain S, et al. Histatin-1 Expression in Human Lacrimal Epithelium. PLoS ONE. 2016;11:e0148018 pubmed publisher
  14. Umazume T, Thomas W, Campbell S, Aluri H, Thotakura S, Zoukhri D, et al. Lacrimal Gland Inflammation Deregulates Extracellular Matrix Remodeling and Alters Molecular Signature of Epithelial Stem/Progenitor Cells. Invest Ophthalmol Vis Sci. 2015;56:8392-402 pubmed publisher
  15. Ertoy Baydar D, Kosemehmetoglu K, Aydin O, Bridge J, Buyukeren B, Aki F. Primary sclerosing epithelioid fibrosarcoma of kidney with variant histomorphologic features: report of 2 cases and review of the literature. Diagn Pathol. 2015;10:186 pubmed publisher
  16. Chung D, Chan J, Strecker J, Zhang W, Ebrahimi Ardebili S, Lu T, et al. Perinuclear tethers license telomeric DSBs for a broad kinesin- and NPC-dependent DNA repair process. Nat Commun. 2015;6:7742 pubmed publisher
  17. Jones M, Hu W, Litthauer S, Lagarias J, Harmer S. A Constitutively Active Allele of Phytochrome B Maintains Circadian Robustness in the Absence of Light. Plant Physiol. 2015;169:814-25 pubmed publisher
  18. Hashem H, Abd El Haleem M, Abass M. Epithelial and stromal alterations in prostate after cypermethrin administration in adult albino rats (histological and biochemical study). Tissue Cell. 2015;47:366-72 pubmed publisher
  19. Lee S, Chang J, Wu J, Sheu D. Antineoplastic effect of a novel chemopreventive agent, neokestose, on the Caco-2 cell line via inhibition of expression of nuclear factor-κB and cyclooxygenase-2. Mol Med Rep. 2015;12:1114-8 pubmed publisher
  20. Fang J, Zhou H, Zhang C, Shang L, Zhang L, Xu J, et al. A novel vascular pattern promotes metastasis of hepatocellular carcinoma in an epithelial-mesenchymal transition-independent manner. Hepatology. 2015;62:452-65 pubmed publisher
  21. Feliciano D, Tolsma T, Farrell K, Aradi A, Di Pietro S. A second Las17 monomeric actin-binding motif functions in Arp2/3-dependent actin polymerization during endocytosis. Traffic. 2015;16:379-97 pubmed publisher
  22. Yu T, Wang X, Zhao R, Zheng J, Li L, Ma W, et al. Beneficial effects of cannabinoid receptor type 2 (CB2R) in injured skeletal muscle post-contusion. Histol Histopathol. 2015;30:737-49 pubmed publisher
  23. Fukuda M, Aoki T, Manabe T, Maekawa A, Shirakawa T, Kataoka H, et al. Exacerbation of intracranial aneurysm and aortic dissection in hypertensive rat treated with the prostaglandin F-receptor antagonist AS604872. J Pharmacol Sci. 2014;126:230-42 pubmed
  24. Gurzu S, Ciortea D, Tamasi A, Golea M, Bodi A, Sahlean D, et al. The immunohistochemical profile of granular cell (Abrikossoff) tumor suggests an endomesenchymal origin. Arch Dermatol Res. 2015;307:151-7 pubmed publisher
  25. Naylor A, McGettrick H, Maynard W, May P, Barone F, Croft A, et al. A differential role for CD248 (Endosialin) in PDGF-mediated skeletal muscle angiogenesis. PLoS ONE. 2014;9:e107146 pubmed publisher
  26. Helm O, Mennrich R, Petrick D, Goebel L, Freitag Wolf S, Roder C, et al. Comparative characterization of stroma cells and ductal epithelium in chronic pancreatitis and pancreatic ductal adenocarcinoma. PLoS ONE. 2014;9:e94357 pubmed publisher
  27. Sollome J, Thavathiru E, Camenisch T, Vaillancourt R. HER2/HER3 regulates extracellular acidification and cell migration through MTK1 (MEKK4). Cell Signal. 2014;26:70-82 pubmed publisher
  28. McCoy F, Darbandi R, Chen S, Eckard L, Dodd K, Jones K, et al. Metabolic regulation of CaMKII protein and caspases in Xenopus laevis egg extracts. J Biol Chem. 2013;288:8838-48 pubmed publisher
  29. Syu L, El Zaatari M, Eaton K, Liu Z, Tetarbe M, Keeley T, et al. Transgenic expression of interferon-? in mouse stomach leads to inflammation, metaplasia, and dysplasia. Am J Pathol. 2012;181:2114-25 pubmed publisher
  30. Liao H, Munoz Pinto D, Qu X, Hou Y, Grunlan M, Hahn M. Influence of hydrogel mechanical properties and mesh size on vocal fold fibroblast extracellular matrix production and phenotype. Acta Biomater. 2008;4:1161-71 pubmed publisher
  31. Hirose T, Karasawa M, Sugitani Y, Fujisawa M, Akimoto K, Ohno S, et al. PAR3 is essential for cyst-mediated epicardial development by establishing apical cortical domains. Development. 2006;133:1389-98 pubmed