This is a Validated Antibody Database (VAD) review about domestic r.. GAPDH, based on 453 published articles (read how Labome selects the articles), using GAPDH antibody in all methods. It is aimed to help Labome visitors find the most suited GAPDH antibody. Please note the number of articles fluctuates since newly identified citations are added and citations for discontinued catalog numbers are removed regularly.
Invitrogen
mouse monoclonal (GA1R)
  • immunocytochemistry; mouse; 1:1000; loading ...; fig 4c
Invitrogen GAPDH antibody (Thermo Fisher, GA1R) was used in immunocytochemistry on mouse samples at 1:1000 (fig 4c). Arch Immunol Ther Exp (Warsz) (2019) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10,000; loading ...; fig 1c
Invitrogen GAPDH antibody (Thermo Fisher, AM4300) was used in western blot on human samples at 1:10,000 (fig 1c). Nucleic Acids Res (2019) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:150,000; loading ...; fig 1a
Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:150,000 (fig 1a). Sci Rep (2019) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:1000; loading ...; fig 2c
Invitrogen GAPDH antibody (Ambion, 4300) was used in western blot on human samples at 1:1000 (fig 2c). Biochem Pharmacol (2019) ncbi
mouse monoclonal (GA1R)
  • western blot; human; loading ...; fig 3d
Invitrogen GAPDH antibody (Invitrogen, MA5-15738) was used in western blot on human samples (fig 3d). PLoS Pathog (2018) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:5000; loading ...; fig s4g
Invitrogen GAPDH antibody (Life Technologies, AM43000) was used in western blot on mouse samples at 1:5000 (fig s4g). Nat Commun (2018) ncbi
mouse monoclonal (6C5)
  • other; human; loading ...; fig 4c
Invitrogen GAPDH antibody (Thermo Fisher Scientific, AM4300) was used in other on human samples (fig 4c). Cancer Cell (2018) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 1:1000; loading ...; fig 6h
  • western blot; mouse; 1:1000; loading ...; fig 6h
In order to study induction of cell death by low frequency magnetic fields, Invitrogen GAPDH antibody (Thermo Fisher Scientific, MA5-15738-BTIN) was used in western blot on human samples at 1:1000 (fig 6h) and in western blot on mouse samples at 1:1000 (fig 6h). Sci Rep (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; 1:5000; fig 9a
In order to investigate the effects of glutathione deficiency on lens homeostasis and cataractogenesis, Invitrogen GAPDH antibody (Thermo Fisher Scientific, MA5-15738) was used in western blot on mouse samples at 1:5000 (fig 9a). Invest Ophthalmol Vis Sci (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; loading ...; fig s1b
In order to report that the Myomixer-Myomaker interaction regulates myofiber formation during muscle development, Invitrogen GAPDH antibody (Thermo Fisher Scientific, MA5-15738) was used in western blot on mouse samples (fig s1b). Science (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; human; loading ...; fig 4e
In order to identify and study the allosteric pockets of SPAK and OSR1, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on human samples (fig 4e). ChemMedChem (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; S. cerevisiae; fig 1c
In order to describe the effects of 6-Bio using a preclinical model of Parkinson disease, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on S. cerevisiae samples (fig 1c). Autophagy (2017) ncbi
mouse monoclonal (6C5)
  • reverse phase protein lysate microarray; human; loading ...; fig 7a
In order to characterize the molecular identity of uterine carcinosarcomas., Invitrogen GAPDH antibody (Ambion, AM4300) was used in reverse phase protein lysate microarray on human samples (fig 7a). Cancer Cell (2017) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:5000; loading ...; fig 2a
In order to analyze the mechanistic relationship between sirtuin 2 and alpha-synuclein in Parkinson's disease, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:5000 (fig 2a). PLoS Biol (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; 1:10,000; loading ...; fig 4f
In order to study the interaction between Hap1 and Dcaf7, Invitrogen GAPDH antibody (Thermo Fisher, GA1R) was used in western blot on mouse samples at 1:10,000 (fig 4f). Proc Natl Acad Sci U S A (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 1:4000; loading ...; fig 1a
In order to determine the role of mitochondrial Cx40 in endothelial cells, Invitrogen GAPDH antibody (Thermo, MA5-15738) was used in western blot on human samples at 1:4000 (fig 1a). Am J Physiol Cell Physiol (2017) ncbi
mouse monoclonal (6C5)
  • reverse phase protein lysate microarray; human; loading ...; fig 3a
In order to describe the features of 228 primary cervical cancers, Invitrogen GAPDH antibody (Ambion, AM4300) was used in reverse phase protein lysate microarray on human samples (fig 3a). Nature (2017) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig s2b
In order to determine the role of p21-activated kinases in response to BRAF inhibitors, Invitrogen GAPDH antibody (Thermo Fisher Scientific, AM4300) was used in western blot on human samples (fig s2b). Mol Carcinog (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; human; loading ...
In order to distinguish the effects of the non-neutrophil-containing plasma fractions on human skeletal muscle myoblast differentiation, Invitrogen GAPDH antibody (Pierce, MA5-15738) was used in western blot on human samples . Am J Sports Med (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; 1:2000; loading ...; fig 1c
In order to discover a gene silencing mechanism in developing mammalian hearts regulated by the interaction of DNMT3B-mediated non-CpG methylation and REST binding, Invitrogen GAPDH antibody (Thermo Fisher, MA5-15738) was used in western blot on mouse samples at 1:2000 (fig 1c). Nucleic Acids Res (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; loading ...
In order to elucidate how calcium-dependent signaling contributes to colitis, Invitrogen GAPDH antibody (Pierce, MA5-15738) was used in western blot on mouse samples . Am J Physiol Gastrointest Liver Physiol (2017) ncbi
mouse monoclonal (6C5)
  • western blot; human; loading ...; fig 3a
In order to study circadian rhythmicity in cultured chondrocytes and determine the role of NR1D1 and BMAL1 in regulating chondrocyte functions, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on human samples (fig 3a). Osteoarthritis Cartilage (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; human; loading ...; fig 2b
In order to determine effect of oxyresveratrol on intestinal tight junctions through stimulation of trefoil factor 3 production in goblet cells, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on human samples (fig 2b). Biomed Pharmacother (2017) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; loading ...; fig 2e
In order to compare gene expression profiles of the embryonic stem cell- and adult progenitor-derived dendritic cells, Invitrogen GAPDH antibody (Thermo Fisher Scientific, AM4300) was used in western blot on mouse samples (fig 2e). J Immunol (2017) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:5000; loading ...; fig 6b
In order to report the effects of peroxisome proliferator-activated receptor beta/delta agonist on the acute phase response after brain injury, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on mouse samples at 1:5000 (fig 6b). Transl Res (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; loading ...; fig 5d
In order to elucidate how FoxO1 regulates mitochondrial uncoupling proteins, Invitrogen GAPDH antibody (Pierce, MA5-15738) was used in western blot on mouse samples (fig 5d). Cell Death Discov (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; loading ...; fig 4b
In order to report that stiffer pancreatic ductal adenocarcinoma cells are more invasive than more compliant cells, Invitrogen GAPDH antibody (ThermoFisher, MA5-15738) was used in western blot on human samples (fig 4b). Integr Biol (Camb) (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; loading ...; fig 2a
In order to discuss the contribution of IL-1beta and NLRP3 inflammasome activation to Kawasaki disease, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on mouse samples (fig 2a). J Immunol (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 2
In order to clarify the role of protein kinase C in the pathogenesis of RNA toxicity, Invitrogen GAPDH antibody (Ambion, 4300) was used in western blot on mouse samples (fig 2). PLoS ONE (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; loading ...; fig 5a
In order to report that Zfp407 overexpression improved glucose homeostasis, Invitrogen GAPDH antibody (Thermo Fischer, MA5-15738) was used in western blot on mouse samples (fig 5a). Am J Physiol Endocrinol Metab (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
In order to assess the responses of ALT- or telomerase-positive cell lines to VE-821 treatment, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 2). Front Oncol (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:4000; loading ...; fig 1a
In order to investigate how the interaction between desmin with the alpha beta crystallin contributes to cardiac health, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:4000 (fig 1a). J Cell Sci (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 6
In order to demonstrate that OTULIN is essential for preventing TNF-associated systemic inflammation in humans and mice, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 6). Cell (2016) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:1000; fig 2
In order to show that A2AR regulates GR function and contributes to age-related memory deficits, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on rat samples at 1:1000 (fig 2). Sci Rep (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 3
In order to examine the role of sirtuins during the transition from early to late sepsis in obese subjects with sepsis, Invitrogen GAPDH antibody (Invitrogen, AM4300) was used in western blot on mouse samples (fig 3). PLoS ONE (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; loading ...; fig 1b
In order to investigate the differentiation of mesenchymal stem cells into beige/brown adipocytes, Invitrogen GAPDH antibody (Thermo Fisher, MA5-15738) was used in western blot on human samples (fig 1b). Biochem Biophys Res Commun (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; fission yeast; fig 3
In order to generate and characterize recoded fluorescent proteins for three-color analysis in Schizosaccharomyces pombe, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on fission yeast samples (fig 3). PLoS ONE (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:2000; fig 1
In order to research differentiation of functional glutamatergic neurons from placenta-derived multipotent cells by knocking down of heat-shock protein 27, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:2000 (fig 1). Sci Rep (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 1:1500; fig 6
In order to characterize 3D-cultured prostate cancer cells' drug response and expression of drug-action associated proteins and the influence of matrices, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on human samples at 1:1500 (fig 6). PLoS ONE (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; fig 6
In order to study the involvement of the host protein ORP1L and interactions between the endoplasmic reticulum and the Coxiella burnetii parasitophorous vacuole, Invitrogen GAPDH antibody (ThermoFisher, MA5-15738) was used in western blot on human samples (fig 6). Cell Microbiol (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; human; fig 3
In order to study novel activities of human cytomegalovirus tegument protein pUL103 by study of protein-protein interactions, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on human samples (fig 3). J Virol (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:50,000; tbl 2
In order to analyze the reduction of renal fibrosis and inflammation after unilateral ureteral obstruction due to overexpression of the short endoglin isoform, Invitrogen GAPDH antibody (Ambion Applied Biosystems, AM4300) was used in western blot on mouse samples at 1:50,000 (tbl 2). Biochim Biophys Acta (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; fig 2
In order to study protection against ischemic myopathy in high fat fed mice by targeted expression of catalase to mitochondria, Invitrogen GAPDH antibody (Thermo Fisher Scientific, MA5-15738) was used in western blot on mouse samples (fig 2). Diabetes (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; fig 1
In order to learn suppression of autophagy and lipid droplet growth in adipocytes by FoxO1 antagonist, Invitrogen GAPDH antibody (Pierce, MA5-15738) was used in western blot on mouse samples (fig 1). Cell Cycle (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; 1:2000; fig 1c
In order to study the role of cytosolic Ca(2+)/calmodulin-dependent protein kinase II in the high-intensity endurance training that reduces cardiac dysfunction, Invitrogen GAPDH antibody (Thermo Fisher, MA5-15738) was used in western blot on mouse samples at 1:2000 (fig 1c). J Appl Physiol (1985) (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; Caenorhabditis elegans; 1:5000; fig 2
In order to study the lifespan extension of Caenorhabditis elegans by resveratrol and oxyresveratrol by SIR-2.1-dependence, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on Caenorhabditis elegans samples at 1:5000 (fig 2). Exp Biol Med (Maywood) (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 7
  • western blot; human; fig 1
In order to study suppression invasion by reduction of intracellular GTP pools via a microphthalmia-associated transcription factor, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 7) and in western blot on human samples (fig 1). Oncogene (2017) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 3
In order to study how Parkin is responsible for polyubiquitination of apurinic/apyrimidinic endonuclease 1, Invitrogen GAPDH antibody (Invitrogen, AM4300) was used in western blot on human samples (fig 3). Mol Carcinog (2017) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 8
  • western blot; cat; fig 1
In order to study disruption of the assembly of cytoplasmic stress granules and induction of G3BP1 cleavage by feline calicivirus infection, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 8) and in western blot on cat samples (fig 1). J Virol (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:50,000; fig 7
In order to study regulation by ADP-ribosylation of bone morphogenetic protein signaling, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:50,000 (fig 7). J Biol Chem (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; fig 4
In order to learn enhancement of RBM15 protein translation during megakaryocyte differentiation by the AS-RBM15 IncRNA, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on human samples (fig 4). EMBO Rep (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10,000; fig 1
In order to study kinase DYRK1A selective inhibition by targeting its folding process, Invitrogen GAPDH antibody (Thermo Fisher Scientific, AM4300) was used in western blot on human samples at 1:10,000 (fig 1). Nat Commun (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:1000; fig 5
In order to research suppression of obesity in leptin-deficient mice by Tbc1d1 deletion, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:1000 (fig 5). Int J Obes (Lond) (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:5000; fig 4
In order to study growth arrest-specific-2 upregulation in recurrent colorectal cancer and its susceptibility to chemotherapy in a model cell system, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on human samples at 1:5000 (fig 4). Biochim Biophys Acta (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:4000; fig 5
In order to assess the governing of the recruitment of ovarian pregranulosa cells and control of folliculogenesis in mice due to ADAM10-Notch signaling, Invitrogen GAPDH antibody (Life technologies, AM4300) was used in western blot on mouse samples at 1:4000 (fig 5). J Cell Sci (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 6
In order to determine the major role for alveolar epithelial type 1 cells in alveolar fluid clearance revealed by knockout mice, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on mouse samples (fig 6). Am J Respir Cell Mol Biol (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:3000; fig 2
In order to study the cause of progeroid disorder by a mutation abolishing the ZMPSTE24 cleavage site in prelamin A, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:3000 (fig 2). J Cell Sci (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 5
In order to analyze the binding of p300 with PIAS1 acting as a coactivator or corepressor of the transcription factor c-Myb dependent on SUMO-status, Invitrogen GAPDH antibody (Invitrogen, AM4300) was used in western blot on human samples (fig 5). Biochim Biophys Acta (2016) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:6000; fig 4c
In order to study how transcriptional regulation and Skp2-mediated degradation of p27Kip1 activates stem cell properties of muller glia through notch signaling, Invitrogen GAPDH antibody (Ambion, 4300) was used in western blot on rat samples at 1:6000 (fig 4c). PLoS ONE (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:20,000; fig 1
In order to elucidate the mechanism of corticotropin releasing hormone (Crh) and macroautophagy, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:20,000 (fig 1). Sci Rep (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human
In order to assess the effect of 11B3 loss on tumorigenesis, Invitrogen GAPDH antibody (ThermoFisher, MA5-15738-HRP) was used in western blot on human samples . Nature (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
In order to determine the regulation of von Hippel Lindau proteostasis and function by phosphorylation-dependent cleavage, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 2). Oncogene (2016) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:5000; fig 1b
In order to analyze FNDC5, produced in the stomach, and its role in body composition, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on rat samples at 1:5000 (fig 1b). Sci Rep (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; loading ...; fig 1a
In order to investigate gamma-interferon-inducible lysosomal thiol reductase expression in melanoma, Invitrogen GAPDH antibody (Thermo Scientific, GA1R) was used in western blot on human samples (fig 1a). Melanoma Res (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human
In order to discuss the findings of The Reproducibility Project: Cancer Biology, Invitrogen GAPDH antibody (Life Technologies, MA5-15738) was used in western blot on human samples . elife (2016) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:4000; fig 1
In order to investigate the rescue of seizure susceptibility and spine morphology in atypical febrile seizures by reducing premature KCC2 expression, Invitrogen GAPDH antibody (Applied Biosystems, AM4300) was used in western blot on rat samples at 1:4000 (fig 1). Neurobiol Dis (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 1
In order to analyze how p66Shc activation can occur by cJun N-terminal kinase (JNK) phosphorylation of serine 36, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 1). Sci Rep (2016) ncbi
mouse monoclonal (6C5)
  • western blot; barley; 1:1000; fig 3
In order to characterize inhibition and binding of the glyceraldehyde-3-phosphate dehydrogenase in barley aleurone due to diacylglycerol pyrophosphate, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on barley samples at 1:1000 (fig 3). Plant Physiol Biochem (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 1:1000; fig 1a
In order to determine which 2',5'-oligoadenylate synthetase regulates RNase L activation during viral infection, Invitrogen GAPDH antibody (Thermo Fisher, GA1R) was used in western blot on human samples at 1:1000 (fig 1a). Proc Natl Acad Sci U S A (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:5000; fig 1
In order to investigate impairment of autophagy flux and induction of cell death independent of necroptosis and apoptosis by dual PI-3 kinase/mTOR inhibition, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:5000 (fig 1). Oncotarget (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:15,000; fig 4
In order to characterize colorectal cancer and nuclear localization of YBX1 and uncoupling of EGFR-RAS signaling, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on human samples at 1:15,000 (fig 4). Oncogenesis (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 1:5000; fig 2
In order to determine reduction of osteo-inductive potential of human plasma derived extracellular vesicles by a decrease in vesicular galectin-3 levels that decreses with donor age, Invitrogen GAPDH antibody (Pierce, MA5-15738) was used in western blot on human samples at 1:5000 (fig 2). Aging (Albany NY) (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 8
In order to discuss the interaction between the HEAT-1 domain of eIF4G and c-terminal motif in norovirus VPG and its role in translation initiation, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 8). PLoS Pathog (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 4
In order to determine a therapeutic strategy to target the IRF4 network in multiple myeloma by using the bromodomain inhibition of the transcriptional coactivators CBP/EP300, Invitrogen GAPDH antibody (Life technologies, AM4300) was used in western blot on human samples (fig 4). elife (2016) ncbi
mouse monoclonal (6C5)
  • western blot; hamsters; fig 1
In order to study activation of SREBP2 that promotes hepatic long-chain Acyl-CoA synthetase 1 (ACSL1) expression in vivo and in vitro through a sterol regulatory element (SRE) motif of the ACSL-C promoter, Invitrogen GAPDH antibody (Thermo Fisher, AM4300) was used in western blot on hamsters samples (fig 1). J Biol Chem (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
In order to test if dying neutrophils release peptidyl arginine deiminase, which results in citrullination of antigens relevant to rheumatoid arthritis, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on human samples (fig 2). Arthritis Res Ther (2015) ncbi
mouse monoclonal (6C5)
  • western blot; rat; fig 1
In order to test the relationship between epithelial mesenchymal transition induced by transforming growth factor beta 1 is blocked by an antagonist of translation factor eIF4E, Invitrogen GAPDH antibody (Applied Biosystems, AM4300) was used in western blot on rat samples (fig 1). Sci Rep (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:5000; fig 3
In order to study a novel crizotinib-resistant solvent-front mutation in a patient with ROS1-rearranged lung cancer that is responsive to cabozantinib therapy, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:5000 (fig 3). Clin Cancer Res (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:20,000; fig 2
In order to assess the regulation of PLK1 and PCNT cleavage and mitotic exit via centriole separation, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on human samples at 1:20,000 (fig 2). Nat Commun (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 1
  • western blot; human; fig 1
In order to determine the requirement of mitochondrial ribosomal protein L12 for POLRMT stability and exists as two forms generated by alternative proteolysis during import, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 1) and in western blot on human samples (fig 1). J Biol Chem (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; fig 1
In order to report that PRMT1 regulates alternative RNA splicing by reducing RBM15, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on human samples (fig 1). elife (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
In order to analyze the transition from epithelial-mesenchymal induced by transforming growth factor beta, Invitrogen GAPDH antibody (Ambion, AM43000) was used in western blot on human samples (fig 2). Methods Mol Biol (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:1000; fig 7
In order to assess Losartan treatment on experimental glaucoma, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on mouse samples at 1:1000 (fig 7). PLoS ONE (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to identify molecular alterations in the normal mucosa in the proximity of adenomatous polyps and assess the modulating effect of butyrate, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples . BMJ Open Gastroenterol (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to investigate the role of FOXG1 in neuronal differentiation, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples . Hum Pathol (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to show that Grb7 recruits Syk to the stress granule, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples . J Biol Chem (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to study the role of gep oncogenes in ovarian cancer growth, Invitrogen GAPDH antibody (Life Technologies-Ambion, AM4300) was used in western blot on human samples . Genes Cancer (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10000
In order to study the role of the pericentriolar material disassembly in centriole separation during mitotic exit, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:10000. PLoS ONE (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to study molecular mechanisms used by B cells to control the source of peptides loaded onto class II molecules, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . J Biol Chem (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:5000
In order to discuss the sensitivity and selectivity of seven ROS1 and/or ALK inhibitors, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:5000. Proc Natl Acad Sci U S A (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
In order to assess negative regulation of the NF-kappaB-mediated signaling pathway through stabilization of Cactin by TRIM39, Invitrogen GAPDH antibody (Ambion, 6C5) was used in western blot on human samples (fig 2). Cell Mol Life Sci (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 1
In order to investigate how reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signaling, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 1). Nat Commun (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:4000
In order to study the rhythmic expression of intellectual disability genes in the mouse hippocampus, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:4000. Neuroscience (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; fig 6
In order to elucidate the mechanisms by which increased LMNB1 levels cause autosomal dominant leukodystrophy, Invitrogen GAPDH antibody (Pierce, MA515738) was used in western blot on mouse samples (fig 6). J Neurosci (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; 1:100; fig 2d
In order to compare cognitive and motor behaviors in various LRRK2 transgenic mice, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on mouse samples at 1:100 (fig 2d). Parkinsonism Relat Disord (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 1
In order to investigate how the interaction between protein kinase G and Orai1 contributes to cardiac hypertrophy, Invitrogen GAPDH antibody (Ambion, am4300) was used in western blot on human samples (fig 1). Stem Cells (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; S. cerevisiae; fig 6
In order to develop methods to study pseudouridylation of mRNA, Invitrogen GAPDH antibody (Pierce, MA5-15738) was used in western blot on S. cerevisiae samples (fig 6). Methods Enzymol (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:1000; fig 3
In order to study how regenerative progenitors can be turned into terminally differentiated skeletal muscle cells, Invitrogen GAPDH antibody (Invitrogen, AM4300) was used in western blot on mouse samples at 1:1000 (fig 3). Nat Commun (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 1:10,000; fig 1.a,b
In order to examine the role of the host unfolded protein response during L. pneumophila infection, Invitrogen GAPDH antibody (Thermo, MA5-15738) was used in western blot on human samples at 1:10,000 (fig 1.a,b). Nat Commun (2015) ncbi
mouse monoclonal (6C5)
  • western blot; rat
In order to describe a strategy of dual SILAC labeling astrocytic cultures for in silico exclusion of unlabeled proteins from serum or neurons used for stimulation, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on rat samples . J Proteome Res (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; human
In order to investigate the mechanisms of cell cycle regulation by the small isoform of JADE1, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on human samples . Cell Cycle (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; human; fig 4
In order to investigate alterations in surface protein expression associated with the 11q13 amplicon, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on human samples (fig 4). J Proteome Res (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; 1:5000; fig s3
In order to investigate the role of nebulin in muscle cells using transgenic mice, Invitrogen GAPDH antibody (ThermoScientific, GA1R) was used in western blot on mouse samples at 1:5000 (fig s3). Hum Mol Genet (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:50000
In order to show that tamoxifen prevents myofibroblast differentiation, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:50000. J Cell Physiol (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:1000; fig 4d
In order to elucidate the function of TRIM29 in double stranded break repair, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:1000 (fig 4d). Nat Commun (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; Helicobacter pylori; 1:5000
Invitrogen GAPDH antibody (Thermo Fisher Scientific, GA1R) was used in western blot on Helicobacter pylori samples at 1:5000. Int J Mol Med (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to demonstrate that TRIM29 regulates the p63 pathway in cervical cancer cells, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples . Biochim Biophys Acta (2015) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:20000
In order to study the role of Neuregulin1/ErbB system during peripheral nerve degeneration and regeneration, Invitrogen GAPDH antibody (ThermoFischer Scientific, 4300) was used in western blot on rat samples at 1:20000. Eur J Neurosci (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 1
In order to investigate the role of RIPK1 in response to endoplasmic reticulum stress, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 1). Autophagy (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to study the effect of CD137 on HPV positive head and neck squamous cell carcinoma tumor clearance, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on mouse samples . Vaccines (Basel) (2014) ncbi
mouse monoclonal (GA1R)
  • western blot; fission yeast
In order to characterize histone sprocket arginine residue mutants in yeast, Invitrogen GAPDH antibody (Thermo Scientific, MA5-15738) was used in western blot on fission yeast samples . Genetics (2015) ncbi
mouse monoclonal (6C5)
  • immunocytochemistry; dogs
In order to study the role of MAL, a tetraspanning protein, in primary cilium formation, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in immunocytochemistry on dogs samples . J Cell Sci (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:15000
In order to examine the effect of resveratrol treatment on microvascular inflammation in obese septic mice, Invitrogen GAPDH antibody (Invitrogen, AM4300) was used in western blot on human samples at 1:15000. Obesity (Silver Spring) (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; human
Invitrogen GAPDH antibody (Thermo Scientific, GA1R) was used in western blot on human samples . J Virol (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to study the contribution of filamin B on the invasiveness of cancer, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples . Cell Struct Funct (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; human
Invitrogen GAPDH antibody (Thermo Fisher Scientific, GA1R) was used in western blot on human samples . Cell Mol Life Sci (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; loading ...; fig 1b
In order to use native elongating transcript sequencing in human cells to globally map strand-specific RNA polymerase II density at nucleotide resolution, Invitrogen GAPDH antibody (Applied Biosystems, 6C5) was used in western blot on human samples (fig 1b). Cell (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to identify the mechanism of metformin on dystrophic muscle, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on mouse samples . Muscle Nerve (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; rat; fig 1
In order to test if acute pharmacological activation of AKT induces cardioprotection, Invitrogen GAPDH antibody (Pierce, MA5-15738) was used in western blot on rat samples (fig 1). J Transl Med (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 6
In order to investigate the effects of nicotinamide adenine dinucleotide phosphate reduced oxidase 4 in liver tissues from patients with NASH and mice with steatohepatitis, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on mouse samples (fig 6). Gastroenterology (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:16,000; fig 2
  • western blot; mouse; 1:16,000; fig 5
In order to test if PTHrP contributes to adipogenic regulation, obesity, and insulin resistance, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:16,000 (fig 2) and in western blot on mouse samples at 1:16,000 (fig 5). J Clin Endocrinol Metab (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:40,000; fig 2a
In order to examine an immunoblot-analysis workflow for accuracy and precision, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:40,000 (fig 2a). Sci Signal (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human
Invitrogen GAPDH antibody (Applied Biosystems, 6C5) was used in western blot on human samples . Mol Cell Biol (2015) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:4000
In order to test the effects of calcitriol treatment in a puromycin induced proteinuric nephropathy model, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on rat samples at 1:4000. Mol Med Rep (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse
Invitrogen GAPDH antibody (Thermo Scientific, GA1R) was used in western blot on mouse samples . Infect Immun (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:20000; fig 1
In order to investigate the mechanisms downstream of STAT3 signaling that regulate inflammation, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:20000 (fig 1). Sci Rep (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:2000; fig 1
In order to elucidate the mechanism by which estradiol regulates progesterone production in the corpus luteum, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:2000 (fig 1). Mol Endocrinol (2015) ncbi
mouse monoclonal (6C5)
  • western blot; Xenopus laevis; 1:5000
In order to determine the role of NOL11 in vertebrate ribosome biogenesis and craniofacial development, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on Xenopus laevis samples at 1:5000. PLoS Genet (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to study the effects of compressive stress on cellular functions, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . PLoS ONE (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; chicken
Invitrogen GAPDH antibody (Thermo Scientific, GA1R) was used in western blot on chicken samples . Virus Res (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 3
In order to test if lys methylation of Pdx1 by Set7/9 affects Pdx1 transcriptional activity, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 3). J Biol Chem (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
  • western blot; human
In order to show that FKBP12 and FKBP51 levels determine the responsiveness of a cell line or tissue to rapamycin, Invitrogen GAPDH antibody (Ambion Austin, AM4300) was used in western blot on mouse samples and in western blot on human samples . Aging Cell (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; fig 4
In order to assess the effects of TNBS- and DSS-induced colitis on renal Ncx1 expression, Invitrogen GAPDH antibody (Pierce, MA5-15738) was used in western blot on mouse samples (fig 4). J Biol Chem (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig s2
In order to analyze the antiviral innate immune response due to mitochondrial DNA stress, Invitrogen GAPDH antibody (Ambion, 6C5) was used in western blot on mouse samples (fig s2). Nature (2015) ncbi
mouse monoclonal (GA1R)
In order to generate safer genetically modified organisms that are dependent on synthetic metabolites, Invitrogen GAPDH antibody (Thermo, MA5-15738) was used . Nature (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse
In order to study the effects of Tamoxifen administration on obesity, Invitrogen GAPDH antibody (Thermo Fisher Scientific, MA5-15738) was used in western blot on mouse samples . Cell Death Dis (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 1:3000; fig 1,2,3,4
In order to study targeting of Ubc13 and ZEB1 by miR-2015 that acts as a tumour radiosensitizer, Invitrogen GAPDH antibody (Thermo, MA5-15738) was used in western blot on human samples at 1:3000 (fig 1,2,3,4). Nat Commun (2014) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 25 ng/ml; fig 4
In order to investigate TRiC-mediated protein folding in the telomerase pathway, Invitrogen GAPDH antibody (Thermo, MA5-15738) was used in western blot on human samples at 25 ng/ml (fig 4). Cell (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:20000
In order to assess the best reference to use as a loading control for Western blotting of human skeletal muscle in applied physiology, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on human samples at 1:20000. J Appl Physiol (1985) (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 1
In order to study autophagy in Mycobacterium tuberculosis-infected patients, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 1). Autophagy (2014) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:2000; fig 3
In order to analyze the modification of the location of potassium channel KCNQ5 in auditory brainstem neurons due to loss of auditory activity, Invitrogen GAPDH antibody (Applied Biosystems, 6C5) was used in western blot on rat samples at 1:2000 (fig 3). J Neurosci Res (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 5
In order to study microRNAs in bone development, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 5). J Bone Miner Res (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to identify the role of obscurins during breast carcinogenesis, Invitrogen GAPDH antibody (Applied Biosystems, AM4300) was used in western blot on human samples . Oncogene (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10000
In order to investigate the sex-specific gene expression in human term placenta and its response to n-3 LCPUFA intervention, Invitrogen GAPDH antibody (Ambion Inc./Life Technologies, AM4300) was used in western blot on human samples at 1:10000. BMC Genomics (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to examine expression of the E7 protein in cervical cancer cell lines, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on human samples . Virus Genes (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:40,000; fig 1
In order to investigate the role of TGF-beta to renal fibrosis, Invitrogen GAPDH antibody (Invitrogen, AM4300) was used in western blot on mouse samples at 1:40,000 (fig 1). PLoS ONE (2014) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:5000
In order to determine the role of mohawk homeobox in ligament/tenogenic differentiation of bone marrow derived mesenchymal stem cells, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on rat samples at 1:5000. J Orthop Res (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 1:2000
Invitrogen GAPDH antibody (Sigma-Aldrich, MA5-15738) was used in western blot on human samples at 1:2000. Breast Cancer Res (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to examine the accumulation of polyubiquitin conjugates in PiZ mouse liver, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . PLoS ONE (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to study delta-9-tetrahydrocannabinol in St8sia2(-/-) mice, Invitrogen GAPDH antibody (Ambion Life Technologies, AM4300) was used in western blot on human samples . Behav Brain Res (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 0.2 ug/mL
In order to examine the fractalkine protein expression in mice retina, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on mouse samples at 0.2 ug/mL. PLoS ONE (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:2000
In order to study ceramide dysregulation in a chronic experimental autoimmune encephalomyelitis model, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:2000. Biochem Pharmacol (2014) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse
Invitrogen GAPDH antibody (Thermo Scientific, GA1R) was used in western blot on mouse samples . Front Physiol (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1 ug/ml; fig 6
In order to study the role of Pax6 in the maintenance and differentiation of adult neural stem cells and in adult neurogenesis, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1 ug/ml (fig 6). Stem Cells Dev (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:10,000; fig 1
In order to investigate how BRAF/MAPK activity regulates intestinal stem cell populations and contributes to colon cancer, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on mouse samples at 1:10,000 (fig 1). Oncogene (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; 1:3000; fig 4c
  • western blot; human; 1:3000; fig 1a
In order to show that the zinc finger E-box binding homeobox 1 regulates radiosensitivity and the DNA damage response in breast cancer cells, Invitrogen GAPDH antibody (Thermo, MA5-15738) was used in western blot on mouse samples at 1:3000 (fig 4c) and in western blot on human samples at 1:3000 (fig 1a). Nat Cell Biol (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:40000
In order to show that that PINK1 deficiency triggers hypoxia-inducible factor-1alpha, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on mouse samples at 1:40000. Nat Commun (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:2000; fig  2
In order to examine the role of P2Y6 receptors in pain processing, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:2000 (fig  2). Pharmacol Biochem Behav (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:15000
In order to investigate the effect of SIRT1 inhibition during sepsis, Invitrogen GAPDH antibody (Invitrogen, AM4300) was used in western blot on mouse samples at 1:15000. J Leukoc Biol (2014) ncbi
mouse monoclonal (GA1R)
  • western blot; rat
In order to examine the p.G2019S mutation in the leucine-rich repeat kinase 2 (LRRK2) and it's role in Parkinson's disease, Invitrogen GAPDH antibody (Thermo, MA5-15738) was used in western blot on rat samples . J Parkinsons Dis (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 2
In order to use a DDR2 knockout mouse to examine the contribution of DDR2 to heart structure and function, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 2). Am J Physiol Heart Circ Physiol (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 8
In order to identify the components of the norovirus translation initiation factor complex, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 8). J Biol Chem (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:5000; fig 3
In order to characterize a monoclonal anti-human c-kit antibody for inhibiting tumor growth, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on human samples at 1:5000 (fig 3). Cancer Biol Ther (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10000
In order to identify a hypomorphic variant of CCDC22 in patients with RSS/3C syndrome in an Austrian family, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:10000. Eur J Hum Genet (2015) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:20000
In order to study the role of UTP in Schwannoma cell migration in response to peripheral nerve injury and its mechanism, Invitrogen GAPDH antibody (Applied Biosystems, AM4300) was used in western blot on rat samples at 1:20000. PLoS ONE (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to confirm the role of argininosuccinate lyase deficiency from enterocytes in the pathogenesis of necrotizing enterocolitis, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . Am J Physiol Gastrointest Liver Physiol (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to study how RAS disrupts the circadian clock in cancer cells, Invitrogen GAPDH antibody (Ambion, Am4300) was used in western blot on human samples . PLoS Genet (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:10,000
In order to determine the in vivo functions of miR-142, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:10,000. elife (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to assess the cardiac phenotype in LAP1 depleted mice, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . Nucleus (2014) ncbi
mouse monoclonal (6C5)
  • western blot; hamsters
In order to investigate the use of peptides as carriers of short interfering RNA, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on hamsters samples . PLoS ONE (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to investigate how VHL-R167Q contributes to tumorigenesis, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples . Cancer Res (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human
  • western blot; mouse
In order to examine the relationship between endoplasmic reticulum stress and autophagy in human and mouse hepatocytes during non-alcoholic fatty liver disease, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples and in western blot on mouse samples . Cell Death Dis (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to investigate how PRMT6 promotes ERalpha activity, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . Biochim Biophys Acta (2014) ncbi
mouse monoclonal (6C5)
  • immunocytochemistry; mouse; 1:1000
Invitrogen GAPDH antibody (Life Technologies, 6C5) was used in immunocytochemistry on mouse samples at 1:1000. J Bone Miner Res (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:2000
In order to correlate the expression of CD200 in various types of cancer with the responses to chemotherapy and radiation, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:2000. Head Neck (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to examine the role of the LIM homeodomain transcription factor Isl1 in pyloric development, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . BMC Biol (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:20000
In order to elucidate the mechanism for the role of Zscan4 in early mammalian embryogenesis, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:20000. PLoS ONE (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10000; fig 1d
In order to show that C9ORF72 regulates endosomal trafficking, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:10000 (fig 1d). Hum Mol Genet (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10000
In order to determine if NaAsO2 and hyperthermia alter cisplatin-induced G2 arrest and cause mitotic arrest and mitotic catastrophe, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:10000. Toxicol Sci (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10000
In order to determine the cellular function of Lyar, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:10000. Genes Cells (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:5000
In order to test if CDK-9 inhibition protects cartilage from the catabolic effects of proinflammatory cytokines, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:5000. Arthritis Rheumatol (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:4000
In order to characterize engineered human tendon tissue and how release of tensile strain changes matrix architecture, disturbs cell adhesions, and induces an inflammatory phenotype, Invitrogen GAPDH antibody (Invitrogen, AM4300) was used in western blot on human samples at 1:4000. PLoS ONE (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:5000; fig 2
In order to determine how a reversal of glioma stem cell phenotype occurs based on a cell-penetrating petide and the interaction between c-Src and connexin43, Invitrogen GAPDH antibody (Applied Biosystems, AM4300) was used in western blot on human samples at 1:5000 (fig 2). Cell Death Dis (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 1, 2
In order to demonstrate that p38MAPK activation elevates mitochondrial ROS levels, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 1, 2). Cell Commun Signal (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to suggest that detection of WIPI1 mRNA is a convenient method of monitoring autophagosome formation, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on human samples . Autophagy (2014) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:500; fig 1
  • western blot; human; 1:500; fig 1
In order to test if steroidogenic factor 1 is expressed in castration-resistant prostate cancer and determine if it stimulates aberrant steroidogenesis and fuels aggressive growth, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on rat samples at 1:500 (fig 1) and in western blot on human samples at 1:500 (fig 1). Endocrinology (2014) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:5000; fig 2
In order to identify targets of miR-22 that contribute to heart failure, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on rat samples at 1:5000 (fig 2). PLoS ONE (2013) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to demonstrate that Ras signaling is important for enamel formation in individuals with Costello syndrome and present mouse model system to dissect the roles of the Ras effector pathways in vivo, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . Hum Mol Genet (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:40,000
In order to test if polyST deficiency results in a schizophrenia-like phenotype using knock out mice, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:40,000. Brain Struct Funct (2015) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:2000; fig 5
In order to characterize a rat model for long-term upper extremity overuse that causes increased serum and musculotendinous fibrogenic proteins followed by low-grade inflammation, Invitrogen GAPDH antibody (Invitrogen, AM4300) was used in western blot on rat samples at 1:2000 (fig 5). PLoS ONE (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:5000
In order to study the relationship between tumor protein D52 and ATM protein, Invitrogen GAPDH antibody (Life Technologies, 6C5) was used in western blot on human samples at 1:5000. Cell Cycle (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:4000; fig 4
In order to investigate the mechanism and function of trimethylated HSPA8, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:4000 (fig 4). J Biol Chem (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to study the phosphorylation of AKT1 and AKT2, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples . Oncogene (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:1000
In order to investigate the role of Tbc1d1 in insulin- and AICAR-stimulated glucose uptake in skeletal muscle, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:1000. Endocrinology (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:1000; fig 7
In order to study the interactions between heat shock protein 90 and conserved herpesvirus protein kinase, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:1000 (fig 7). J Virol (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 3
In order to identify protein interacting with C-kinase 1 as a binding partner of growth hormone-releasing hormone receptor, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 3). J Pharmacol Sci (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
In order to study targeting sEcad for treatment of breast cancer, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 2). Mol Carcinog (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to investigate the role of hepatocyte growth factor receptor, c-met in renoprotection, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . Kidney Int (2013) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:2000; fig 4
In order to examine the antidepressant effect of Yueju in mice, Invitrogen GAPDH antibody (Invitrogen, AM4300) was used in western blot on mouse samples at 1:2000 (fig 4). Evid Based Complement Alternat Med (2013) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 5
In order to describe a novel role for the tubular beta-catenin/MMP-7 axis in controlling the fate of interstitial fibroblasts via epithelial-mesenchymal communication, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 5). Sci Rep (2013) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:15000; fig 1
In order to study the mechanisms regulated by Gsk-3 that contribute to embryonic stem cell self-renewal, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:15000 (fig 1). PLoS ONE (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
In order to test if COMP binds to BMP-2 and test if COMP promotes the biological activity of BMP-2 with respect to osteogenesis, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 2). Bone (2013) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 5
In order to demonstrate that cycloheximide produces inhibin-like effects in gonadotropes by preventing de novo synthesis of ACVR2, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 5). Cell Signal (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:20000; fig 4
In order to study nonalcoholic steatohepatitis using rats, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on human samples at 1:20000 (fig 4). Toxicol Appl Pharmacol (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to examine the role of heat shock proteins in the biogenesis of KCNQ4 channels, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples . PLoS ONE (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:4000
In order to study the mechanism of the mitomycin C on urothelial carcinoma cells, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:4000. Urol Oncol (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to investigate the role of ROCK1 and ROCK2 in cell detachment, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . Cell Death Dis (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to describe the phenotype of seven patients with de novo deletions of chromosome 19p13.3, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples . Clin Genet (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:10000
In order to investigate the functions of KLK6 in oligodendrocyte lineage cell development and myelin protein production, Invitrogen GAPDH antibody (Life TechnologiesIncorporated, AM4300) was used in western blot on mouse samples at 1:10000. Neuroscience (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 1, 2
In order to study the roles of MAPK-related kinase and MKNK-1 in HCV replication and cellular entry, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 1, 2). J Virol (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:1000
In order to determine if mitochondrial DNA expression or content contribute to the mitochondrial dysfunction observed in schizophrenia, bipolar disorder, and major depressive disorder, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:1000. Am J Med Genet B Neuropsychiatr Genet (2013) ncbi
mouse monoclonal (6C5)
  • western blot; forest day mosquito; 1:6000; fig 4
In order to identify host proteins involved in Dengue virus cell entry, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on forest day mosquito samples at 1:6000 (fig 4). Arch Virol (2013) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:20000
In order to examine the role of UTP on N-cadherin expression in schwannoma cells, Invitrogen GAPDH antibody (Applied Biosystems, AM4300) was used in western blot on rat samples at 1:20000. Purinergic Signal (2013) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 1b
In order to characterize mice with reduced Reck-expression, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 1b). Biol Open (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 1
In order to study mechanisms of transcriptional regulation of miRNAs using esophageal squamous cell carcinoma, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 1). Biochem Biophys Res Commun (2013) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 5
In order to elucidate mechanisms that regulate P2rx7 gene expression, Invitrogen GAPDH antibody (Ambion, #AM4300) was used in western blot on mouse samples (fig 5). J Biol Chem (2012) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:3000; fig 4
In order to study gliosis during Purkinje and mitral cell death in the Purkinje Cell Degeneration mouse, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:3000 (fig 4). Glia (2013) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 0.2 ug/ml; fig 3
In order to study the role of AKAP7 in regulating calcium in mouse cardiomyocytes, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 0.2 ug/ml (fig 3). Proc Natl Acad Sci U S A (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
In order to study the role of AURKA, a negative regulator of autophagy, in breast cancer, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 2). Autophagy (2012) ncbi
mouse monoclonal (6C5)
  • western blot; rat; fig 8
In order to test if there is a transcytotic pathway of AQP2 trafficking between apical and basolateral membranes, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on rat samples (fig 8). Am J Physiol Cell Physiol (2013) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 6
In order to characterize mice carrying the human FMR1 premutation allele, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 6). Hum Mol Genet (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:3000
In order to study the role of caspases in cytokine-induced barrier breakdown during neuroinflammation, Invitrogen GAPDH antibody (Applied Biosystems, AM4300) was used in western blot on human samples at 1:3000. J Immunol (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10000; fig 4
In order to identify the roles of H19 gene via the miR-675 pathway in the pathogenesis of preeclampsia, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:10000 (fig 4). RNA Biol (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to exmaine the expression of unfolded protein response genes in endoplasmic reticulum stress, Invitrogen GAPDH antibody (Life Technologies, AM4300) was used in western blot on human samples . Cell Stress Chaperones (2013) ncbi
mouse monoclonal (6C5)
  • western blot; rat; fig 2
In order to study progesterone receptor membrane component in granulosa cells, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on rat samples (fig 2). Endocrinology (2012) ncbi
mouse monoclonal (6C5)
  • immunocytochemistry; mouse; 4 ug/ml; fig 3
In order to develop and use methods to directly assess maternal and embryonic products, Invitrogen GAPDH antibody (Ambion, AM4300) was used in immunocytochemistry on mouse samples at 4 ug/ml (fig 3). PLoS ONE (2012) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to test if H2AX phosphorylation is important in maintaining self-renewal of mouse embryonic stem cells, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . Stem Cells (2012) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 8
In order to characterize mice in which beta-catenin is absent in renal tubules, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 8). Kidney Int (2012) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 1
In order to elucidate the role of chromatin compaction in stem cell fate and function, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 1). PLoS Genet (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10000; fig 5
In order to assess the effects of nanoparticles on inflammation and cellular stress, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:10000 (fig 5). Toxicol Lett (2012) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:40000; fig 1
In order to identify STAT3-controlled effectors of the anti-inflammatory response, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:40000 (fig 1). Blood (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 1
In order to investigate the role of the BDNF-TrkB signaling in the development of CDDP resistance in HNSCC, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 1). PLoS ONE (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:4000; fig 3
In order to identify and validate reference proteins for data standardization, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:4000 (fig 3). PLoS ONE (2012) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:5000
In order to investigate factors that regulate excitatory and inhibitory neuron migration, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:5000. Nat Neurosci (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10000; fig 3
In order to determine the phenotype of the platelets in patients with idiopathic pulmonary arterial hypertension, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:10000 (fig 3). Am J Physiol Lung Cell Mol Physiol (2012) ncbi
mouse monoclonal (6C5)
  • immunohistochemistry; mouse; 1:200
In order to test if germ cell clusters in the mammalian gonad arise through incomplete cell divisions, Invitrogen GAPDH antibody (Zymed, AM4300) was used in immunohistochemistry on mouse samples at 1:200. Mech Dev (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 3
In order to elucidate the impact of H1 in ovarian cancer, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 3). Front Biosci (Landmark Ed) (2012) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to elucidate the link between IL-1beta and Alzheimer's disease pathogenesis, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . J Neuroimmune Pharmacol (2012) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 6
In order to study the response of the serotonergic centrifugal system after mitral cell loss using Purkinje cell degeneration mutant mice, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 6). Neuroscience (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to test if GRB2 contributes to controlling infection by retroviruses by affecting receptor function, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples . J Virol (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 5
In order to identify binding partners of Stau2 in dendritic cells, Invitrogen GAPDH antibody (Ambion, 6C5) was used in western blot on human samples (fig 5). BMC Mol Biol (2011) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:10000; fig 4
  • western blot; human; 1:10000; fig 4
In order to examine Pitx2c expression in the left and right atrial tissue in adult murine and human atria, Invitrogen GAPDH antibody (Ambion, #AM4300) was used in western blot on mouse samples at 1:10000 (fig 4) and in western blot on human samples at 1:10000 (fig 4). PLoS ONE (2011) ncbi
mouse monoclonal (6C5)
  • immunohistochemistry; mouse; 1:1000; fig 1
In order to characterize mice lacking SCHAD (hadh(-/-)), Invitrogen GAPDH antibody (Ambion, AM4300) was used in immunohistochemistry on mouse samples at 1:1000 (fig 1). Endocrinology (2011) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig s3
In order to elucidate mechanism that regulate the integrity of adherens junctions, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig s3). PLoS ONE (2011) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:5000; fig 6
In order to determine the effect of NMDA or bicuculline treatment on miRNA expression in the hippocampal CA1 region of mice or rat neurons, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:5000 (fig 6). PLoS ONE (2011) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig s5
In order to characterize an APECED patient mutation, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig s5). Nucleic Acids Res (2011) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 3
In order to assess modulation of the TWEAK-Fn14 pathway as a therapeutic for oncology, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 3). MAbs (2011) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10,000; fig 1
In order to evaluate the prognostic significance of SATB1 expression in lung cancer, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:10,000 (fig 1). J Thorac Oncol (2011) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 6
In order to examine the varied penetrance and expressivity of the Twisted gastrulation mutation in mice, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 6). Dev Biol (2011) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 3
In order to study the effect of NS5A domain III on the production of hepatitis C virus, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 3). J Virol (2011) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 1
In order to determine the role that VOPP1 has in human squamous cell carcinoma, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 1). Lab Invest (2011) ncbi
mouse monoclonal (6C5)
  • western blot; human; 0.5 ug/ml; fig 4
In order to elucidate the mechanisms by which cholesterol regulates LRP-1 levels and function at the plasma membrane, Invitrogen GAPDH antibody (Ambion, clone 6C5) was used in western blot on human samples at 0.5 ug/ml (fig 4). FASEB J (2011) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:10,000; fig 5
In order to examine nestin expression in ventricular fibroblasts, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on rat samples at 1:10,000 (fig 5). J Cell Physiol (2012) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 7
In order to elucidate the role of PTP1B in liver regeneration, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 7). Am J Pathol (2011) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 7
In order to determine if PINCH1 translocates to the nucleus and regulates gene expression, Invitrogen GAPDH antibody (Ambion, 4300) was used in western blot on human samples (fig 7). PLoS ONE (2011) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:20,000; fig 5
In order to test the effect of ventricular load on cardiomyopathy, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:20,000 (fig 5). J Am Coll Cardiol (2011) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to study the role in Cdk regulation of the novel gene magoh identified in a genetic screen of a murine cell cycle mutant, Invitrogen GAPDH antibody (Ambion, 6C5) was used in western blot on mouse samples . Genes Cells (2011) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:5000; fig 1
In order to study the role of TLR3 in the Chlamydia-induced IFN-beta response using oviduct epithelial cells, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 1:5000 (fig 1). J Immunol (2010) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:15,000; fig 5
In order to investigate the effect of morphine on neuronal GIRK signaling , Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on rat samples at 1:15,000 (fig 5). J Neurosci (2010) ncbi
mouse monoclonal (6C5)
  • immunocytochemistry; human; fig 3
  • immunohistochemistry; human; fig 3
In order to use three rapid siRNA transfection techniques to silence endothelial genes in the human saphenous vein, Invitrogen GAPDH antibody (Ambion, AM4300) was used in immunocytochemistry on human samples (fig 3) and in immunohistochemistry on human samples (fig 3). J Vasc Surg (2010) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
In order to characterize parkin knockouts of Danio rerio, Invitrogen GAPDH antibody (Ambion, AM 4300) was used in western blot on human samples (fig 2). PLoS ONE (2010) ncbi
mouse monoclonal (6C5)
  • western blot; rat; fig 1
  • western blot; mouse; fig 1
In order to test if C-terminus of HSC70 interacting protein upregulation enhances neural survival, Invitrogen GAPDH antibody (Applied Biosystems/Ambion, AM4300) was used in western blot on rat samples (fig 1) and in western blot on mouse samples (fig 1). Antioxid Redox Signal (2011) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 1
In order to examine the T cell subset responses to Ca(2+) signals, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 1). J Immunol (2010) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 6
In order to report the redox-responsive molecular signals that drive senescence-associated matrix metalloproteinase-1 expression, Invitrogen GAPDH antibody (Ambion, 4300) was used in western blot on human samples (fig 6). J Cell Physiol (2010) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 0.5 ug/ml; fig 8
In order to study protein alterations that contribute to AQP8 regulation and trafficking, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples at 0.5 ug/ml (fig 8). J Proteomics (2010) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10,000; fig 1
In order to examine VEGF receptor expression in tumor cells, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:10,000 (fig 1). Clin Cancer Res (2010) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:5000; fig 5
In order to determine the role of E2F4 in bone development using mutant mice, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:5000 (fig 5). Cell Cycle (2010) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:1000; fig 3
In order to test if l-Ala-gamma-d-Glu-meso-DAP is transported into intestinal epithelial cells via PepT1, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:1000 (fig 3). Am J Physiol Gastrointest Liver Physiol (2010) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 5
In order to investigate the role of miR-137 in neuronal maturation, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples (fig 5). Stem Cells (2010) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 5
  • western blot; mouse; fig 5
In order to explore Smad3 interactions with CCCTC-binding factor, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 5) and in western blot on mouse samples (fig 5). J Biol Chem (2010) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:4000
In order to study the function of progesterone receptor membrane component-1 monomers and dimers, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on rat samples at 1:4000. Mol Cell Endocrinol (2010) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
In order to examine ChREBP expression during the acute phase response, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 2). Innate Immun (2011) ncbi
mouse monoclonal (6C5)
  • western blot; rat; fig 3
In order to test if basic fibroblast growth factor enhances axonal branching, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on rat samples (fig 3). Mol Biol Cell (2010) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 1
In order to investigate if microRNAs regulate CD98 expression during intestinal epithelial cell differentiation and inflammation, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 1). J Biol Chem (2010) ncbi
mouse monoclonal (6C5)
  • western blot; Caenorhabditis elegans; 1:2000; fig s1
In order to elucidate the function of ATAD3, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on Caenorhabditis elegans samples at 1:2000 (fig s1). PLoS ONE (2009) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to study the relationship between PTPN13 phosphatase activity and MAP kinase signaling, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples . Oncogene (2009) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to test if the -144/-135 Sp element influences basal HKalpha2 gene transcription in murine inner medullary collecting duct cells, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . Am J Physiol Renal Physiol (2009) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 3
In order to investigate the contribution of reactive oxygen species to the age-dependent increase in collagenase, Invitrogen GAPDH antibody (Ambion, 4300) was used in western blot on mouse samples (fig 3). Exp Gerontol (2009) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to elucidate the neurodevelopmental influences of Met activation, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . J Comp Neurol (2009) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
In order to test if mammalian target of rapamycin inhibitor everolimus attenuates neointimal hyperplasia, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 2). Eur J Cardiothorac Surg (2009) ncbi
mouse monoclonal (6C5)
  • western blot; African green monkey; fig 5
In order to isolate and identify the huntingtin gene of the common marmoset (Callithrix jacchus), Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on African green monkey samples (fig 5). Gene (2009) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:4000
In order to study Silurus asotus lectin-induced heat shock protein 70 expression, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples at 1:4000. Biochim Biophys Acta (2009) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to perform a genome-wide linkage scan for endurance training-induced changes in stroke volume, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . Physiol Genomics (2009) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 7
In order to report that the BAR domain of ASAP1 is a protein binding site for FIP3, Invitrogen GAPDH antibody (Affinity BioReagents, 6C5) was used in western blot on human samples (fig 7). Mol Biol Cell (2008) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1 ug/ml; fig 1
In order to determine the contribution of TRIM32 to carcinogenesis, Invitrogen GAPDH antibody (Ambion, 6C5) was used in western blot on human samples at 1 ug/ml (fig 1). Cancer Res (2008) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to identify the molecular pathways that promote survival and apoptosis of UACC903 and UACC903(+6) cell lines, respectively, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples . Apoptosis (2008) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to explore whether retinoic acid promotes differentiation of human SH-SY5Y neuroblastoma cells by modulating Cdh1, Invitrogen GAPDH antibody (Ambion, 6C5) was used in western blot on human samples . Oncogene (2008) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to elucidate how RAF controls cell survival, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . Mol Cell Biol (2008) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 4
In order to analyze the effect of bone morphogenetic proteins on PTEN, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on human samples (fig 4). Cancer Biol Ther (2007) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to identify genes upregulated in RANKL-stimulated osteoclast precursor cells, Invitrogen GAPDH antibody (Ambion, AM4300) was used in western blot on mouse samples . Bone (2008) ncbi
mouse monoclonal (6C5)
  • western blot; Xenopus laevis; 1:1000
In order to investigate the role of thyroid hormone receptors in apoptosis, Invitrogen GAPDH antibody (ambion, AM4300) was used in western blot on Xenopus laevis samples at 1:1000. Apoptosis (2007) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 1
In order to study the involvement of LMO4 in mesenchymal-epithelial signaling, Invitrogen GAPDH antibody (Ambion, 4300) was used in western blot on human samples (fig 1). Oncogene (2006) ncbi
Abcam
mouse monoclonal (6C5)
  • western blot; mouse; 1:5000; loading ...; fig 2e
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples at 1:5000 (fig 2e). Mol Metab (2020) ncbi
mouse monoclonal (6C5)
  • western blot; human; loading ...; fig 1b
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples (fig 1b). Aging (Albany NY) (2019) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:1000; loading ...; fig 3b
Abcam GAPDH antibody (Abcam, Ab8245) was used in western blot on human samples at 1:1000 (fig 3b). J Clin Invest (2019) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:1000; loading ...; fig s2a
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples at 1:1000 (fig s2a). J Cell Biol (2019) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:1000; loading ...; fig 1f
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples at 1:1000 (fig 1f). BMC Complement Altern Med (2019) ncbi
mouse monoclonal (6C5)
  • western blot; human; loading ...; fig 6b
Abcam GAPDH antibody (abcam, ab8245) was used in western blot on human samples (fig 6b). Cell (2019) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; loading ...; fig 1d
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples (fig 1d). Sci Adv (2019) ncbi
mouse monoclonal (6C5)
  • immunocytochemistry; human; 1:500; loading ...; fig 3c
  • western blot; human; 1:2000; loading ...; fig 3j
Abcam GAPDH antibody (Abcam, ab8245) was used in immunocytochemistry on human samples at 1:500 (fig 3c) and in western blot on human samples at 1:2000 (fig 3j). Atherosclerosis (2019) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:5000; loading ...; fig 3b
Abcam GAPDH antibody (Abcam, ab8425) was used in western blot on mouse samples at 1:5000 (fig 3b). Aging (Albany NY) (2019) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:2000; loading ...; fig 5a
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:2000 (fig 5a). J Cell Physiol (2019) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:5000; loading ...; fig 3d
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples at 1:5000 (fig 3d). EMBO Mol Med (2019) ncbi
mouse monoclonal (6C5)
  • western blot; human; loading ...; fig 5e
Abcam GAPDH antibody (ABCAM, ab8245) was used in western blot on human samples (fig 5e). Dev Cell (2018) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 3b
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples (fig 3b). J Am Heart Assoc (2018) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10,000; loading ...; fig 6i
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:10,000 (fig 6i). Oncogene (2018) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:1000; fig 3
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:1000 (fig 3). Exp Ther Med (2016) ncbi
mouse monoclonal (6C5)
  • western blot; zebrafish ; fig 1
In order to report that ZNF644 is a co-regulator of G9a/H3K9me2-mediated gene silencing during neuronal differentiation, Abcam GAPDH antibody (AbCam, ab8245) was used in western blot on zebrafish samples (fig 1). Stem Cell Reports (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 5
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples (fig 5). Cell Rep (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:1000; fig s4
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:1000 (fig s4). Oncotarget (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 3
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples (fig 3). J Virol (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:5000; fig 4
Abcam GAPDH antibody (Abcam, 6C5) was used in western blot on mouse samples at 1:5000 (fig 4). MBio (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10,000; fig 5b
  • western blot; mouse; 1:10,000; fig 3e
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:10,000 (fig 5b) and in western blot on mouse samples at 1:10,000 (fig 3e). Nat Commun (2016) ncbi
mouse monoclonal (6C5)
  • western blot; domestic rabbit; 1:5000; fig 3
In order to characterize the role of endolysosomes in skeletal muscle pathology observed in a model of Alzheimer's disease with a cholesterol-fed rabbit, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on domestic rabbit samples at 1:5000 (fig 3). Front Aging Neurosci (2016) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:1000; fig 4
In order to report that crumbs homolog 3 is an actin microfilament regulator, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on rat samples at 1:1000 (fig 4). Sci Rep (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:500; fig 2
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples at 1:500 (fig 2). Oncol Lett (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig s3
In order to assess activation of the estrogen receptor alpha by estrogen and cAMP and due to LSD1 engaging as a corepressor complex, Abcam GAPDH antibody (Abcam, 6C5) was used in western blot on human samples (fig s3). Nucleic Acids Res (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:20,000; fig 1
In order to assess the requirement for retinal ganglion cell survival after optic nerve trauma and sphingosine 1-phosphate receptor 1, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples at 1:20,000 (fig 1). J Neurochem (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:1000; fig 2
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:1000 (fig 2). Nat Commun (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10,000; fig 4
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:10,000 (fig 4). Nat Commun (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 9
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples (fig 9). Sci Rep (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 3
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples (fig 3). Oncogenesis (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:1000; fig 1
In order to characterize calcium waves propagation in rat ventricular myocytes by the role of SERCA and the sarcoplasmic reticulum calcium content, Abcam GAPDH antibody (Abcam, Ab8245) was used in western blot on mouse samples at 1:1000 (fig 1). Arch Biochem Biophys (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:10,000; fig 1e
In order to research modulation of regenerative potential of MSCs and enhancement of skeletal muscle regeneration by a synthetic niche, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples at 1:10,000 (fig 1e). Biomaterials (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:3000; fig 4
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:3000 (fig 4). Biol Open (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:5000; fig 6a
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples at 1:5000 (fig 6a). PLoS ONE (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:15,000; fig 2
  • western blot; human; 1:15,000; fig 3
In order to research the modulation of beta-amyloidogenic processing of APP by affecting the sorting and accumulation of BACE1 by SEPT8, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples at 1:15,000 (fig 2) and in western blot on human samples at 1:15,000 (fig 3). J Cell Sci (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:2000; fig 3
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:2000 (fig 3). elife (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:2000; fig 3
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples at 1:2000 (fig 3). Cell Rep (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 4
In order to study the prevention of amyloid-beta induced blood-brain barrier disruption and endothelial cell dysfunction by targeting Endophilin-1 by MicroRNA-107, Abcam GAPDH antibody (Abcam, Ab8245) was used in western blot on human samples (fig 4). Exp Cell Res (2016) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:500; fig 3
Abcam GAPDH antibody (abcam, ab8245) was used in western blot on rat samples at 1:500 (fig 3). Int J Mol Med (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:50,000; fig s16
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:50,000 (fig s16). Nat Commun (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:3000; fig 8
Abcam GAPDH antibody (abcam, ab8245) was used in western blot on human samples at 1:3000 (fig 8). Cancer Cell Int (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 5
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples (fig 5). Sci Rep (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:5000; fig 1d
Abcam GAPDH antibody (Abcam, Ab8245) was used in western blot on human samples at 1:5000 (fig 1d). PLoS ONE (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 5
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples (fig 5). Cell Rep (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:25,000; fig 7
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:25,000 (fig 7). elife (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 7
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples (fig 7). Mol Cell Biol (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 6
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples (fig 6). Sci Rep (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
In order to characterize human medulloblastoma-SLCs by microRNAs-proteomic networks, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples (fig 2). Stem Cells Int (2016) ncbi
mouse monoclonal (6C5)
  • immunocytochemistry; Caenorhabditis elegans
  • immunocytochemistry; human
  • western blot; human; fig 3s
In order to examine how histone H3 threonine 118 alters chromosome structure, Abcam GAPDH antibody (Abcam, ab8245) was used in immunocytochemistry on Caenorhabditis elegans samples , in immunocytochemistry on human samples and in western blot on human samples (fig 3s). elife (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 4
In order to elucidate miR-21 that induces fibrosis in an acute cardiac allograft transplantation model, Abcam GAPDH antibody (Abcam, 8245) was used in western blot on mouse samples (fig 4). Cardiovasc Res (2016) ncbi
mouse monoclonal (6C5)
  • western blot; rat; fig 4
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on rat samples (fig 4). Nat Neurosci (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 3
In order to investigate proteolytic processing of p27, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples (fig 3). Oncogene (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10,000; fig 1
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:10,000 (fig 1). PLoS Genet (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 1
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples (fig 1). J Cell Sci (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
In order to characterize barrier breakdown and MAPK/NF-kappaB mediated stress response in the intestinal epithelial cell line C2BBe1 due to Candida albicans infection, Abcam GAPDH antibody (Abcam, 6C5) was used in western blot on human samples (fig 2). Cell Microbiol (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10,000; fig 1
In order to determine cell differences in skeletal muscle from aged individuals regardidng protein abundances of GAPDH and NA,K-ATPase, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:10,000 (fig 1). Exp Gerontol (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 1
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples (fig 1). Oncotarget (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 4
Abcam GAPDH antibody (abcam, ab8245) was used in western blot on human samples (fig 4). Cell Cycle (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:5000; fig 1c
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:5000 (fig 1c). PLoS ONE (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:1000; fig 3
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:1000 (fig 3). Cancer Sci (2016) ncbi
mouse monoclonal (6C5)
  • western blot; rat; fig 2
In order to analyze acute pulmonary exposure to mountaintop removal mining particulate matter and cardiac and mitochondrial dysfunction, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on rat samples (fig 2). Am J Physiol Heart Circ Physiol (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 1
Abcam GAPDH antibody (abcam, ab8245) was used in western blot on mouse samples (fig 1). Nucleic Acids Res (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 2
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples (fig 2). Oncotarget (2015) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:60,000; fig 1
In order to test if p11 regulates the serotonin receptor 4 pathway in the heart, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on rat samples at 1:60,000 (fig 1). Cell Calcium (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:2000
In order to present data from the first donated Lothian Birth Cohort of 1936 and compare it with other aged and diseased samples, Abcam GAPDH antibody (Abcam, Ab8245) was used in western blot on human samples at 1:2000. Acta Neuropathol Commun (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:4000
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:4000. J Cell Sci (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:500; fig 1
In order to study Brd4 function in the brain, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples at 1:500 (fig 1). Nat Neurosci (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 3
In order to study different bacterial guanine nucleotide exchange factor of ADP-ribosylation factors, Abcam GAPDH antibody (Abcam, 6C5) was used in western blot on human samples (fig 3). PLoS Pathog (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:4000; fig 5
  • western blot; mouse; 1:4000; fig 5
In order to determine how starvation-induced autophagy is promoted by transcriptional regulation of Annexin A2, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:4000 (fig 5) and in western blot on mouse samples at 1:4000 (fig 5). Nat Commun (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 1g
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples (fig 1g). RNA (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 2
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples (fig 2). PLoS ONE (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 4b
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples (fig 4b). Autophagy (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 5b
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples (fig 5b). Autophagy (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:7500; fig 3
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:7500 (fig 3). PLoS ONE (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:1000; fig 1
Abcam GAPDH antibody (abcam, ab8245) was used in western blot on mouse samples at 1:1000 (fig 1). PLoS ONE (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 1
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples (fig 1). PLoS ONE (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 3a
In order to elucidate the mechanism of p53-dependent upregulation of OCT4A and p21Cip1, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples (fig 3a). Cell Cycle (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 3
Abcam GAPDH antibody (abcam, ab8245) was used in western blot on human samples (fig 3). Oncotarget (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
In order to study the effect of G9a histone methyltransferase inhibitor on bone marrow mesenchymal stem cells, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples . Stem Cells Int (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:3000; fig 5
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:3000 (fig 5). Hum Mol Genet (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:1000; fig 4
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:1000 (fig 4). Int J Oncol (2015) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:1000
In order to study the role of plastin 3 in ectoplasmic specialization dynamics during spermatogenesis in the rat testis, Abcam GAPDH antibody (Abcam, ab824) was used in western blot on rat samples at 1:1000. FASEB J (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:20,000; fig 1
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:20,000 (fig 1). MBio (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:3000; fig 1c
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples at 1:3000 (fig 1c). Circ Res (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 7
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples (fig 7). Oncotarget (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:2000; fig 5
In order to show that the human artificial chromosome carrying the whole dystrophin genomic sequence is stably maintained throughout the cardiac differentiation process and demonstrate that the dystrophin gene promoters are properly activated, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:2000 (fig 5). Mol Ther Methods Clin Dev (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:3000; fig 2
In order to use of chaperone-mediated autophagy to facilitate lipolysis by degradation of lipid droplet-associated proteins, Abcam GAPDH antibody (Abcam, 6C5) was used in western blot on mouse samples at 1:3000 (fig 2). Nat Cell Biol (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 3b
In order to study the effect of human cytomegalovirus microRNAs on TLR2, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples (fig 3b). PLoS Pathog (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 1, 6
In order to develop a flow cytometry-based approach to study mitophagy by using MitoTracker Deep Red, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples (fig 1, 6). Autophagy (2015) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:5000; fig 2
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on rat samples at 1:5000 (fig 2). Front Cell Neurosci (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:2000; fig 7
Abcam GAPDH antibody (Abcam, 6C5) was used in western blot on human samples at 1:2000 (fig 7). PLoS ONE (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to identify and characterize a novel variant of MET that is expressed in high-grade gliomas, Abcam GAPDH antibody (Abcam, 6C5) was used in western blot on human samples . Acta Neuropathol (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:5000; fig s6
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples at 1:5000 (fig s6). Nat Commun (2015) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:5000; fig 9
Abcam GAPDH antibody (Abcam, 8245) was used in western blot on rat samples at 1:5000 (fig 9). Mol Neurobiol (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:2000
In order to investigate the role of gp210/Nup210 in muscle cell differentiation, Abcam GAPDH antibody (Abcam, 6C5) was used in western blot on mouse samples at 1:2000. J Cell Biol (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; loading ...; fig 3,7,8
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples (fig 3,7,8). J Am Heart Assoc (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 2
Abcam GAPDH antibody (abcam, ab8245) was used in western blot on human samples (fig 2). Cell Death Dis (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 4
In order to analyze microRNA expression in oral squamous cell carcnioma to determine the functional role of microRNA-26a/b in regulation of novel cancer pathways, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples (fig 4). Br J Cancer (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10,000; fig 5
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:10,000 (fig 5). Oncol Rep (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:3000; fig 1
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples at 1:3000 (fig 1). Cell Metab (2015) ncbi
mouse monoclonal (6C5)
  • western blot; S. cerevisiae; 1:2500; fig 4f
Abcam GAPDH antibody (AbCam, ab8245) was used in western blot on S. cerevisiae samples at 1:2500 (fig 4f). Nat Chem Biol (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:1000
In order to study how knockdown of Robo4 alters the blood-tumor barrier, Abcam GAPDH antibody (Abcam, Ab8245) was used in western blot on human samples at 1:1000. J Neuropathol Exp Neurol (2015) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
  • western blot; human
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples and in western blot on human samples . J Mol Cell Cardiol (2015) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:1000
In order to study the role of EB1 in tubulin and actin cytoskeletal networks at the sertoli cell blood-testis barrier, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on rat samples at 1:1000. Endocrinology (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:20000
In order to study the expression and the nuclear localization of VPAC1 and VPAC2 in glioma, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:20000. Biochem Biophys Res Commun (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:20,000; loading ...; fig 2
In order to develop an efficient system to culture hepatitis C virus, Abcam GAPDH antibody (Abcam, 6C5) was used in western blot on human samples at 1:20,000 (fig 2). Jpn J Infect Dis (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:2000
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:2000. Stem Cell Reports (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 3
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples (fig 3). Proteomics (2015) ncbi
mouse monoclonal (6C5)
  • immunocytochemistry; human
In order to investigate the role of the actin cytoskeleton of the endothelium in transmigration, Abcam GAPDH antibody (Abcam, 6C5) was used in immunocytochemistry on human samples . Mol Biol Cell (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human
Abcam GAPDH antibody (Abcam, Ab8245) was used in western blot on human samples . J Virol (2015) ncbi
mouse monoclonal (6C5)
  • western blot; rat
Abcam GAPDH antibody (Abcam, 6C5) was used in western blot on rat samples . Pharm Res (2015) ncbi
mouse monoclonal (6C5)
  • western blot; human
Abcam GAPDH antibody (Abcam, 6C5) was used in western blot on human samples . J Immunol (2014) ncbi
mouse monoclonal (6C5)
  • western blot; domestic rabbit; 1:2000
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on domestic rabbit samples at 1:2000. Biomed Res Int (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:2000; fig 1
In order to report that CALM modulates autophagy and affects tau clearance, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:2000 (fig 1). Nat Commun (2014) ncbi
mouse monoclonal (6C5)
  • western blot; rat; 1:50,000
  • western blot; human; 1:50,000
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on rat samples at 1:50,000 and in western blot on human samples at 1:50,000. Gene Ther (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:20000
In order to investigate the role of EphA4 and EphrinA3 in adult axon regeneration using a model of adult mouse optic nerve injury, Abcam GAPDH antibody (abcam, ab8245) was used in western blot on mouse samples at 1:20000. Eur J Neurosci (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples . Cell Death Dis (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:20000
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:20000. Am J Pathol (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
Abcam GAPDH antibody (Abcam, 6C5) was used in western blot on mouse samples . J Neurosci (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:10000
In order to demonstrate that the Parkinson's disease-causing D620N mutation in VPS35 restricts WASH complex recruitment to endosomes and alters autophagosome formation, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:10000. Nat Commun (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:2000
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples at 1:2000. Glia (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:60,000; fig 5
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples at 1:60,000 (fig 5). Cardiovasc Res (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:5000
  • western blot; rat; 1:5000
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:5000 and in western blot on rat samples at 1:5000. Am J Transplant (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:1000
In order to study the regulation of autophagosome biogenesis by connexins, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples at 1:1000. Nat Cell Biol (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:3000
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:3000. PLoS ONE (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to investigate the role of nuclear ARVCF protein during alternative splicing, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples . J Biol Chem (2014) ncbi
mouse monoclonal (6C5)
  • reverse phase protein lysate microarray; human; 0.1 ug/ml
Abcam GAPDH antibody (Abcam, ab8245) was used in reverse phase protein lysate microarray on human samples at 0.1 ug/ml. PLoS ONE (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; loading ...; fig 1a
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples (fig 1a). Biochem J (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples . PLoS ONE (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human
Abcam GAPDH antibody (Abcam, 8245) was used in western blot on human samples . J Biol Chem (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:1000
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:1000. J Pharm Pharmacol (2014) ncbi
mouse monoclonal (6C5)
  • western blot; chicken
Abcam GAPDH antibody (Abcam, 6C5) was used in western blot on chicken samples . PLoS ONE (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples . Arch Oral Biol (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 5b
  • western blot; rat; fig 1
In order to elucidate the autophagic status in spinobulbar muscular atrophy using both cellular and mouse models, Abcam GAPDH antibody (Abcam, 6C5) was used in western blot on mouse samples (fig 5b) and in western blot on rat samples (fig 1). Hum Mol Genet (2014) ncbi
mouse monoclonal (6C5)
  • western blot; human
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples . PLoS ONE (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples . Am J Physiol Gastrointest Liver Physiol (2013) ncbi
mouse monoclonal (6C5)
  • immunohistochemistry - paraffin section; human; 1:1000; fig 3
Abcam GAPDH antibody (Abcam, ab8245) was used in immunohistochemistry - paraffin section on human samples at 1:1000 (fig 3). Tumour Biol (2014) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
  • western blot; human
Abcam GAPDH antibody (Abcam, Ab8245) was used in western blot on mouse samples and in western blot on human samples . BMC Cell Biol (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples . J Biol Chem (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples . Cell Cycle (2013) ncbi
mouse monoclonal (6C5)
  • immunocytochemistry; human
Abcam GAPDH antibody (Abcam, ab8245) was used in immunocytochemistry on human samples . Stem Cells (2013) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples . J Biol Chem (2013) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:10000
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples at 1:10000. Stem Cells (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human; fig 4
In order to study the interaction of the TIP47 lipid droplet-binding protein with HCV NS5A and the role of this interaction in the regulation of viral RNA replication, Abcam GAPDH antibody (Abcam, ab8245-100) was used in western blot on human samples (fig 4). PLoS Pathog (2013) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:10,000
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples at 1:10,000. Neurobiol Dis (2013) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 1
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples (fig 1). PLoS ONE (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:100000
Abcam GAPDH antibody (Abcam, 6C5) was used in western blot on human samples at 1:100000. J Biol Chem (2012) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:5000
Abcam GAPDH antibody (Abcam, 6C5) was used in western blot on human samples at 1:5000. J Neurosci (2012) ncbi
mouse monoclonal (6C5)
  • western blot; mouse
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on mouse samples . Stem Cells (2013) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to study a novel Fanconi anemia subtype in which SLX4 is mutated, Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples . Nat Genet (2011) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:5000
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:5000. J Immunol (2009) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:40000
Abcam GAPDH antibody (Abcam, ab8245) was used in western blot on human samples at 1:40000. BMC Cancer (2008) ncbi
Bio-Rad
mouse monoclonal (4G5)
  • western blot; human; 1:50,000; fig 7
Bio-Rad GAPDH antibody (ABD Serotec, MCA4740) was used in western blot on human samples at 1:50,000 (fig 7). Nat Commun (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human; 1:1000; fig 7
Bio-Rad GAPDH antibody (Bio-Rad, MCA4739) was used in western blot on human samples at 1:1000 (fig 7). PLoS ONE (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; 1:2000; fig 2
Bio-Rad GAPDH antibody (ABD Serotec, MCA4739) was used in western blot on mouse samples at 1:2000 (fig 2). Nat Commun (2016) ncbi
mouse monoclonal (4G5)
  • western blot; human; fig 5c
Bio-Rad GAPDH antibody (AbD Serotec, MCA4740) was used in western blot on human samples (fig 5c). Nucleic Acids Res (2016) ncbi
mouse monoclonal (6C5)
  • western blot; mouse; fig 6
In order to study the role of Rpn10 and Rpn13 in recognition of cellular homeostasis and ubiquitinated protein, Bio-Rad GAPDH antibody (AbD Serotec, MCA4739) was used in western blot on mouse samples (fig 6). PLoS Genet (2015) ncbi
mouse monoclonal (4G5)
  • western blot; human
In order to study OGR1-mediated, pH-dependent signaling pathways in intestinal epithelial cells, Bio-Rad GAPDH antibody (AbD Serotec, MCA4740) was used in western blot on human samples . Am J Physiol Gastrointest Liver Physiol (2015) ncbi
mouse monoclonal (4G5)
  • immunocytochemistry; human
Bio-Rad GAPDH antibody (AbD Serotech, 4G5) was used in immunocytochemistry on human samples . Eur J Cell Biol (2014) ncbi
GeneTex
mouse monoclonal (6C5)
  • western blot; human; fig 1
In order to report that heat shock protein-90alpha allows cancer cells to survive hypoxia, GeneTex GAPDH antibody (Genetex, GTX28245) was used in western blot on human samples (fig 1). Sci Rep (2016) ncbi
mouse monoclonal (6C5)
  • western blot; human
In order to elucidate a role for heat shock proteins in ischemia, GeneTex GAPDH antibody (Genetex, GTX28245) was used in western blot on human samples . J Cell Sci (2015) ncbi
Articles Reviewed
  1. Xu M, Ge C, Qin Y, Lou D, Li Q, Feng J, et al. Functional loss of inactive rhomboid-like protein 2 mitigates obesity by suppressing pro-inflammatory macrophage activation-triggered adipose inflammation. Mol Metab. 2020;34:112-123 pubmed publisher
  2. Wei C, Zhu M, Zhang P, Yang X, Wang L, Ying J, et al. Elevated kindlin-2 promotes tumour progression and angiogenesis through the mTOR/VEGFA pathway in melanoma. Aging (Albany NY). 2019;11:6273-6285 pubmed publisher
  3. Wyżewski Z, Gregorczyk Zboroch K, Mielcarska M, Bossowska Nowicka M, Struzik J, Szczepanowska J, et al. Mitochondrial Heat Shock Response Induced by Ectromelia Virus is Accompanied by Reduced Apoptotic Potential in Murine L929 Fibroblasts. Arch Immunol Ther Exp (Warsz). 2019;67:401-414 pubmed publisher
  4. Ying W, Li X, Rangarajan S, Feng W, Curtis L, Sanders P. Immunoglobulin light chains generate proinflammatory and profibrotic kidney injury. J Clin Invest. 2019;129:2792-2806 pubmed publisher
  5. Galino J, Cervellini I, Zhu N, Stöberl N, Hütte M, Fricker F, et al. RalGTPases contribute to Schwann cell repair after nerve injury via regulation of process formation. J Cell Biol. 2019;: pubmed publisher
  6. Zhong H, Wu H, Bai H, Wang M, Wen J, Gong J, et al. Panax notoginseng saponins promote liver regeneration through activation of the PI3K/AKT/mTOR cell proliferation pathway and upregulation of the AKT/Bad cell survival pathway in mice. BMC Complement Altern Med. 2019;19:122 pubmed publisher
  7. Hyle J, Zhang Y, Wright S, Xu B, Shao Y, Easton J, et al. Acute depletion of CTCF directly affects MYC regulation through loss of enhancer-promoter looping. Nucleic Acids Res. 2019;: pubmed publisher
  8. Nakanishi M, Mitchell R, Benoit Y, Orlando L, Reid J, Shimada K, et al. Human Pluripotency Is Initiated and Preserved by a Unique Subset of Founder Cells. Cell. 2019;177:910-924.e22 pubmed publisher
  9. Filograna R, Koolmeister C, Upadhyay M, Pajak A, Clemente P, Wibom R, et al. Modulation of mtDNA copy number ameliorates the pathological consequences of a heteroplasmic mtDNA mutation in the mouse. Sci Adv. 2019;5:eaav9824 pubmed publisher
  10. Zhu Y, Zhang Y, Huang X, Xie Y, Qu Y, Long H, et al. Z-Ligustilide protects vascular endothelial cells from oxidative stress and rescues high fat diet-induced atherosclerosis by activating multiple NRF2 downstream genes. Atherosclerosis. 2019;284:110-120 pubmed publisher
  11. Bell Temin H, Yousefzadeh M, Bondarenko A, Quarles E, Jones Laughner J, Robbins P, et al. Measuring biological age in mice using differential mass spectrometry. Aging (Albany NY). 2019;11:1045-1061 pubmed publisher
  12. Rangel L, Bernabé Rubio M, Fernández Barrera J, Casares Arias J, Millan J, Alonso M, et al. Caveolin-1α regulates primary cilium length by controlling RhoA GTPase activity. Sci Rep. 2019;9:1116 pubmed publisher
  13. Su W, Wang Y, Wang F, Zhang B, Zhang H, Shen Y, et al. Circular RNA hsa_circ_0007059 indicates prognosis and influences malignant behavior via AKT/mTOR in oral squamous cell carcinoma. J Cell Physiol. 2019;: pubmed publisher
  14. Mooney M, Geerts D, Kort E, Bachmann A. Anti-tumor effect of sulfasalazine in neuroblastoma. Biochem Pharmacol. 2019;162:237-249 pubmed publisher
  15. Signes A, Cerutti R, Dickson A, Benincá C, Hinchy E, Ghezzi D, et al. APOPT1/COA8 assists COX assembly and is oppositely regulated by UPS and ROS. EMBO Mol Med. 2019;11: pubmed publisher
  16. Leoz M, Kukanja P, Luo Z, Huang F, Cary D, Peterlin B, et al. HEXIM1-Tat chimera inhibits HIV-1 replication. PLoS Pathog. 2018;14:e1007402 pubmed publisher
  17. Luisier R, Tyzack G, Hall C, Mitchell J, Devine H, Taha D, et al. Intron retention and nuclear loss of SFPQ are molecular hallmarks of ALS. Nat Commun. 2018;9:2010 pubmed publisher
  18. Puri C, Vicinanza M, Ashkenazi A, Gratian M, Zhang Q, Bento C, et al. The RAB11A-Positive Compartment Is a Primary Platform for Autophagosome Assembly Mediated by WIPI2 Recognition of PI3P-RAB11A. Dev Cell. 2018;45:114-131.e8 pubmed publisher
  19. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed publisher
  20. Wen G, An W, Chen J, Maguire E, Chen Q, Yang F, et al. Genetic and Pharmacologic Inhibition of the Neutrophil Elastase Inhibits Experimental Atherosclerosis. J Am Heart Assoc. 2018;7: pubmed publisher
  21. Liu F, Dai M, Xu Q, Zhu X, Zhou Y, Jiang S, et al. SRSF10-mediated IL1RAP alternative splicing regulates cervical cancer oncogenesis via mIL1RAP-NF-κB-CD47 axis. Oncogene. 2018;37:2394-2409 pubmed publisher
  22. Xu Y, Wang Y, Yao A, Xu Z, Dou H, Shen S, et al. Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling Pathway. Sci Rep. 2017;7:11776 pubmed publisher
  23. Whitson J, Zhang X, Medvedovic M, Chen J, Wei Z, Monnier V, et al. Transcriptome of the GSH-Depleted Lens Reveals Changes in Detoxification and EMT Signaling Genes, Transport Systems, and Lipid Homeostasis. Invest Ophthalmol Vis Sci. 2017;58:2666-2684 pubmed publisher
  24. Bi P, Ramirez Martinez A, Li H, Cannavino J, McAnally J, Shelton J, et al. Control of muscle formation by the fusogenic micropeptide myomixer. Science. 2017;356:323-327 pubmed publisher
  25. AlAmri M, Kadri H, Alderwick L, Simpkins N, Mehellou Y. Rafoxanide and Closantel Inhibit SPAK and OSR1 Kinases by Binding to a Highly Conserved Allosteric Site on Their C-terminal Domains. ChemMedChem. 2017;12:639-645 pubmed publisher
  26. Suresh S, Chavalmane A, Dj V, Yarreiphang H, Rai S, Paul A, et al. A novel autophagy modulator 6-Bio ameliorates SNCA/?-synuclein toxicity. Autophagy. 2017;13:1221-1234 pubmed publisher
  27. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed publisher
  28. de Oliveira R, Vicente Miranda H, Francelle L, Pinho R, Szego E, Martinho R, et al. The mechanism of sirtuin 2-mediated exacerbation of alpha-synuclein toxicity in models of Parkinson disease. PLoS Biol. 2017;15:e2000374 pubmed publisher
  29. Xiang J, Yang S, Xin N, Gaertig M, Reeves R, Li S, et al. DYRK1A regulates Hap1-Dcaf7/WDR68 binding with implication for delayed growth in Down syndrome. Proc Natl Acad Sci U S A. 2017;114:E1224-E1233 pubmed publisher
  30. Guo R, Si R, Scott B, Makino A. Mitochondrial connexin40 regulates mitochondrial calcium uptake in coronary endothelial cells. Am J Physiol Cell Physiol. 2017;312:C398-C406 pubmed publisher
  31. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed publisher
  32. Babagana M, Johnson S, Slabodkin H, Bshara W, Morrison C, Kandel E. P21-activated kinase 1 regulates resistance to BRAF inhibition in human cancer cells. Mol Carcinog. 2017;56:1515-1525 pubmed publisher
  33. Miroshnychenko O, Chang W, Dragoo J. The Use of Platelet-Rich and Platelet-Poor Plasma to Enhance Differentiation of Skeletal Myoblasts: Implications for the Use of Autologous Blood Products for Muscle Regeneration. Am J Sports Med. 2017;45:945-953 pubmed publisher
  34. Zhang D, Wu B, Wang P, Wang Y, Lu P, Nechiporuk T, et al. Non-CpG methylation by DNMT3B facilitates REST binding and gene silencing in developing mouse hearts. Nucleic Acids Res. 2017;45:3102-3115 pubmed publisher
  35. Radhakrishnan V, Gilpatrick M, Parsa N, Kiela P, Ghishan F. Expression of Cav1.3 calcium channel in the human and mouse colon: posttranscriptional inhibition by IFN?. Am J Physiol Gastrointest Liver Physiol. 2017;312:G77-G84 pubmed publisher
  36. Akagi R, Akatsu Y, Fisch K, Alvarez Garcia O, Teramura T, Muramatsu Y, et al. Dysregulated circadian rhythm pathway in human osteoarthritis: NR1D1 and BMAL1 suppression alters TGF-? signaling in chondrocytes. Osteoarthritis Cartilage. 2017;25:943-951 pubmed publisher
  37. Hwang D, Jo H, Hwang S, Kim J, Kim I, Lim Y. Conditioned medium from LS 174T goblet cells treated with oxyresveratrol strengthens tight junctions in Caco-2 cells. Biomed Pharmacother. 2017;85:280-286 pubmed publisher
  38. Takács E, Boto P, Simo E, Csuth T, Toth B, Raveh Amit H, et al. Immunogenic Dendritic Cell Generation from Pluripotent Stem Cells by Ectopic Expression of Runx3. J Immunol. 2017;198:239-248 pubmed
  39. Chehaibi K, le Maire L, Bradoni S, Escolà J, Blanco Vaca F, Slimane M. Effect of PPAR-β/δ agonist GW0742 treatment in the acute phase response and blood-brain barrier permeability following brain injury. Transl Res. 2017;182:27-48 pubmed publisher
  40. Liu L, Tao Z, Zheng L, Brooke J, Smith C, Liu D, et al. FoxO1 interacts with transcription factor EB and differentially regulates mitochondrial uncoupling proteins via autophagy in adipocytes. Cell Death Discov. 2016;2:16066 pubmed
  41. Nguyen A, Nyberg K, Scott M, Welsh A, Nguyen A, Wu N, et al. Stiffness of pancreatic cancer cells is associated with increased invasive potential. Integr Biol (Camb). 2016;8:1232-1245 pubmed
  42. Alphonse M, Duong T, Shumitzu C, Hoang T, McCrindle B, Franco A, et al. Inositol-Triphosphate 3-Kinase C Mediates Inflammasome Activation and Treatment Response in Kawasaki Disease. J Immunol. 2016;197:3481-3489 pubmed
  43. Kim Y, Yadava R, Mandal M, Mahadevan K, Yu Q, Leitges M, et al. Disease Phenotypes in a Mouse Model of RNA Toxicity Are Independent of Protein Kinase Cα and Protein Kinase Cβ. PLoS ONE. 2016;11:e0163325 pubmed publisher
  44. Charrier A, Wang L, Stephenson E, Ghanta S, Ko C, Croniger C, et al. Zinc finger protein 407 overexpression upregulates PPAR target gene expression and improves glucose homeostasis in mice. Am J Physiol Endocrinol Metab. 2016;311:E869-E880 pubmed publisher
  45. Deeg K, Chung I, Bauer C, Rippe K. Cancer Cells with Alternative Lengthening of Telomeres Do Not Display a General Hypersensitivity to ATR Inhibition. Front Oncol. 2016;6:186 pubmed publisher
  46. Luo H, Zhang J, Miao F. Effects of pramipexole treatment on the ?-synuclein content in serum exosomes of Parkinson's disease patients. Exp Ther Med. 2016;12:1373-1376 pubmed
  47. Diokmetzidou A, Soumaka E, Kloukina I, Tsikitis M, Makridakis M, Varela A, et al. Desmin and ?B-crystallin interplay in the maintenance of mitochondrial homeostasis and cardiomyocyte survival. J Cell Sci. 2016;129:3705-3720 pubmed
  48. Olsen J, Wong L, Deimling S, Miles A, Guo H, Li Y, et al. G9a and ZNF644 Physically Associate to Suppress Progenitor Gene Expression during Neurogenesis. Stem Cell Reports. 2016;7:454-470 pubmed publisher
  49. Kupka S, De Miguel D, Dráber P, Martino L, Surinova S, Rittinger K, et al. SPATA2-Mediated Binding of CYLD to HOIP Enables CYLD Recruitment to Signaling Complexes. Cell Rep. 2016;16:2271-80 pubmed publisher
  50. Ahn J, Kim K, Park S, Ahn Y, Kim H, Yoon H, et al. Target sequencing and CRISPR/Cas editing reveal simultaneous loss of UTX and UTY in urothelial bladder cancer. Oncotarget. 2016;7:63252-63260 pubmed publisher
  51. Damgaard R, Walker J, Marco Casanova P, Morgan N, Titheradge H, Elliott P, et al. The Deubiquitinase OTULIN Is an Essential Negative Regulator of Inflammation and Autoimmunity. Cell. 2016;166:1215-1230.e20 pubmed publisher
  52. Surtees R, Dowall S, Shaw A, Armstrong S, Hewson R, Carroll M, et al. Heat Shock Protein 70 Family Members Interact with Crimean-Congo Hemorrhagic Fever Virus and Hazara Virus Nucleocapsid Proteins and Perform a Functional Role in the Nairovirus Replication Cycle. J Virol. 2016;90:9305-16 pubmed publisher
  53. Batalha V, Ferreira D, Coelho J, Valadas J, Gomes R, Temido Ferreira M, et al. The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function. Sci Rep. 2016;6:31493 pubmed publisher
  54. Wang X, Buechler N, Martin A, Wells J, Yoza B, McCall C, et al. Sirtuin-2 Regulates Sepsis Inflammation in ob/ob Mice. PLoS ONE. 2016;11:e0160431 pubmed publisher
  55. Wang Y, Lin S, Hsieh P, Hung S. Concomitant beige adipocyte differentiation upon induction of mesenchymal stem cells into brown adipocytes. Biochem Biophys Res Commun. 2016;478:689-95 pubmed publisher
  56. Al Sady B, Greenstein R, El Samad H, Braun S, Madhani H. Sensitive and Quantitative Three-Color Protein Imaging in Fission Yeast Using Spectrally Diverse, Recoded Fluorescent Proteins with Experimentally-Characterized In Vivo Maturation Kinetics. PLoS ONE. 2016;11:e0159292 pubmed publisher
  57. Cheng Y, Huang C, Lee Y, Tien L, Ku W, Chien R, et al. Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells. Sci Rep. 2016;6:30314 pubmed publisher
  58. Liu S, Hossinger A, Hofmann J, Denner P, Vorberg I. Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles. MBio. 2016;7: pubmed publisher
  59. Pagliuso A, Valente C, Giordano L, Filograna A, Li G, Circolo D, et al. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase ?. Nat Commun. 2016;7:12148 pubmed publisher
  60. Kapeli K, Pratt G, Vu A, Hutt K, Martinez F, Sundararaman B, et al. Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses. Nat Commun. 2016;7:12143 pubmed publisher
  61. Chen X, Wagener J, Ghribi O, Geiger J. Role of Endolysosomes in Skeletal Muscle Pathology Observed in a Cholesterol-Fed Rabbit Model of Alzheimer's Disease. Front Aging Neurosci. 2016;8:129 pubmed publisher
  62. Gao Y, Lui W, Lee W, Cheng C. Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells. Sci Rep. 2016;6:28589 pubmed publisher
  63. Edmondson R, Adcock A, Yang L. Influence of Matrices on 3D-Cultured Prostate Cancer Cells' Drug Response and Expression of Drug-Action Associated Proteins. PLoS ONE. 2016;11:e0158116 pubmed publisher
  64. Zhao J, Chen F, Zhou Q, Pan W, Wang X, Xu J, et al. B7-H3 protein expression in a murine model of osteosarcoma. Oncol Lett. 2016;12:383-386 pubmed
  65. Justis A, Hansen B, Beare P, King K, Heinzen R, Gilk S. Interactions between the Coxiella burnetii parasitophorous vacuole and the endoplasmic reticulum involve the host protein ORP1L. Cell Microbiol. 2017;19: pubmed publisher
  66. Choi H, Jin S, Kwon J, Kim J, Jeong J, Kim J, et al. Characterization of Mammalian ADAM2 and Its Absence from Human Sperm. PLoS ONE. 2016;11:e0158321 pubmed publisher
  67. Ortiz D, Glassbrook J, Pellett P. Protein-Protein Interactions Suggest Novel Activities of Human Cytomegalovirus Tegument Protein pUL103. J Virol. 2016;90:7798-810 pubmed publisher
  68. Bennesch M, Segala G, Wider D, Picard D. LSD1 engages a corepressor complex for the activation of the estrogen receptor ? by estrogen and cAMP. Nucleic Acids Res. 2016;44:8655-8670 pubmed
  69. Gautheron J, Vucur M, Schneider A, Severi I, Roderburg C, Roy S, et al. The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance. Nat Commun. 2016;7:11869 pubmed publisher
  70. Muñoz Félix J, Pérez Roque L, Núñez Gómez E, Oujo B, Arevalo M, Ruiz Remolina L, et al. Overexpression of the short endoglin isoform reduces renal fibrosis and inflammation after unilateral ureteral obstruction. Biochim Biophys Acta. 2016;1862:1801-14 pubmed publisher
  71. Joly S, Pernet V. Sphingosine 1-phosphate receptor 1 is required for retinal ganglion cell survival after optic nerve trauma. J Neurochem. 2016;138:571-86 pubmed publisher
  72. Ryan T, Schmidt C, Green T, Spangenburg E, Neufer P, McClung J. Targeted Expression of Catalase to Mitochondria Protects Against Ischemic Myopathy in High-Fat Diet-Fed Mice. Diabetes. 2016;65:2553-68 pubmed publisher
  73. Bento C, Ashkenazi A, Jimenez Sanchez M, Rubinsztein D. The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway. Nat Commun. 2016;7:11803 pubmed publisher
  74. Boada Romero E, Serramito Gómez I, Sacristán M, Boone D, Xavier R, Pimentel Muiños F. The T300A Crohn's disease risk polymorphism impairs function of the WD40 domain of ATG16L1. Nat Commun. 2016;7:11821 pubmed publisher
  75. Zhang Z, Zhao G, Zhuang C, Shen Y, Zhao W, Xu J, et al. Long non-coding RNA LINC00628 functions as a gastric cancer suppressor via long-range modulating the expression of cell cycle related genes. Sci Rep. 2016;6:27435 pubmed publisher
  76. Duran C, Lee D, Jung J, Ravi S, Pogue C, Toussaint L, et al. NIK regulates MT1-MMP activity and promotes glioma cell invasion independently of the canonical NF-?B pathway. Oncogenesis. 2016;5:e231 pubmed publisher
  77. Liu L, Zheng L, Zou P, Brooke J, Smith C, Long Y, et al. FoxO1 antagonist suppresses autophagy and lipid droplet growth in adipocytes. Cell Cycle. 2016;15:2033-41 pubmed publisher
  78. Salazar Cantú A, Pérez Treviño P, Montalvo Parra D, Balderas Villalobos J, Gómez Víquez N, García N, et al. Role of SERCA and the sarcoplasmic reticulum calcium content on calcium waves propagation in rat ventricular myocytes. Arch Biochem Biophys. 2016;604:11-9 pubmed publisher
  79. Pumberger M, Qazi T, Ehrentraut M, Textor M, Kueper J, Stoltenburg Didinger G, et al. Synthetic niche to modulate regenerative potential of MSCs and enhance skeletal muscle regeneration. Biomaterials. 2016;99:95-108 pubmed publisher
  80. Høydal M, Stølen T, Kettlewell S, Maier L, Brown J, Sowa T, et al. Exercise training reverses myocardial dysfunction induced by CaMKII?C overexpression by restoring Ca2+ homeostasis. J Appl Physiol (1985). 2016;121:212-20 pubmed publisher
  81. Lee J, Kwon G, Park J, Kim J, Lim Y. Brief Communication: SIR-2.1-dependent lifespan extension of Caenorhabditis elegans by oxyresveratrol and resveratrol. Exp Biol Med (Maywood). 2016;241:1757-63 pubmed publisher
  82. Chen R, Liu H, Cheng Q, Jiang B, Peng R, Zou Q, et al. MicroRNA-93 promotes the malignant phenotypes of human glioma cells and induces their chemoresistance to temozolomide. Biol Open. 2016;5:669-77 pubmed publisher
  83. Bianchi Smiraglia A, Bagati A, Fink E, Moparthy S, Wawrzyniak J, Marvin E, et al. Microphthalmia-associated transcription factor suppresses invasion by reducing intracellular GTP pools. Oncogene. 2017;36:84-96 pubmed publisher
  84. Scott T, Wicker C, Suganya R, Dhar B, Pittman T, Horbinski C, et al. Polyubiquitination of apurinic/apyrimidinic endonuclease 1 by Parkin. Mol Carcinog. 2017;56:325-336 pubmed publisher
  85. Humoud M, Doyle N, Royall E, Willcocks M, Sorgeloos F, van Kuppeveld F, et al. Feline Calicivirus Infection Disrupts Assembly of Cytoplasmic Stress Granules and Induces G3BP1 Cleavage. J Virol. 2016;90:6489-6501 pubmed publisher
  86. Watanabe Y, Papoutsoglou P, Maturi V, Tsubakihara Y, Hottiger M, Heldin C, et al. Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation. J Biol Chem. 2016;291:12706-23 pubmed publisher
  87. Tran N, Su H, Khodadadi Jamayran A, Lin S, Zhang L, Zhou D, et al. The AS-RBM15 lncRNA enhances RBM15 protein translation during megakaryocyte differentiation. EMBO Rep. 2016;17:887-900 pubmed publisher
  88. Seo J, Singh N, Ottesen E, Sivanesan S, Shishimorova M, Singh R. Oxidative Stress Triggers Body-Wide Skipping of Multiple Exons of the Spinal Muscular Atrophy Gene. PLoS ONE. 2016;11:e0154390 pubmed publisher
  89. Kii I, Sumida Y, Goto T, Sonamoto R, Okuno Y, Yoshida S, et al. Selective inhibition of the kinase DYRK1A by targeting its folding process. Nat Commun. 2016;7:11391 pubmed publisher
  90. Dokas J, Chadt A, Joost H, Al Hasani H. Tbc1d1 deletion suppresses obesity in leptin-deficient mice. Int J Obes (Lond). 2016;40:1242-9 pubmed publisher
  91. Huang C, Lee C, Yang S, Chien C, Huang C, Yang R, et al. Upregulation of the growth arrest-specific-2 in recurrent colorectal cancers, and its susceptibility to chemotherapy in a model cell system. Biochim Biophys Acta. 2016;1862:1345-53 pubmed publisher
  92. Feng L, Wang Y, Cai H, Sun G, Niu W, Xin Q, et al. ADAM10-Notch signaling governs the recruitment of ovarian pregranulosa cells and controls folliculogenesis in mice. J Cell Sci. 2016;129:2202-12 pubmed publisher
  93. Kurkinen K, Marttinen M, Turner L, Natunen T, Mäkinen P, Haapalinna F, et al. SEPT8 modulates ?-amyloidogenic processing of APP by affecting the sorting and accumulation of BACE1. J Cell Sci. 2016;129:2224-38 pubmed publisher
  94. Terauchi A, Johnson Venkatesh E, Bullock B, Lehtinen M, Umemori H. Retrograde fibroblast growth factor 22 (FGF22) signaling regulates insulin-like growth factor 2 (IGF2) expression for activity-dependent synapse stabilization in the mammalian brain. elife. 2016;5: pubmed publisher
  95. Flodby P, Kim Y, Beard L, Gao D, Ji Y, Kage H, et al. Knockout Mice Reveal a Major Role for Alveolar Epithelial Type I Cells in Alveolar Fluid Clearance. Am J Respir Cell Mol Biol. 2016;55:395-406 pubmed publisher
  96. Hwang H, Park C, Goodarzi H, Fak J, Mele A, Moore M, et al. PAPERCLIP Identifies MicroRNA Targets and a Role of CstF64/64tau in Promoting Non-canonical poly(A) Site Usage. Cell Rep. 2016;15:423-35 pubmed publisher
  97. Liu W, Cai H, Lin M, Zhu L, Gao L, Zhong R, et al. MicroRNA-107 prevents amyloid-beta induced blood-brain barrier disruption and endothelial cell dysfunction by targeting Endophilin-1. Exp Cell Res. 2016;343:248-257 pubmed publisher
  98. Jia W, Jian Z, Li J, Luo L, Zhao L, Zhou Y, et al. Upregulated ATF6 contributes to chronic intermittent hypoxia-afforded protection against myocardial ischemia/reperfusion injury. Int J Mol Med. 2016;37:1199-208 pubmed publisher
  99. Wang Y, Lichter Konecki U, Anyane Yeboa K, Shaw J, Lu J, Ostlund C, et al. A mutation abolishing the ZMPSTE24 cleavage site in prelamin A causes a progeroid disorder. J Cell Sci. 2016;129:1975-80 pubmed publisher
  100. Ledsaak M, Bengtsen M, Molværsmyr A, Fuglerud B, Matre V, Eskeland R, et al. PIAS1 binds p300 and behaves as a coactivator or corepressor of the transcription factor c-Myb dependent on SUMO-status. Biochim Biophys Acta. 2016;1859:705-18 pubmed publisher
  101. Del Debbio C, Mir Q, Parameswaran S, Mathews S, Xia X, Zheng L, et al. Notch Signaling Activates Stem Cell Properties of Müller Glia through Transcriptional Regulation and Skp2-mediated Degradation of p27Kip1. PLoS ONE. 2016;11:e0152025 pubmed publisher
  102. Salzman D, Nakamura K, Nallur S, Dookwah M, Metheetrairut C, Slack F, et al. miR-34 activity is modulated through 5'-end phosphorylation in response to DNA damage. Nat Commun. 2016;7:10954 pubmed publisher
  103. Giannogonas P, Apostolou A, Manousopoulou A, Theocharis S, Macari S, Psarras S, et al. Identification of a novel interaction between corticotropin releasing hormone (Crh) and macroautophagy. Sci Rep. 2016;6:23342 pubmed publisher
  104. Liu Y, Chen C, Xu Z, Scuoppo C, Rillahan C, Gao J, et al. Deletions linked to TP53 loss drive cancer through p53-independent mechanisms. Nature. 2016;531:471-475 pubmed publisher
  105. Kang R, Zhao S, Liu L, Li F, Li E, Luo L, et al. Knockdown of PSCA induces EMT and decreases metastatic potentials of the human prostate cancer DU145 cells. Cancer Cell Int. 2016;16:20 pubmed publisher
  106. Ye L, Qiu L, Zhang H, Chen H, Jiang C, Hong H, et al. Cardiomyocytes in Young Infants With Congenital Heart Disease: a Three-Month Window of Proliferation. Sci Rep. 2016;6:23188 pubmed publisher
  107. German P, Bai S, Liu X, Sun M, Zhou L, Kalra S, et al. Phosphorylation-dependent cleavage regulates von Hippel Lindau proteostasis and function. Oncogene. 2016;35:4973-80 pubmed publisher
  108. Barja Fernández S, Folgueira C, Castelao C, Al Massadi O, Bravo S, Garcia Caballero T, et al. FNDC5 is produced in the stomach and associated to body composition. Sci Rep. 2016;6:23067 pubmed publisher
  109. Martínez Pizarro A, Desviat L, Ugarte M, Perez B, Richard E. Endoplasmic Reticulum Stress and Autophagy in Homocystinuria Patients with Remethylation Defects. PLoS ONE. 2016;11:e0150357 pubmed publisher
  110. Nguyen J, Bernert R, In K, Kang P, Sebastiao N, Hu C, et al. Gamma-interferon-inducible lysosomal thiol reductase is upregulated in human melanoma. Melanoma Res. 2016;26:125-37 pubmed publisher
  111. Haven B, Heilig E, Donham C, Settles M, Vasilevsky N, Owen K. Registered report: A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. elife. 2016;5: pubmed publisher
  112. Wild T, Larsen M, Narita T, Schou J, Nilsson J, Choudhary C. The Spindle Assembly Checkpoint Is Not Essential for Viability of Human Cells with Genetically Lowered APC/C Activity. Cell Rep. 2016;14:1829-40 pubmed publisher
  113. Scheckel C, Drapeau E, Frias M, Park C, Fak J, Zucker Scharff I, et al. Regulatory consequences of neuronal ELAV-like protein binding to coding and non-coding RNAs in human brain. elife. 2016;5: pubmed publisher
  114. Echeverría P, Briand P, Picard D. A Remodeled Hsp90 Molecular Chaperone Ensemble with the Novel Cochaperone Aarsd1 Is Required for Muscle Differentiation. Mol Cell Biol. 2016;36:1310-21 pubmed publisher
  115. Hwang S, Lee H, Kim H, Lee H, Shin C, Yun S, et al. Ubiquitin-specific protease 4 controls metastatic potential through β-catenin stabilization in brain metastatic lung adenocarcinoma. Sci Rep. 2016;6:21596 pubmed publisher
  116. Catanzaro G, Besharat Z, Garg N, Ronci M, Pieroni L, Miele E, et al. MicroRNAs-Proteomic Networks Characterizing Human Medulloblastoma-SLCs. Stem Cells Int. 2016;2016:2683042 pubmed publisher
  117. Wike C, Graves H, Hawkins R, Gibson M, Ferdinand M, Zhang T, et al. Aurora-A mediated histone H3 phosphorylation of threonine 118 controls condensin I and cohesin occupancy in mitosis. elife. 2016;5:e11402 pubmed publisher
  118. Awad P, Sanon N, Chattopadhyaya B, Carriço J, Ouardouz M, Gagné J, et al. Reducing premature KCC2 expression rescues seizure susceptibility and spine morphology in atypical febrile seizures. Neurobiol Dis. 2016;91:10-20 pubmed publisher
  119. Khalid S, Drasche A, Thurner M, Hermann M, Ashraf M, Fresser F, et al. cJun N-terminal kinase (JNK) phosphorylation of serine 36 is critical for p66Shc activation. Sci Rep. 2016;6:20930 pubmed publisher
  120. Astorquiza P, Usorach J, Racagni G, Villasuso A. Diacylglycerol pyrophosphate binds and inhibits the glyceraldehyde-3-phosphate dehydrogenase in barley aleurone. Plant Physiol Biochem. 2016;101:88-95 pubmed publisher
  121. Gupta S, Itagaki R, Zheng X, Batkai S, Thum S, Ahmad F, et al. miR-21 promotes fibrosis in an acute cardiac allograft transplantation model. Cardiovasc Res. 2016;110:215-26 pubmed publisher
  122. Li Y, Banerjee S, Wang Y, Goldstein S, Dong B, Gaughan C, et al. Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses. Proc Natl Acad Sci U S A. 2016;113:2241-6 pubmed publisher
  123. Weilinger N, Lohman A, Rakai B, Ma E, Bialecki J, Maslieieva V, et al. Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity. Nat Neurosci. 2016;19:432-42 pubmed publisher
  124. Dong H, Zou M, Bhatia A, Jayaprakash P, Hofman F, YING Q, et al. Breast Cancer MDA-MB-231 Cells Use Secreted Heat Shock Protein-90alpha (Hsp90α) to Survive a Hostile Hypoxic Environment. Sci Rep. 2016;6:20605 pubmed publisher
  125. Podmirseg S, Jäkel H, Ranches G, Kullmann M, Sohm B, Villunger A, et al. Caspases uncouple p27(Kip1) from cell cycle regulated degradation and abolish its ability to stimulate cell migration and invasion. Oncogene. 2016;35:4580-90 pubmed publisher
  126. Bondy Chorney E, Crawford Parks T, Ravel Chapuis A, Klinck R, Rocheleau L, Pelchat M, et al. Staufen1 Regulates Multiple Alternative Splicing Events either Positively or Negatively in DM1 Indicating Its Role as a Disease Modifier. PLoS Genet. 2016;12:e1005827 pubmed publisher
  127. Button R, Vincent J, Strang C, Luo S. Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis. Oncotarget. 2016;7:5157-75 pubmed publisher
  128. Roßner F, Gieseler C, Morkel M, Royer H, Rivera M, Bläker H, et al. Uncoupling of EGFR-RAS signaling and nuclear localization of YBX1 in colorectal cancer. Oncogenesis. 2016;5:e187 pubmed publisher
  129. Dave J, Abbey C, Duran C, Seo H, Johnson G, Bayless K. Hic-5 mediates the initiation of endothelial sprouting by regulating a key surface metalloproteinase. J Cell Sci. 2016;129:743-56 pubmed publisher
  130. Böhringer M, Pohlers S, Schulze S, Albrecht Eckardt D, Piegsa J, Weber M, et al. Candida albicans infection leads to barrier breakdown and a MAPK/NF-κB mediated stress response in the intestinal epithelial cell line C2BBe1. Cell Microbiol. 2016;18:889-904 pubmed publisher
  131. Weilner S, Keider V, Winter M, Harreither E, Salzer B, Weiss F, et al. Vesicular Galectin-3 levels decrease with donor age and contribute to the reduced osteo-inductive potential of human plasma derived extracellular vesicles. Aging (Albany NY). 2016;8:16-33 pubmed
  132. Wyckelsma V, McKenna M, Levinger I, Petersen A, Lamboley C, Murphy R. Cell specific differences in the protein abundances of GAPDH and Na(+),K(+)-ATPase in skeletal muscle from aged individuals. Exp Gerontol. 2016;75:8-15 pubmed publisher
  133. Leen E, Sorgeloos F, Correia S, Chaudhry Y, Cannac F, Pastore C, et al. A Conserved Interaction between a C-Terminal Motif in Norovirus VPg and the HEAT-1 Domain of eIF4G Is Essential for Translation Initiation. PLoS Pathog. 2016;12:e1005379 pubmed publisher
  134. Conery A, Centore R, Neiss A, Keller P, Joshi S, Spillane K, et al. Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma. elife. 2016;5: pubmed publisher
  135. Singh A, Kan C, Dong B, Liu J. SREBP2 Activation Induces Hepatic Long-chain Acyl-CoA Synthetase 1 (ACSL1) Expression in Vivo and in Vitro through a Sterol Regulatory Element (SRE) Motif of the ACSL1 C-promoter. J Biol Chem. 2016;291:5373-84 pubmed publisher
  136. Baude A, Aaes T, Zhai B, Al Nakouzi N, Oo H, Daugaard M, et al. Hepatoma-derived growth factor-related protein 2 promotes DNA repair by homologous recombination. Nucleic Acids Res. 2016;44:2214-26 pubmed publisher
  137. Blachère N, Parveen S, Fak J, Frank M, Orange D. Inflammatory but not apoptotic death of granulocytes citrullinates fibrinogen. Arthritis Res Ther. 2015;17:369 pubmed publisher
  138. Smith K, Zhou B, Avdulov S, Benyumov A, Peterson M, Liu Y, et al. Transforming Growth Factor-β1 Induced Epithelial Mesenchymal Transition is blocked by a chemical antagonist of translation factor eIF4E. Sci Rep. 2015;5:18233 pubmed publisher
  139. Drilon A, Somwar R, Wagner J, Vellore N, Eide C, Zabriskie M, et al. A Novel Crizotinib-Resistant Solvent-Front Mutation Responsive to Cabozantinib Therapy in a Patient with ROS1-Rearranged Lung Cancer. Clin Cancer Res. 2016;22:2351-8 pubmed publisher
  140. Dupont T, Yang S, Patel J, Hatzi K, Malik A, Tam W, et al. Selective targeting of BCL6 induces oncogene addiction switching to BCL2 in B-cell lymphoma. Oncotarget. 2016;7:3520-32 pubmed publisher
  141. Adam M, Matt S, Christian S, Hess Stumpp H, Haegebarth A, Hofmann T, et al. SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status. Cell Cycle. 2015;14:3734-47 pubmed publisher
  142. Kim J, Lee K, Rhee K. PLK1 regulation of PCNT cleavage ensures fidelity of centriole separation during mitotic exit. Nat Commun. 2015;6:10076 pubmed publisher
  143. Nouws J, Goswami A, Bestwick M, McCann B, Surovtseva Y, Shadel G. Mitochondrial Ribosomal Protein L12 Is Required for POLRMT Stability and Exists as Two Forms Generated by Alternative Proteolysis during Import. J Biol Chem. 2016;291:989-97 pubmed publisher
  144. Wang X, Liu Y, Chen H, Mei L, He C, Jiang L, et al. LEF-1 Regulates Tyrosinase Gene Transcription In Vitro. PLoS ONE. 2015;10:e0143142 pubmed publisher
  145. Zhang L, Tran N, Su H, Wang R, Lu Y, Tang H, et al. Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing. elife. 2015;4: pubmed publisher
  146. Valcourt U, Carthy J, Okita Y, Alcaraz L, Kato M, Thuault S, et al. Analysis of Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor β. Methods Mol Biol. 2016;1344:147-81 pubmed publisher
  147. Kurozumi A, Goto Y, Matsushita R, Fukumoto I, Kato M, Nishikawa R, et al. Tumor-suppressive microRNA-223 inhibits cancer cell migration and invasion by targeting ITGA3/ITGB1 signaling in prostate cancer. Cancer Sci. 2016;107:84-94 pubmed publisher
  148. Quigley H, Pitha I, Welsbie D, Nguyen C, Steinhart M, Nguyen T, et al. Losartan Treatment Protects Retinal Ganglion Cells and Alters Scleral Remodeling in Experimental Glaucoma. PLoS ONE. 2015;10:e0141137 pubmed publisher
  149. Nichols C, Shepherd D, Knuckles T, Thapa D, Stricker J, Stapleton P, et al. Cardiac and mitochondrial dysfunction following acute pulmonary exposure to mountaintop removal mining particulate matter. Am J Physiol Heart Circ Physiol. 2015;309:H2017-30 pubmed publisher
  150. Evans C, Rosser R, Waby J, Noirel J, Lai D, Wright P, et al. Reduced keratin expression in colorectal neoplasia and associated fields is reversible by diet and resection. BMJ Open Gastroenterol. 2015;2:e000022 pubmed publisher
  151. Akhade V, Dighe S, Kataruka S, Rao M. Mechanism of Wnt signaling induced down regulation of mrhl long non-coding RNA in mouse spermatogonial cells. Nucleic Acids Res. 2016;44:387-401 pubmed publisher
  152. Adesina A, Veo B, Courteau G, Mehta V, Wu X, Pang K, et al. FOXG1 expression shows correlation with neuronal differentiation in cerebellar development, aggressive phenotype in medulloblastomas, and survival in a xenograft model of medulloblastoma. Hum Pathol. 2015;46:1859-71 pubmed publisher
  153. Kosinsky R, Wegwitz F, Hellbach N, Dobbelstein M, Mansouri A, Vogel T, et al. Usp22 deficiency impairs intestinal epithelial lineage specification in vivo. Oncotarget. 2015;6:37906-18 pubmed publisher
  154. Krisenko M, Higgins R, Ghosh S, Zhou Q, Trybula J, Wang W, et al. Syk Is Recruited to Stress Granules and Promotes Their Clearance through Autophagy. J Biol Chem. 2015;290:27803-15 pubmed publisher
  155. Meschin P, Demion M, Cazorla O, Finan A, Thireau J, Richard S, et al. p11 modulates calcium handling through 5-HTâ‚„R pathway in rat ventricular cardiomyocytes. Cell Calcium. 2015;58:549-57 pubmed publisher
  156. Ha J, Gomathinayagam R, Yan M, Jayaraman M, Ramesh R, Dhanasekaran D. Determinant role for the gep oncogenes, Gα12/13, in ovarian cancer cell proliferation and xenograft tumor growth. Genes Cancer. 2015;6:356-364 pubmed
  157. Seo M, Jang W, Rhee K. Integrity of the Pericentriolar Material Is Essential for Maintaining Centriole Association during M Phase. PLoS ONE. 2015;10:e0138905 pubmed publisher
  158. Barroso M, Tucker H, Drake L, Nichol K, Drake J. Antigen-B Cell Receptor Complexes Associate with Intracellular major histocompatibility complex (MHC) Class II Molecules. J Biol Chem. 2015;290:27101-12 pubmed publisher
  159. Davare M, Vellore N, Wagner J, Eide C, Goodman J, Drilon A, et al. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors. Proc Natl Acad Sci U S A. 2015;112:E5381-90 pubmed publisher
  160. Suzuki M, Watanabe M, Nakamaru Y, Takagi D, Takahashi H, Fukuda S, et al. TRIM39 negatively regulates the NFκB-mediated signaling pathway through stabilization of Cactin. Cell Mol Life Sci. 2016;73:1085-101 pubmed publisher
  161. Zhao Y, Londono P, Cao Y, Sharpe E, Proenza C, O Rourke R, et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun. 2015;6:8243 pubmed publisher
  162. Renaud J, Dumont F, Khelfaoui M, Foisset S, Letourneur F, Bienvenu T, et al. Identification of intellectual disability genes showing circadian clock-dependent expression in the mouse hippocampus. Neuroscience. 2015;308:11-50 pubmed publisher
  163. Henstridge C, Jackson R, Kim J, Herrmann A, Wright A, Harris S, et al. Post-mortem brain analyses of the Lothian Birth Cohort 1936: extending lifetime cognitive and brain phenotyping to the level of the synapse. Acta Neuropathol Commun. 2015;3:53 pubmed publisher
  164. Rolyan H, Tyurina Y, Hernandez M, Amoscato A, Sparvero L, Nmezi B, et al. Defects of Lipid Synthesis Are Linked to the Age-Dependent Demyelination Caused by Lamin B1 Overexpression. J Neurosci. 2015;35:12002-17 pubmed publisher
  165. Kurgonaite K, Gandhi H, Kurth T, Pautot S, Schwille P, Weidemann T, et al. Essential role of endocytosis for interleukin-4-receptor-mediated JAK/STAT signalling. J Cell Sci. 2015;128:3781-95 pubmed publisher
  166. Korb E, Herre M, Zucker Scharff I, Darnell R, Allis C. BET protein Brd4 activates transcription in neurons and BET inhibitor Jq1 blocks memory in mice. Nat Neurosci. 2015;18:1464-73 pubmed publisher
  167. Rennoll Bankert K, Rahman M, Gillespie J, Guillotte M, Kaur S, Lehman S, et al. Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion. PLoS Pathog. 2015;11:e1005115 pubmed publisher
  168. Moreau K, Ghislat G, Hochfeld W, Renna M, Zavodszky E, Runwal G, et al. Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy. Nat Commun. 2015;6:8045 pubmed publisher
  169. Galicia Vázquez G, Chu J, Pelletier J. eIF4AII is dispensable for miRNA-mediated gene silencing. RNA. 2015;21:1826-33 pubmed publisher
  170. Volta M, Cataldi S, Beccano Kelly D, Munsie L, Tatarnikov I, Chou P, et al. Chronic and acute LRRK2 silencing has no long-term behavioral effects, whereas wild-type and mutant LRRK2 overexpression induce motor and cognitive deficits and altered regulation of dopamine release. Parkinsonism Relat Disord. 2015;21:1156-63 pubmed publisher
  171. Wang Y, Li Z, Zhang P, Poon E, Kong C, Boheler K, et al. Nitric Oxide-cGMP-PKG Pathway Acts on Orai1 to Inhibit the Hypertrophy of Human Embryonic Stem Cell-Derived Cardiomyocytes. Stem Cells. 2015;33:2973-84 pubmed publisher
  172. Wu G, Huang C, Yu Y. Pseudouridine in mRNA: Incorporation, Detection, and Recoding. Methods Enzymol. 2015;560:187-217 pubmed publisher
  173. Wang H, Lööf S, Borg P, Nader G, Blau H, Simon A. Turning terminally differentiated skeletal muscle cells into regenerative progenitors. Nat Commun. 2015;6:7916 pubmed publisher
  174. Gurt I, Artsi H, Cohen Kfir E, Hamdani G, Ben Shalom G, Feinstein B, et al. The Sirt1 Activators SRT2183 and SRT3025 Inhibit RANKL-Induced Osteoclastogenesis in Bone Marrow-Derived Macrophages and Down-Regulate Sirt3 in Sirt1 Null Cells. PLoS ONE. 2015;10:e0134391 pubmed publisher
  175. Hamazaki J, Hirayama S, Murata S. Redundant Roles of Rpn10 and Rpn13 in Recognition of Ubiquitinated Proteins and Cellular Homeostasis. PLoS Genet. 2015;11:e1005401 pubmed publisher
  176. Treacy Abarca S, Mukherjee S. Legionella suppresses the host unfolded protein response via multiple mechanisms. Nat Commun. 2015;6:7887 pubmed publisher
  177. Hieke N, Löffler A, Kaizuka T, Berleth N, Böhler P, Drießen S, et al. Expression of a ULK1/2 binding-deficient ATG13 variant can partially restore autophagic activity in ATG13-deficient cells. Autophagy. 2015;11:1471-83 pubmed publisher
  178. Drießen S, Berleth N, Friesen O, Löffler A, Böhler P, Hieke N, et al. Deubiquitinase inhibition by WP1130 leads to ULK1 aggregation and blockade of autophagy. Autophagy. 2015;11:1458-70 pubmed publisher
  179. de Vallière C, Vidal S, Clay I, Jurisic G, Tcymbarevich I, Lang S, et al. The pH-sensing receptor OGR1 improves barrier function of epithelial cells and inhibits migration in an acidic environment. Am J Physiol Gastrointest Liver Physiol. 2015;309:G475-90 pubmed publisher
  180. Stiess M, Wegehingel S, Nguyen C, Nickel W, Bradke F, Cambridge S. A Dual SILAC Proteomic Labeling Strategy for Quantifying Constitutive and Cell-Cell Induced Protein Secretion. J Proteome Res. 2015;14:3229-38 pubmed publisher
  181. Kortüm F, Harms F, Hennighausen N, Rosenberger G. αPIX Is a Trafficking Regulator that Balances Recycling and Degradation of the Epidermal Growth Factor Receptor. PLoS ONE. 2015;10:e0132737 pubmed publisher
  182. Siriwardana N, Meyer R, Panchenko M. The novel function of JADE1S in cytokinesis of epithelial cells. Cell Cycle. 2015;14:2821-34 pubmed publisher
  183. Hoover H, Li J, Marchese J, Rothwell C, Borawoski J, Jeffery D, et al. Quantitative Proteomic Verification of Membrane Proteins as Potential Therapeutic Targets Located in the 11q13 Amplicon in Cancers. J Proteome Res. 2015;14:3670-9 pubmed publisher
  184. Li F, Buck D, De Winter J, Kolb J, Meng H, Birch C, et al. Nebulin deficiency in adult muscle causes sarcomere defects and muscle-type-dependent changes in trophicity: novel insights in nemaline myopathy. Hum Mol Genet. 2015;24:5219-33 pubmed publisher
  185. Cardona M, López J, Serafín A, Rongvaux A, Inserte J, García Dorado D, et al. Executioner Caspase-3 and 7 Deficiency Reduces Myocyte Number in the Developing Mouse Heart. PLoS ONE. 2015;10:e0131411 pubmed publisher
  186. Roda D, Castillo J, Telechea Fernández M, Gil A, López Rodas G, Franco L, et al. EGF-Induced Acetylation of Heterogeneous Nuclear Ribonucleoproteins Is Dependent on KRAS Mutational Status in Colorectal Cancer Cells. PLoS ONE. 2015;10:e0130543 pubmed publisher
  187. Huna A, Salmina K, Erenpreisa J, Vazquez Martin A, Krigerts J, Inashkina I, et al. Role of stress-activated OCT4A in the cell fate decisions of embryonal carcinoma cells treated with etoposide. Cell Cycle. 2015;14:2969-84 pubmed publisher
  188. Carthy J, Sundqvist A, Heldin A, van Dam H, Kletsas D, Heldin C, et al. Tamoxifen Inhibits TGF-β-Mediated Activation of Myofibroblasts by Blocking Non-Smad Signaling Through ERK1/2. J Cell Physiol. 2015;230:3084-92 pubmed publisher
  189. Masuda Y, Takahashi H, Sato S, Tomomori Sato C, Saraf A, Washburn M, et al. TRIM29 regulates the assembly of DNA repair proteins into damaged chromatin. Nat Commun. 2015;6:7299 pubmed publisher
  190. Zeidan B, Jackson T, Larkin S, Cutress R, Coulton G, Ashton Key M, et al. Annexin A3 is a mammary marker and a potential neoplastic breast cell therapeutic target. Oncotarget. 2015;6:21421-7 pubmed
  191. Yang J, Kaur K, Ong L, Eisenberg C, Eisenberg L. Inhibition of G9a Histone Methyltransferase Converts Bone Marrow Mesenchymal Stem Cells to Cardiac Competent Progenitors. Stem Cells Int. 2015;2015:270428 pubmed publisher
  192. Hannan F, Howles S, Rogers A, Cranston T, Gorvin C, Babinsky V, et al. Adaptor protein-2 sigma subunit mutations causing familial hypocalciuric hypercalcaemia type 3 (FHH3) demonstrate genotype-phenotype correlations, codon bias and dominant-negative effects. Hum Mol Genet. 2015;24:5079-92 pubmed publisher
  193. Yuan Y, Wu Q, Cheng G, Liu X, Liu S, Luo J, et al. Recombinant human lactoferrin enhances the efficacy of triple therapy in mice infected with Helicobacter pylori. Int J Mol Med. 2015;36:363-8 pubmed publisher
  194. Masuda Y, Takahashi H, Hatakeyama S. TRIM29 regulates the p63-mediated pathway in cervical cancer cells. Biochim Biophys Acta. 2015;1853:2296-305 pubmed publisher
  195. Kato M, Goto Y, Matsushita R, Kurozumi A, Fukumoto I, Nishikawa R, et al. MicroRNA-26a/b directly regulate La-related protein 1 and inhibit cancer cell invasion in prostate cancer. Int J Oncol. 2015;47:710-8 pubmed publisher
  196. Ronchi G, Haastert Talini K, Fornasari B, Perroteau I, Geuna S, Gambarotta G. The Neuregulin1/ErbB system is selectively regulated during peripheral nerve degeneration and regeneration. Eur J Neurosci. 2016;43:351-64 pubmed publisher
  197. Li N, Mruk D, Wong C, Lee W, Han D, Cheng C. Actin-bundling protein plastin 3 is a regulator of ectoplasmic specialization dynamics during spermatogenesis in the rat testis. FASEB J. 2015;29:3788-805 pubmed publisher
  198. Botto S, Totonchy J, Gustin J, Moses A. Kaposi Sarcoma Herpesvirus Induces HO-1 during De Novo Infection of Endothelial Cells via Viral miRNA-Dependent and -Independent Mechanisms. MBio. 2015;6:e00668 pubmed publisher
  199. Song M, Gong G, Burelle Y, Gustafsson Ã, Kitsis R, Matkovich S, et al. Interdependence of Parkin-Mediated Mitophagy and Mitochondrial Fission in Adult Mouse Hearts. Circ Res. 2015;117:346-51 pubmed publisher
  200. Sachweh M, Stafford W, Drummond C, McCarthy A, Higgins M, Campbell J, et al. Redox effects and cytotoxic profiles of MJ25 and auranofin towards malignant melanoma cells. Oncotarget. 2015;6:16488-506 pubmed
  201. Luan Q, Jin L, Jiang C, Tay K, Lai F, Liu X, et al. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy. Autophagy. 2015;11:975-94 pubmed publisher
  202. Zatti S, Martewicz S, Serena E, Uno N, Giobbe G, Kazuki Y, et al. Complete restoration of multiple dystrophin isoforms in genetically corrected Duchenne muscular dystrophy patient-derived cardiomyocytes. Mol Ther Methods Clin Dev. 2014;1:1 pubmed publisher
  203. Lucido C, Vermeer P, Wieking B, Vermeer D, Lee J. CD137 enhancement of HPV positive head and neck squamous cell carcinoma tumor clearance. Vaccines (Basel). 2014;2:841-53 pubmed publisher
  204. Hodges A, Gallegos I, Laughery M, Meas R, Tran L, Wyrick J. Histone Sprocket Arginine Residues Are Important for Gene Expression, DNA Repair, and Cell Viability in Saccharomyces cerevisiae. Genetics. 2015;200:795-806 pubmed publisher
  205. Reales E, Bernabé Rubio M, Casares Arias J, Rentero C, Fernández Barrera J, Rangel L, et al. The MAL protein is crucial for proper membrane condensation at the ciliary base, which is required for primary cilium elongation. J Cell Sci. 2015;128:2261-70 pubmed publisher
  206. Kaushik S, Cuervo A. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat Cell Biol. 2015;17:759-70 pubmed publisher
  207. Wang X, Buechler N, Yoza B, McCall C, Vachharajani V. Resveratrol attenuates microvascular inflammation in sepsis via SIRT-1-Induced modulation of adhesion molecules in ob/ob mice. Obesity (Silver Spring). 2015;23:1209-17 pubmed publisher
  208. Landais I, Pelton C, Streblow D, DeFilippis V, McWeeney S, Nelson J. Human Cytomegalovirus miR-UL112-3p Targets TLR2 and Modulates the TLR2/IRAK1/NFκB Signaling Pathway. PLoS Pathog. 2015;11:e1004881 pubmed publisher
  209. Mauro Lizcano M, Esteban Martínez L, Seco E, Serrano Puebla A, García Ledo L, Figueiredo Pereira C, et al. New method to assess mitophagy flux by flow cytometry. Autophagy. 2015;11:833-43 pubmed publisher
  210. Yamagishi S, Yamada K, Sawada M, Nakano S, Mori N, Sawamoto K, et al. Netrin-5 is highly expressed in neurogenic regions of the adult brain. Front Cell Neurosci. 2015;9:146 pubmed publisher
  211. Wright J, Atwan Z, Morris S, Leppard K. The Human Adenovirus Type 5 L4 Promoter Is Negatively Regulated by TFII-I and L4-33K. J Virol. 2015;89:7053-63 pubmed publisher
  212. Iguchi Y, Ishihara S, Uchida Y, Tajima K, Mizutani T, Kawabata K, et al. Filamin B Enhances the Invasiveness of Cancer Cells into 3D Collagen Matrices. Cell Struct Funct. 2015;40:61-7 pubmed publisher
  213. Martínez A, Sesé M, Losa J, Robichaud N, Sonenberg N, Aasen T, et al. Phosphorylation of eIF4E Confers Resistance to Cellular Stress and DNA-Damaging Agents through an Interaction with 4E-T: A Rationale for Novel Therapeutic Approaches. PLoS ONE. 2015;10:e0123352 pubmed publisher
  214. Pasqualon T, Pruessmeyer J, Weidenfeld S, Babendreyer A, Groth E, Schumacher J, et al. A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation. Cell Mol Life Sci. 2015;72:3783-801 pubmed publisher
  215. Mayer A, Di Iulio J, Maleri S, Eser U, Vierstra J, Reynolds A, et al. Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell. 2015;161:541-554 pubmed publisher
  216. Ljubicic V, Jasmin B. Metformin increases peroxisome proliferator-activated receptor γ Co-activator-1α and utrophin a expression in dystrophic skeletal muscle. Muscle Nerve. 2015;52:139-42 pubmed publisher
  217. Moreira J, Wohlwend M, Alves M, Wisløff U, Bye A. A small molecule activator of AKT does not reduce ischemic injury of the rat heart. J Transl Med. 2015;13:76 pubmed publisher
  218. Bettaieb A, Jiang J, Sasaki Y, Chao T, Kiss Z, Chen X, et al. Hepatocyte Nicotinamide Adenine Dinucleotide Phosphate Reduced Oxidase 4 Regulates Stress Signaling, Fibrosis, and Insulin Sensitivity During Development of Steatohepatitis in Mice. Gastroenterology. 2015;149:468-80.e10 pubmed publisher
  219. Roca Rodríguez M, El Bekay R, Garrido Sanchez L, Gómez Serrano M, Coin Aragüez L, Oliva Olivera W, et al. Parathyroid Hormone-Related Protein, Human Adipose-Derived Stem Cells Adipogenic Capacity and Healthy Obesity. J Clin Endocrinol Metab. 2015;100:E826-35 pubmed publisher
  220. Navis A, van Lith S, van Duijnhoven S, de Pooter M, Yetkin Arik B, Wesseling P, et al. Identification of a novel MET mutation in high-grade glioma resulting in an auto-active intracellular protein. Acta Neuropathol. 2015;130:131-44 pubmed publisher
  221. Milan G, Romanello V, Pescatore F, Armani A, Paik J, Frasson L, et al. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun. 2015;6:6670 pubmed publisher
  222. Janes K. An analysis of critical factors for quantitative immunoblotting. Sci Signal. 2015;8:rs2 pubmed publisher
  223. Tsukiyama T, Fukui A, Terai S, Fujioka Y, Shinada K, Takahashi H, et al. Molecular Role of RNF43 in Canonical and Noncanonical Wnt Signaling. Mol Cell Biol. 2015;35:2007-23 pubmed publisher
  224. Maquigussa E, Arnoni C, Pereira L, Boim M. Calcitriol ameliorates renal damage in a pre-established proteinuria model. Mol Med Rep. 2015;12:1009-15 pubmed publisher
  225. Kaneko Y, Sullivan R, Dailey T, Vale F, Tajiri N, Borlongan C. Kainic Acid-Induced Golgi Complex Fragmentation/Dispersal Shifts the Proteolysis of Reelin in Primary Rat Neuronal Cells: An In Vitro Model of Early Stage Epilepsy. Mol Neurobiol. 2016;53:1874-1883 pubmed publisher
  226. Gomez Cavazos J, Hetzer M. The nucleoporin gp210/Nup210 controls muscle differentiation by regulating nuclear envelope/ER homeostasis. J Cell Biol. 2015;208:671-81 pubmed publisher
  227. Richardson E, Shukla S, Sweet D, Wearsch P, Tsichlis P, Boom W, et al. Toll-like receptor 2-dependent extracellular signal-regulated kinase signaling in Mycobacterium tuberculosis-infected macrophages drives anti-inflammatory responses and inhibits Th1 polarization of responding T cells. Infect Immun. 2015;83:2242-54 pubmed publisher
  228. Hutchins A, Takahashi Y, Miranda Saavedra D. Genomic analysis of LPS-stimulated myeloid cells identifies a common pro-inflammatory response but divergent IL-10 anti-inflammatory responses. Sci Rep. 2015;5:9100 pubmed publisher
  229. Liu Y, Li Y, Zhang D, Liu J, Gou K, Cui S. Mitogen-Activated Protein Kinase 8 (MAP3K8) Mediates the Signaling Pathway of Estradiol Stimulating Progesterone Production Through G Protein-Coupled Receptor 30 (GPR30) in Mouse Corpus Luteum. Mol Endocrinol. 2015;29:703-15 pubmed publisher
  230. Griffin J, Sondalle S, del Viso F, Baserga S, Khokha M. The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus. PLoS Genet. 2015;11:e1005018 pubmed publisher
  231. Jayaprakash P, Dong H, Zou M, Bhatia A, O Brien K, Chen M, et al. Hsp90α and Hsp90β together operate a hypoxia and nutrient paucity stress-response mechanism during wound healing. J Cell Sci. 2015;128:1475-80 pubmed publisher
  232. Takemoto K, Ishihara S, Mizutani T, Kawabata K, Haga H. Compressive stress induces dephosphorylation of the myosin regulatory light chain via RhoA phosphorylation by the adenylyl cyclase/protein kinase A signaling pathway. PLoS ONE. 2015;10:e0117937 pubmed publisher
  233. Jarosinski K, Donovan K, Du G. Expression of fluorescent proteins within the repeat long region of the Marek's disease virus genome allows direct identification of infected cells while retaining full pathogenicity. Virus Res. 2015;201:50-60 pubmed publisher
  234. Schisler J, Grevengoed T, Pascual F, Cooper D, Ellis J, Paul D, et al. Cardiac energy dependence on glucose increases metabolites related to glutathione and activates metabolic genes controlled by mechanistic target of rapamycin. J Am Heart Assoc. 2015;4: pubmed publisher
  235. Maganti A, Maier B, Tersey S, Sampley M, Mosley A, Özcan S, et al. Transcriptional activity of the islet β cell factor Pdx1 is augmented by lysine methylation catalyzed by the methyltransferase Set7/9. J Biol Chem. 2015;290:9812-22 pubmed publisher
  236. Kramer D, Schön M, Bayerlová M, Bleckmann A, Schön M, Zörnig M, et al. A pro-apoptotic function of iASPP by stabilizing p300 and CBP through inhibition of BRMS1 E3 ubiquitin ligase activity. Cell Death Dis. 2015;6:e1634 pubmed publisher
  237. Fukumoto I, Hanazawa T, Kinoshita T, Kikkawa N, Koshizuka K, Goto Y, et al. MicroRNA expression signature of oral squamous cell carcinoma: functional role of microRNA-26a/b in the modulation of novel cancer pathways. Br J Cancer. 2015;112:891-900 pubmed publisher
  238. Schreiber K, Ortiz D, Academia E, Anies A, Liao C, Kennedy B. Rapamycin-mediated mTORC2 inhibition is determined by the relative expression of FK506-binding proteins. Aging Cell. 2015;14:265-73 pubmed publisher
  239. Radhakrishnan V, Kojs P, Ramalingam R, Midura Kiela M, Angeli P, Kiela P, et al. Experimental colitis is associated with transcriptional inhibition of Na+/Ca2+ exchanger isoform 1 (NCX1) expression by interferon γ in the renal distal convoluted tubules. J Biol Chem. 2015;290:8964-74 pubmed publisher
  240. West A, Khoury Hanold W, Staron M, Tal M, Pineda C, Lang S, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015;520:553-7 pubmed publisher
  241. Bai M, Yuan M, Liao H, Chen J, Xie B, Yan D, et al. OCT4 pseudogene 5 upregulates OCT4 expression to promote proliferation by competing with miR-145 in endometrial carcinoma. Oncol Rep. 2015;33:1745-52 pubmed publisher
  242. Mandell D, Lajoie M, Mee M, Takeuchi R, Kuznetsov G, Norville J, et al. Biocontainment of genetically modified organisms by synthetic protein design. Nature. 2015;518:55-60 pubmed publisher
  243. Song M, Mihara K, Chen Y, Scorrano L, Dorn G. Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab. 2015;21:273-85 pubmed publisher
  244. Peralta D, Bronowska A, Morgan B, Dóka Ã, Van Laer K, Nagy P, et al. A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat Chem Biol. 2015;11:156-63 pubmed publisher
  245. Liu L, Zou P, Zheng L, Linarelli L, Amarell S, Passaro A, et al. Tamoxifen reduces fat mass by boosting reactive oxygen species. Cell Death Dis. 2015;6:e1586 pubmed publisher
  246. Zhang P, Wang L, Rodriguez Aguayo C, Yuan Y, Debeb B, Chen D, et al. miR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nat Commun. 2014;5:5671 pubmed publisher
  247. Cai H, Liu W, Xue Y, Shang X, Liu J, Li Z, et al. Roundabout 4 regulates blood-tumor barrier permeability through the modulation of ZO-1, Occludin, and Claudin-5 expression. J Neuropathol Exp Neurol. 2015;74:25-37 pubmed publisher
  248. Freund A, Zhong F, Venteicher A, Meng Z, Veenstra T, Frydman J, et al. Proteostatic control of telomerase function through TRiC-mediated folding of TCAB1. Cell. 2014;159:1389-403 pubmed publisher
  249. Thapa D, Nichols C, Lewis S, Shepherd D, Jagannathan R, Croston T, et al. Transgenic overexpression of mitofilin attenuates diabetes mellitus-associated cardiac and mitochondria dysfunction. J Mol Cell Cardiol. 2015;79:212-23 pubmed publisher
  250. Tang E, Mok K, Lee W, Cheng C. EB1 regulates tubulin and actin cytoskeletal networks at the sertoli cell blood-testis barrier in male rats: an in vitro study. Endocrinology. 2015;156:680-93 pubmed publisher
  251. Barbarin A, Séité P, Godet J, Bensalma S, Muller J, Chadéneau C. Atypical nuclear localization of VIP receptors in glioma cell lines and patients. Biochem Biophys Res Commun. 2014;454:524-30 pubmed publisher
  252. Vigelsø A, Dybboe R, Hansen C, Dela F, Helge J, Guadalupe Grau A. GAPDH and β-actin protein decreases with aging, making Stain-Free technology a superior loading control in Western blotting of human skeletal muscle. J Appl Physiol (1985). 2015;118:386-94 pubmed publisher
  253. Rovetta A, Peña D, Hernández Del Pino R, Recalde G, Pellegrini J, Bigi F, et al. IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis. Autophagy. 2014;10:2109-21 pubmed publisher
  254. Caminos E, Garcia Pino E, Juiz J. Loss of auditory activity modifies the location of potassium channel KCNQ5 in auditory brainstem neurons. J Neurosci Res. 2015;93:604-14 pubmed publisher
  255. Shirasago Y, Sekizuka T, Saito K, Suzuki T, Wakita T, Hanada K, et al. Isolation and characterization of an Huh.7.5.1-derived cell clone highly permissive to hepatitis C virus. Jpn J Infect Dis. 2015;68:81-8 pubmed publisher
  256. Avitzour M, Mor Shaked H, Yanovsky Dagan S, Aharoni S, Altarescu G, Renbaum P, et al. FMR1 epigenetic silencing commonly occurs in undifferentiated fragile X-affected embryonic stem cells. Stem Cell Reports. 2014;3:699-706 pubmed publisher
  257. Grünhagen J, Bhushan R, Degenkolbe E, Jäger M, Knaus P, Mundlos S, et al. MiR-497∼195 cluster microRNAs regulate osteoblast differentiation by targeting BMP signaling. J Bone Miner Res. 2015;30:796-808 pubmed publisher
  258. Shriver M, Stroka K, Vitolo M, Martin S, Huso D, Konstantopoulos K, et al. Loss of giant obscurins from breast epithelium promotes epithelial-to-mesenchymal transition, tumorigenicity and metastasis. Oncogene. 2015;34:4248-59 pubmed publisher
  259. Blair B, Wu X, Zahari M, Mohseni M, Cidado J, Wong H, et al. A phosphoproteomic screen demonstrates differential dependence on HER3 for MAP kinase pathway activation by distinct PIK3CA mutations. Proteomics. 2015;15:318-26 pubmed publisher
  260. Mooren O, Li J, Nawas J, Cooper J. Endothelial cells use dynamic actin to facilitate lymphocyte transendothelial migration and maintain the monolayer barrier. Mol Biol Cell. 2014;25:4115-29 pubmed publisher
  261. Munday D, Wu W, Smith N, Fix J, Noton S, Galloux M, et al. Interactome analysis of the human respiratory syncytial virus RNA polymerase complex identifies protein chaperones as important cofactors that promote L-protein stability and RNA synthesis. J Virol. 2015;89:917-30 pubmed publisher
  262. Sedlmeier E, Brunner S, Much D, Pagel P, Ulbrich S, Meyer H, et al. Human placental transcriptome shows sexually dimorphic gene expression and responsiveness to maternal dietary n-3 long-chain polyunsaturated fatty acid intervention during pregnancy. BMC Genomics. 2014;15:941 pubmed publisher
  263. Kaiser A, Jenewein B, Pircher H, Rostek U, Jansen Dürr P, Zwerschke W. Analysis of human papillomavirus E7 protein status in C-33A cervical cancer cells. Virus Genes. 2015;50:12-21 pubmed publisher
  264. Durk M, Fan J, Sun H, Yang Y, Pang H, Pang K, et al. Vitamin D receptor activation induces P-glycoprotein and increases brain efflux of quinidine: an intracerebral microdialysis study in conscious rats. Pharm Res. 2015;32:1128-40 pubmed publisher
  265. Oujo B, Muñoz Félix J, Arévalo M, Núñez Gómez E, Pérez Roque L, Pericacho M, et al. L-Endoglin overexpression increases renal fibrosis after unilateral ureteral obstruction. PLoS ONE. 2014;9:e110365 pubmed publisher
  266. Otabe K, Nakahara H, Hasegawa A, Matsukawa T, Ayabe F, Onizuka N, et al. Transcription factor Mohawk controls tenogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo. J Orthop Res. 2015;33:1-8 pubmed publisher
  267. Maney N, Reynolds G, Krippner Heidenreich A, Hilkens C. Dendritic cell maturation and survival are differentially regulated by TNFR1 and TNFR2. J Immunol. 2014;193:4914-4923 pubmed publisher
  268. Hsieh Y, Yang C, Liu S, Chou L, Hong C. Remote dose-dependent effects of dry needling at distant myofascial trigger spots of rabbit skeletal muscles on reduction of substance P levels of proximal muscle and spinal cords. Biomed Res Int. 2014;2014:982121 pubmed publisher
  269. Moreau K, Fleming A, Imarisio S, Lopez Ramirez A, Mercer J, Jimenez Sanchez M, et al. PICALM modulates autophagy activity and tau accumulation. Nat Commun. 2014;5:4998 pubmed publisher
  270. Young D, Fong D, Lawlor P, Wu A, Mouravlev A, McRae M, et al. Adenosine kinase, glutamine synthetase and EAAT2 as gene therapy targets for temporal lobe epilepsy. Gene Ther. 2014;21:1029-40 pubmed publisher
  271. Tan X, Peng J, Fu Y, An S, Rezaei K, Tabbara S, et al. miR-638 mediated regulation of BRCA1 affects DNA repair and sensitivity to UV and cisplatin in triple-negative breast cancer. Breast Cancer Res. 2014;16:435 pubmed publisher
  272. Haddock C, Blomenkamp K, Gautam M, James J, Mielcarska J, Gogol E, et al. PiZ mouse liver accumulates polyubiquitin conjugates that associate with catalytically active 26S proteasomes. PLoS ONE. 2014;9:e106371 pubmed publisher
  273. Tantra M, Kröcher T, Papiol S, Winkler D, Röckle I, Jatho J, et al. St8sia2 deficiency plus juvenile cannabis exposure in mice synergistically affect higher cognition in adulthood. Behav Brain Res. 2014;275:166-75 pubmed publisher
  274. Zieger M, Ahnelt P, Uhrin P. CX3CL1 (fractalkine) protein expression in normal and degenerating mouse retina: in vivo studies. PLoS ONE. 2014;9:e106562 pubmed publisher
  275. Eberle M, Ebel P, Wegner M, Männich J, Tafferner N, Ferreirós N, et al. Regulation of ceramide synthase 6 in a spontaneous experimental autoimmune encephalomyelitis model is sex dependent. Biochem Pharmacol. 2014;92:326-35 pubmed publisher
  276. García E, Machesky L, Jones G, Antón I. WIP is necessary for matrix invasion by breast cancer cells. Eur J Cell Biol. 2014;93:413-23 pubmed publisher
  277. Sarkar J, Simanian E, Tuggy S, Bartlett J, Snead M, Sugiyama T, et al. Comparison of two mouse ameloblast-like cell lines for enamel-specific gene expression. Front Physiol. 2014;5:277 pubmed publisher
  278. Curto G, Nieto Estévez V, Hurtado Chong A, Valero J, Gómez C, Alonso J, et al. Pax6 is essential for the maintenance and multi-lineage differentiation of neural stem cells, and for neuronal incorporation into the adult olfactory bulb. Stem Cells Dev. 2014;23:2813-30 pubmed publisher
  279. Riemer P, Sreekumar A, Reinke S, Rad R, Schäfer R, Sers C, et al. Transgenic expression of oncogenic BRAF induces loss of stem cells in the mouse intestine, which is antagonized by β-catenin activity. Oncogene. 2015;34:3164-75 pubmed publisher
  280. Zhang P, Wei Y, Wang L, Debeb B, Yuan Y, Zhang J, et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol. 2014;16:864-75 pubmed publisher
  281. Requejo Aguilar R, Lopez Fabuel I, Fernandez E, Martins L, Almeida A, Bolanos J. PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1. Nat Commun. 2014;5:4514 pubmed publisher
  282. Syhr K, Kallenborn Gerhardt W, Lu R, Olbrich K, Schmitz K, Männich J, et al. Lack of effect of a P2Y6 receptor antagonist on neuropathic pain behavior in mice. Pharmacol Biochem Behav. 2014;124:389-95 pubmed publisher
  283. Joly S, Jordi N, Schwab M, Pernet V. The Ephrin receptor EphA4 restricts axonal sprouting and enhances branching in the injured mouse optic nerve. Eur J Neurosci. 2014;40:3021-31 pubmed publisher
  284. Vachharajani V, Liu T, Brown C, Wang X, Buechler N, Wells J, et al. SIRT1 inhibition during the hypoinflammatory phenotype of sepsis enhances immunity and improves outcome. J Leukoc Biol. 2014;96:785-96 pubmed publisher
  285. Walker M, Volta M, Cataldi S, Dinelle K, Beccano Kelly D, Munsie L, et al. Behavioral deficits and striatal DA signaling in LRRK2 p.G2019S transgenic rats: a multimodal investigation including PET neuroimaging. J Parkinsons Dis. 2014;4:483-98 pubmed publisher
  286. Cowling R, Yeo S, Kim I, Park J, Gu Y, Dalton N, et al. Discoidin domain receptor 2 germline gene deletion leads to altered heart structure and function in the mouse. Am J Physiol Heart Circ Physiol. 2014;307:H773-81 pubmed publisher
  287. Aligny C, Roux C, Dourmap N, Ramdani Y, do Rego J, Jegou S, et al. Ketamine alters cortical integration of GABAergic interneurons and induces long-term sex-dependent impairments in transgenic Gad67-GFP mice. Cell Death Dis. 2014;5:e1311 pubmed publisher
  288. Chung L, Bailey D, Leen E, Emmott E, Chaudhry Y, Roberts L, et al. Norovirus translation requires an interaction between the C Terminus of the genome-linked viral protein VPg and eukaryotic translation initiation factor 4G. J Biol Chem. 2014;289:21738-50 pubmed publisher
  289. Lebron M, Brennan L, Damoci C, Prewett M, O Mahony M, Duignan I, et al. A human monoclonal antibody targeting the stem cell factor receptor (c-Kit) blocks tumor cell signaling and inhibits tumor growth. Cancer Biol Ther. 2014;15:1208-18 pubmed publisher
  290. Kolanczyk M, Krawitz P, Hecht J, Hupalowska A, Miaczynska M, Marschner K, et al. Missense variant in CCDC22 causes X-linked recessive intellectual disability with features of Ritscher-Schinzel/3C syndrome. Eur J Hum Genet. 2015;23:633-8 pubmed publisher
  291. Screen M, Jonson P, Raheem O, Palmio J, Laaksonen R, Lehtimaki T, et al. Abnormal splicing of NEDD4 in myotonic dystrophy type 2: possible link to statin adverse reactions. Am J Pathol. 2014;184:2322-32 pubmed publisher
  292. Lamarca A, Gella A, Martiáñez T, Segura M, Figueiro Silva J, Grijota Martinez C, et al. Uridine 5'-triphosphate promotes in vitro Schwannoma cell migration through matrix metalloproteinase-2 activation. PLoS ONE. 2014;9:e98998 pubmed publisher
  293. Premkumar M, Sule G, Nagamani S, Chakkalakal S, Nordin A, Jain M, et al. Argininosuccinate lyase in enterocytes protects from development of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol. 2014;307:G347-54 pubmed publisher
  294. Relógio A, Thomas P, Medina Pérez P, Reischl S, Bervoets S, Gloc E, et al. Ras-mediated deregulation of the circadian clock in cancer. PLoS Genet. 2014;10:e1004338 pubmed publisher
  295. Chapnik E, Rivkin N, Mildner A, Beck G, Pasvolsky R, Metzl Raz E, et al. miR-142 orchestrates a network of actin cytoskeleton regulators during megakaryopoiesis. elife. 2014;3:e01964 pubmed publisher
  296. Shin J, Le Dour C, Sera F, Iwata S, Homma S, Joseph L, et al. Depletion of lamina-associated polypeptide 1 from cardiomyocytes causes cardiac dysfunction in mice. Nucleus. 2014;5:260-459 pubmed publisher
  297. Durk M, Han K, Chow E, Ahrens R, Henderson J, Fraser P, et al. 1?,25-Dihydroxyvitamin D3 reduces cerebral amyloid-? accumulation and improves cognition in mouse models of Alzheimer's disease. J Neurosci. 2014;34:7091-101 pubmed publisher
  298. Jafari M, Xu W, Pan R, Sweeting C, Karunaratne D, Chen P. Serum stability and physicochemical characterization of a novel amphipathic peptide C6M1 for siRNA delivery. PLoS ONE. 2014;9:e97797 pubmed publisher
  299. Zavodszky E, Seaman M, Moreau K, Jimenez Sanchez M, Breusegem S, Harbour M, et al. Mutation in VPS35 associated with Parkinson's disease impairs WASH complex association and inhibits autophagy. Nat Commun. 2014;5:3828 pubmed publisher
  300. Chucair Elliott A, Conrady C, Zheng M, Kroll C, Lane T, Carr D. Microglia-induced IL-6 protects against neuronal loss following HSV-1 infection of neural progenitor cells. Glia. 2014;62:1418-34 pubmed publisher
  301. Roberge S, Roussel J, Andersson D, Meli A, Vidal B, Blandel F, et al. TNF-?-mediated caspase-8 activation induces ROS production and TRPM2 activation in adult ventricular myocytes. Cardiovasc Res. 2014;103:90-9 pubmed publisher
  302. Ding Z, German P, Bai S, Reddy A, Liu X, Sun M, et al. Genetic and pharmacological strategies to refunctionalize the von Hippel Lindau R167Q mutant protein. Cancer Res. 2014;74:3127-36 pubmed publisher
  303. Gonzalez Rodriguez A, Mayoral R, Agra N, Valdecantos M, Pardo V, Miquilena Colina M, et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 2014;5:e1179 pubmed publisher
  304. Sun Y, Chung H, Woo A, Lin V. Protein arginine methyltransferase 6 enhances ligand-dependent and -independent activity of estrogen receptor ? via distinct mechanisms. Biochim Biophys Acta. 2014;1843:2067-78 pubmed publisher
  305. Patoine A, Gaumond M, Jaiswal P, Fassier F, Rauch F, Moffatt P. Topological mapping of BRIL reveals a type II orientation and effects of osteogenesis imperfecta mutations on its cellular destination. J Bone Miner Res. 2014;29:2004-16 pubmed publisher
  306. Huang G, Wilson N, Reese S, Jacobson L, Zhong W, Djamali A. Characterization of transfusion-elicited acute antibody-mediated rejection in a rat model of kidney transplantation. Am J Transplant. 2014;14:1061-72 pubmed publisher
  307. Bejarano E, Yuste A, Patel B, Stout R, Spray D, Cuervo A. Connexins modulate autophagosome biogenesis. Nat Cell Biol. 2014;16:401-14 pubmed publisher
  308. Jung Y, Vermeer P, Vermeer D, Lee S, Goh A, Ahn H, et al. CD200: association with cancer stem cell features and response to chemoradiation in head and neck squamous cell carcinoma. Head Neck. 2015;37:327-35 pubmed publisher
  309. Erdozain A, Morentin B, Bedford L, King E, Tooth D, Brewer C, et al. Alcohol-related brain damage in humans. PLoS ONE. 2014;9:e93586 pubmed publisher
  310. Li Y, Pan J, Wei C, Chen J, Liu Y, Liu J, et al. LIM homeodomain transcription factor Isl1 directs normal pyloric development by targeting Gata3. BMC Biol. 2014;12:25 pubmed publisher
  311. Rappe U, Schlechter T, Aschoff M, Hotz Wagenblatt A, Hofmann I. Nuclear ARVCF protein binds splicing factors and contributes to the regulation of alternative splicing. J Biol Chem. 2014;289:12421-34 pubmed publisher
  312. Storm M, Kumpfmueller B, Bone H, Buchholz M, Sanchez Ripoll Y, Chaudhuri J, et al. Zscan4 is regulated by PI3-kinase and DNA-damaging agents and directly interacts with the transcriptional repressors LSD1 and CtBP2 in mouse embryonic stem cells. PLoS ONE. 2014;9:e89821 pubmed publisher
  313. Farg M, Sundaramoorthy V, Sultana J, Yang S, Atkinson R, Levina V, et al. C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol Genet. 2014;23:3579-95 pubmed publisher
  314. Muenyi C, Trivedi A, Helm C, States J. Cisplatin plus sodium arsenite and hyperthermia induces pseudo-G1 associated apoptotic cell death in ovarian cancer cells. Toxicol Sci. 2014;139:74-82 pubmed publisher
  315. Born N, Thiesen H, Lorenz P. The B-subdomain of the Xenopus laevis XFIN KRAB-AB domain is responsible for its weaker transcriptional repressor activity compared to human ZNF10/Kox1. PLoS ONE. 2014;9:e87609 pubmed publisher
  316. Miyazawa N, Yoshikawa H, Magae S, Ishikawa H, Izumikawa K, Terukina G, et al. Human cell growth regulator Ly-1 antibody reactive homologue accelerates processing of preribosomal RNA. Genes Cells. 2014;19:273-86 pubmed publisher
  317. Yik J, Hu Z, Kumari R, Christiansen B, Haudenschild D. Cyclin-dependent kinase 9 inhibition protects cartilage from the catabolic effects of proinflammatory cytokines. Arthritis Rheumatol. 2014;66:1537-46 pubmed publisher
  318. Arnandis T, Ferrer Vicens I, Torres L, García C, García Trevijano E, Zaragoza R, et al. Differential functions of calpain 1 during epithelial cell death and adipocyte differentiation in mammary gland involution. Biochem J. 2014;459:355-68 pubmed publisher
  319. Galicia Vázquez G, Di Marco S, Lian X, Ma J, Gallouzi I, Pelletier J. Regulation of eukaryotic initiation factor 4AII by MyoD during murine myogenic cell differentiation. PLoS ONE. 2014;9:e87237 pubmed publisher
  320. Bayer M, Schjerling P, Herchenhan A, Zeltz C, Heinemeier K, Christensen L, et al. Release of tensile strain on engineered human tendon tissue disturbs cell adhesions, changes matrix architecture, and induces an inflammatory phenotype. PLoS ONE. 2014;9:e86078 pubmed publisher
  321. Kapoor Vazirani P, Vertino P. A dual role for the histone methyltransferase PR-SET7/SETD8 and histone H4 lysine 20 monomethylation in the local regulation of RNA polymerase II pausing. J Biol Chem. 2014;289:7425-37 pubmed publisher
  322. Gangoso E, Thirant C, Chneiweiss H, Medina J, Tabernero A. A cell-penetrating peptide based on the interaction between c-Src and connexin43 reverses glioma stem cell phenotype. Cell Death Dis. 2014;5:e1023 pubmed publisher
  323. Dannoura A, Giraldo A, Pereira I, Gibbins J, Dash P, Bicknell K, et al. Ibuprofen inhibits migration and proliferation of human coronary artery smooth muscle cells by inducing a differentiated phenotype: role of peroxisome proliferator-activated receptor ?. J Pharm Pharmacol. 2014;66:779-92 pubmed publisher
  324. Ashraf M, Ebner M, Wallner C, Haller M, Khalid S, Schwelberger H, et al. A p38MAPK/MK2 signaling pathway leading to redox stress, cell death and ischemia/reperfusion injury. Cell Commun Signal. 2014;12:6 pubmed publisher
  325. Yan X, Lin J, Talabattula V, Mußmann C, Yang F, Wree A, et al. ADAM10 negatively regulates neuronal differentiation during spinal cord development. PLoS ONE. 2014;9:e84617 pubmed publisher
  326. Tsuyuki S, Takabayashi M, Kawazu M, Kudo K, Watanabe A, Nagata Y, et al. Detection of WIPI1 mRNA as an indicator of autophagosome formation. Autophagy. 2014;10:497-513 pubmed publisher
  327. Nakajima M, Honda T, Miyauchi S, Yamazaki K. Th2 cytokines efficiently stimulate periostin production in gingival fibroblasts but periostin does not induce an inflammatory response in gingival epithelial cells. Arch Oral Biol. 2014;59:93-101 pubmed publisher
  328. Lewis S, Hedman C, Ziegler T, Ricke W, Jorgensen J. Steroidogenic factor 1 promotes aggressive growth of castration-resistant prostate cancer cells by stimulating steroid synthesis and cell proliferation. Endocrinology. 2014;155:358-69 pubmed publisher
  329. Chua J, Reddy S, Merry D, Adachi H, Katsuno M, Sobue G, et al. Transcriptional activation of TFEB/ZKSCAN3 target genes underlies enhanced autophagy in spinobulbar muscular atrophy. Hum Mol Genet. 2014;23:1376-86 pubmed publisher
  330. Alqudah M, Agarwal S, Al Keilani M, Sibenaller Z, Ryken T, Assem M. NOTCH3 is a prognostic factor that promotes glioma cell proliferation, migration and invasion via activation of CCND1 and EGFR. PLoS ONE. 2013;8:e77299 pubmed publisher
  331. Elisia I, Kitts D. Modulation of NF-?B and Nrf2 control of inflammatory responses in FHs 74 Int cell line is tocopherol isoform-specific. Am J Physiol Gastrointest Liver Physiol. 2013;305:G940-9 pubmed publisher
  332. Gurha P, Wang T, Larimore A, Sassi Y, Abreu Goodger C, Ramirez M, et al. microRNA-22 promotes heart failure through coordinate suppression of PPAR/ERR-nuclear hormone receptor transcription. PLoS ONE. 2013;8:e75882 pubmed publisher
  333. Fan C, Tian Y, Miao Y, Lin X, Zhang X, Jiang G, et al. ASAP3 expression in non-small cell lung cancer: association with cancer development and patients' clinical outcome. Tumour Biol. 2014;35:1489-94 pubmed
  334. Murholm M, Isidor M, Basse A, Winther S, Sørensen C, Skovgaard Petersen J, et al. Retinoic acid has different effects on UCP1 expression in mouse and human adipocytes. BMC Cell Biol. 2013;14:41 pubmed publisher
  335. Goodwin A, Tidyman W, Jheon A, Sharir A, Zheng X, Charles C, et al. Abnormal Ras signaling in Costello syndrome (CS) negatively regulates enamel formation. Hum Mol Genet. 2014;23:682-92 pubmed publisher
  336. Kr cher T, Malinovskaja K, J rgenson M, Aonurm Helm A, Zharkovskaya T, Kalda A, et al. Schizophrenia-like phenotype of polysialyltransferase ST8SIA2-deficient mice. Brain Struct Funct. 2015;220:71-83 pubmed publisher
  337. Gao H, Fisher P, Lambi A, WADE C, Barr Gillespie A, Popoff S, et al. Increased serum and musculotendinous fibrogenic proteins following persistent low-grade inflammation in a rat model of long-term upper extremity overuse. PLoS ONE. 2013;8:e71875 pubmed publisher
  338. Dave J, Kang H, Abbey C, Maxwell S, Bayless K. Proteomic profiling of endothelial invasion revealed receptor for activated C kinase 1 (RACK1) complexed with vimentin to regulate focal adhesion kinase (FAK). J Biol Chem. 2013;288:30720-33 pubmed publisher
  339. Chen Y, Kamili A, Hardy J, Groblewski G, Khanna K, Byrne J. Tumor protein D52 represents a negative regulator of ATM protein levels. Cell Cycle. 2013;12:3083-97 pubmed publisher
  340. Voss M, Campbell K, Saranzewa N, Campbell D, Hastie C, Peggie M, et al. Protein phosphatase 4 is phosphorylated and inactivated by Cdk in response to spindle toxins and interacts with ?-tubulin. Cell Cycle. 2013;12:2876-87 pubmed publisher
  341. Jakobsson M, Moen A, Bousset L, Egge Jacobsen W, Kernstock S, Melki R, et al. Identification and characterization of a novel human methyltransferase modulating Hsp70 protein function through lysine methylation. J Biol Chem. 2013;288:27752-63 pubmed publisher
  342. Guo H, Gao M, Lu Y, Liang J, Lorenzi P, Bai S, et al. Coordinate phosphorylation of multiple residues on single AKT1 and AKT2 molecules. Oncogene. 2014;33:3463-72 pubmed publisher
  343. Holle A, Tang X, Vijayraghavan D, Vincent L, Fuhrmann A, Choi Y, et al. In situ mechanotransduction via vinculin regulates stem cell differentiation. Stem Cells. 2013;31:2467-77 pubmed publisher
  344. Dokas J, Chadt A, Nolden T, Himmelbauer H, Zierath J, Joost H, et al. Conventional knockout of Tbc1d1 in mice impairs insulin- and AICAR-stimulated glucose uptake in skeletal muscle. Endocrinology. 2013;154:3502-14 pubmed publisher
  345. Sun X, Bristol J, Iwahori S, Hagemeier S, Meng Q, Barlow E, et al. Hsp90 inhibitor 17-DMAG decreases expression of conserved herpesvirus protein kinases and reduces virus production in Epstein-Barr virus-infected cells. J Virol. 2013;87:10126-38 pubmed publisher
  346. Katsushima Y, Sato T, Yamada C, Ito M, Suzuki Y, Ogawa E, et al. Interaction of PICK1 with C-terminus of growth hormone-releasing hormone receptor (GHRHR) modulates trafficking and signal transduction of human GHRHR. J Pharmacol Sci. 2013;122:193-204 pubmed
  347. Brouxhon S, Kyrkanides S, Teng X, O Banion M, Clarke R, Byers S, et al. Soluble-E-cadherin activates HER and IAP family members in HER2+ and TNBC human breast cancers. Mol Carcinog. 2014;53:893-906 pubmed publisher
  348. Larabee J, Shakir S, Barua S, Ballard J. Increased cAMP in monocytes augments Notch signaling mechanisms by elevating RBP-J and transducin-like enhancer of Split (TLE). J Biol Chem. 2013;288:21526-36 pubmed publisher
  349. Taylor Weiner H, Schwarzbauer J, Engler A. Defined extracellular matrix components are necessary for definitive endoderm induction. Stem Cells. 2013;31:2084-94 pubmed publisher
  350. Zhou D, Tan R, Lin L, Zhou L, Liu Y. Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury. Kidney Int. 2013;84:509-20 pubmed publisher
  351. Xue W, Zhou X, Yi N, Jiang L, Tao W, Wu R, et al. Yueju pill rapidly induces antidepressant-like effects and acutely enhances BDNF expression in mouse brain. Evid Based Complement Alternat Med. 2013;2013:184367 pubmed publisher
  352. Zhou D, Tan R, Zhou L, Li Y, Liu Y. Kidney tubular ?-catenin signaling controls interstitial fibroblast fate via epithelial-mesenchymal communication. Sci Rep. 2013;3:1878 pubmed publisher
  353. Vogt D, Camus G, Herker E, Webster B, Tsou C, Greene W, et al. Lipid droplet-binding protein TIP47 regulates hepatitis C Virus RNA replication through interaction with the viral NS5A protein. PLoS Pathog. 2013;9:e1003302 pubmed publisher
  354. Sanchez Ripoll Y, Bone H, Owen T, Guedes A, Abranches E, Kumpfmueller B, et al. Glycogen synthase kinase-3 inhibition enhances translation of pluripotency-associated transcription factors to contribute to maintenance of mouse embryonic stem cell self-renewal. PLoS ONE. 2013;8:e60148 pubmed publisher
  355. Ishida K, Acharya C, Christiansen B, Yik J, Dicesare P, Haudenschild D. Cartilage oligomeric matrix protein enhances osteogenesis by directly binding and activating bone morphogenetic protein-2. Bone. 2013;55:23-35 pubmed publisher
  356. Rejon C, Ho C, Wang Y, Zhou X, Bernard D, Hebert T. Cycloheximide inhibits follicle-stimulating hormone ? subunit transcription by blocking de novo synthesis of the labile activin type II receptor in gonadotrope cells. Cell Signal. 2013;25:1403-12 pubmed publisher
  357. Takeuchi Yorimoto A, Noto T, Yamada A, Miyamae Y, Oishi Y, Matsumoto M. Persistent fibrosis in the liver of choline-deficient and iron-supplemented L-amino acid-defined diet-induced nonalcoholic steatohepatitis rat due to continuing oxidative stress after choline supplementation. Toxicol Appl Pharmacol. 2013;268:264-77 pubmed publisher
  358. Gao Y, Yechikov S, Vazquez A, Chen D, Nie L. Distinct roles of molecular chaperones HSP90? and HSP90? in the biogenesis of KCNQ4 channels. PLoS ONE. 2013;8:e57282 pubmed publisher
  359. Chen S, Chung C, Cheng Y, Huang C, Ruaan R, Chen W, et al. Hydrostatic pressure enhances mitomycin C induced apoptosis in urothelial carcinoma cells. Urol Oncol. 2014;32:26.e17-24 pubmed publisher
  360. Shi J, Wu X, Surma M, Vemula S, Zhang L, Yang Y, et al. Distinct roles for ROCK1 and ROCK2 in the regulation of cell detachment. Cell Death Dis. 2013;4:e483 pubmed publisher
  361. Nowaczyk M, Thompson B, Zeesman S, Moog U, Sanchez Lara P, Magoulas P, et al. Deletion of MAP2K2/MEK2: a novel mechanism for a RASopathy?. Clin Genet. 2014;85:138-46 pubmed publisher
  362. Murakami K, Jiang Y, Tanaka T, Bando Y, Mitrovic B, Yoshida S. In vivo analysis of kallikrein-related peptidase 6 (KLK6) function in oligodendrocyte development and the expression of myelin proteins. Neuroscience. 2013;236:1-11 pubmed publisher
  363. Kim S, Ishida H, Yamane D, Yi M, Swinney D, Foung S, et al. Contrasting roles of mitogen-activated protein kinases in cellular entry and replication of hepatitis C virus: MKNK1 facilitates cell entry. J Virol. 2013;87:4214-24 pubmed publisher
  364. Torrell H, Montaña E, Abasolo N, Roig B, Gaviria A, Vilella E, et al. Mitochondrial DNA (mtDNA) in brain samples from patients with major psychiatric disorders: gene expression profiles, mtDNA content and presence of the mtDNA common deletion. Am J Med Genet B Neuropsychiatr Genet. 2013;162B:213-23 pubmed publisher
  365. Vega Almeida T, Salas Benito M, De Nova Ocampo M, del Angel R, Salas Benito J. Surface proteins of C6/36 cells involved in dengue virus 4 binding and entry. Arch Virol. 2013;158:1189-207 pubmed publisher
  366. Martiáñez T, Lamarca A, Casals N, Gella A. N-cadherin expression is regulated by UTP in schwannoma cells. Purinergic Signal. 2013;9:259-70 pubmed publisher
  367. Yamamoto M, Matsuzaki T, Takahashi R, Adachi E, Maeda Y, Yamaguchi S, et al. The transformation suppressor gene Reck is required for postaxial patterning in mouse forelimbs. Biol Open. 2012;1:458-66 pubmed publisher
  368. Pernet V, Joly S, Dalkara D, Jordi N, Schwarz O, Christ F, et al. Long-distance axonal regeneration induced by CNTF gene transfer is impaired by axonal misguidance in the injured adult optic nerve. Neurobiol Dis. 2013;51:202-13 pubmed publisher
  369. Shinozuka E, Miyashita M, Mizuguchi Y, Akagi I, Kikuchi K, Makino H, et al. SnoN/SKIL modulates proliferation through control of hsa-miR-720 transcription in esophageal cancer cells. Biochem Biophys Res Commun. 2013;430:101-6 pubmed publisher
  370. García Huerta P, Diaz Hernandez M, Delicado E, Pimentel Santillana M, Miras Portugal M, Gomez Villafuertes R. The specificity protein factor Sp1 mediates transcriptional regulation of P2X7 receptors in the nervous system. J Biol Chem. 2012;287:44628-44 pubmed publisher
  371. Nagpal P, Plant P, Correa J, Bain A, Takeda M, Kawabe H, et al. The ubiquitin ligase Nedd4-1 participates in denervation-induced skeletal muscle atrophy in mice. PLoS ONE. 2012;7:e46427 pubmed publisher
  372. Destouches D, Huet E, Sader M, Frechault S, Carpentier G, Ayoul F, et al. Multivalent pseudopeptides targeting cell surface nucleoproteins inhibit cancer cell invasion through tissue inhibitor of metalloproteinases 3 (TIMP-3) release. J Biol Chem. 2012;287:43685-93 pubmed publisher
  373. McClain C, Sim F, Goldman S. Pleiotrophin suppression of receptor protein tyrosine phosphatase-?/? maintains the self-renewal competence of fetal human oligodendrocyte progenitor cells. J Neurosci. 2012;32:15066-75 pubmed publisher
  374. Magli A, Schnettler E, Rinaldi F, Bremer P, Perlingeiro R. Functional dissection of Pax3 in paraxial mesoderm development and myogenesis. Stem Cells. 2013;31:59-70 pubmed publisher
  375. Baltanás F, Berciano M, Valero J, Gómez C, Diaz D, Alonso J, et al. Differential glial activation during the degeneration of Purkinje cells and mitral cells in the PCD mutant mice. Glia. 2013;61:254-72 pubmed publisher
  376. Jones B, Brunet S, Gilbert M, Nichols C, Su T, Westenbroek R, et al. Cardiomyocytes from AKAP7 knockout mice respond normally to adrenergic stimulation. Proc Natl Acad Sci U S A. 2012;109:17099-104 pubmed publisher
  377. Zou Z, Yuan Z, Zhang Q, Long Z, Chen J, Tang Z, et al. Aurora kinase A inhibition-induced autophagy triggers drug resistance in breast cancer cells. Autophagy. 2012;8:1798-810 pubmed publisher
  378. Yui N, Lu H, Chen Y, Nomura N, Bouley R, Brown D. Basolateral targeting and microtubule-dependent transcytosis of the aquaporin-2 water channel. Am J Physiol Cell Physiol. 2013;304:C38-48 pubmed publisher
  379. Lu C, Lin L, Tan H, Wu H, Sherman S, Gao F, et al. Fragile X premutation RNA is sufficient to cause primary ovarian insufficiency in mice. Hum Mol Genet. 2012;21:5039-47 pubmed publisher
  380. Lopez Ramirez M, Fischer R, Torres Badillo C, Davies H, Logan K, Pfizenmaier K, et al. Role of caspases in cytokine-induced barrier breakdown in human brain endothelial cells. J Immunol. 2012;189:3130-9 pubmed publisher
  381. Gao W, Liu M, Yang Y, Yang H, Liao Q, Bai Y, et al. The imprinted H19 gene regulates human placental trophoblast cell proliferation via encoding miR-675 that targets Nodal Modulator 1 (NOMO1). RNA Biol. 2012;9:1002-10 pubmed publisher
  382. Takayanagi S, Fukuda R, Takeuchi Y, Tsukada S, Yoshida K. Gene regulatory network of unfolded protein response genes in endoplasmic reticulum stress. Cell Stress Chaperones. 2013;18:11-23 pubmed publisher
  383. Peluso J, Lodde V, Liu X. Progesterone regulation of progesterone receptor membrane component 1 (PGRMC1) sumoylation and transcriptional activity in spontaneously immortalized granulosa cells. Endocrinology. 2012;153:3929-39 pubmed publisher
  384. Esteves T, Psathaki O, Pfeiffer M, Balbach S, Zeuschner D, Shitara H, et al. Mitochondrial physiology and gene expression analyses reveal metabolic and translational dysregulation in oocyte-induced somatic nuclear reprogramming. PLoS ONE. 2012;7:e36850 pubmed publisher
  385. Turinetto V, Orlando L, Sanchez Ripoll Y, Kumpfmueller B, Storm M, Porcedda P, et al. High basal ?H2AX levels sustain self-renewal of mouse embryonic and induced pluripotent stem cells. Stem Cells. 2012;30:1414-23 pubmed publisher
  386. Zhou D, Li Y, Lin L, Zhou L, Igarashi P, Liu Y. Tubule-specific ablation of endogenous β-catenin aggravates acute kidney injury in mice. Kidney Int. 2012;82:537-47 pubmed publisher
  387. Zhang Y, Cooke M, Panjwani S, Cao K, Krauth B, Ho P, et al. Histone h1 depletion impairs embryonic stem cell differentiation. PLoS Genet. 2012;8:e1002691 pubmed publisher
  388. Romoser A, Figueroa D, Sooresh A, Scribner K, Chen P, Porter W, et al. Distinct immunomodulatory effects of a panel of nanomaterials in human dermal fibroblasts. Toxicol Lett. 2012;210:293-301 pubmed publisher
  389. Hutchins A, Poulain S, Miranda Saavedra D. Genome-wide analysis of STAT3 binding in vivo predicts effectors of the anti-inflammatory response in macrophages. Blood. 2012;119:e110-9 pubmed publisher
  390. Lee J, Jiffar T, Kupferman M. A novel role for BDNF-TrkB in the regulation of chemotherapy resistance in head and neck squamous cell carcinoma. PLoS ONE. 2012;7:e30246 pubmed publisher
  391. Pérez Pérez R, Lopez J, García Santos E, Camafeita E, Gomez Serrano M, Ortega Delgado F, et al. Uncovering suitable reference proteins for expression studies in human adipose tissue with relevance to obesity. PLoS ONE. 2012;7:e30326 pubmed publisher
  392. Shinohara R, Thumkeo D, Kamijo H, Kaneko N, Sawamoto K, Watanabe K, et al. A role for mDia, a Rho-regulated actin nucleator, in tangential migration of interneuron precursors. Nat Neurosci. 2012;15:373-80, S1-2 pubmed publisher
  393. Aytekin M, Aulak K, Haserodt S, Chakravarti R, Cody J, Minai O, et al. Abnormal platelet aggregation in idiopathic pulmonary arterial hypertension: role of nitric oxide. Am J Physiol Lung Cell Mol Physiol. 2012;302:L512-20 pubmed publisher
  394. Mork L, Tang H, Batchvarov I, Capel B. Mouse germ cell clusters form by aggregation as well as clonal divisions. Mech Dev. 2012;128:591-6 pubmed publisher
  395. Medrzycki M, Zhang Y, McDonald J, Fan Y. Profiling of linker histone variants in ovarian cancer. Front Biosci (Landmark Ed). 2012;17:396-406 pubmed
  396. Matousek S, Ghosh S, Shaftel S, Kyrkanides S, Olschowka J, O Banion M. Chronic IL-1?-mediated neuroinflammation mitigates amyloid pathology in a mouse model of Alzheimer's disease without inducing overt neurodegeneration. J Neuroimmune Pharmacol. 2012;7:156-64 pubmed publisher
  397. Gomez C, Curto G, Baltanás F, Valero J, O SHEA E, Colado M, et al. Changes in the serotonergic system and in brain-derived neurotrophic factor distribution in the main olfactory bulb of pcd mice before and after mitral cell loss. Neuroscience. 2012;201:20-33 pubmed publisher
  398. Chen Z, Kolokoltsov A, Wang J, Adhikary S, Lorinczi M, Elferink L, et al. GRB2 interaction with the ecotropic murine leukemia virus receptor, mCAT-1, controls virus entry and is stimulated by virus binding. J Virol. 2012;86:1421-32 pubmed publisher
  399. Miki T, Kamikawa Y, Kurono S, Kaneko Y, Katahira J, Yoneda Y. Cell type-dependent gene regulation by Staufen2 in conjunction with Upf1. BMC Mol Biol. 2011;12:48 pubmed publisher
  400. Kahr P, Piccini I, Fabritz L, Greber B, Schöler H, Scheld H, et al. Systematic analysis of gene expression differences between left and right atria in different mouse strains and in human atrial tissue. PLoS ONE. 2011;6:e26389 pubmed publisher
  401. Schulz N, Himmelbauer H, Rath M, van Weeghel M, Houten S, Kulik W, et al. Role of medium- and short-chain L-3-hydroxyacyl-CoA dehydrogenase in the regulation of body weight and thermogenesis. Endocrinology. 2011;152:4641-51 pubmed publisher
  402. Thumkeo D, Shinohara R, Watanabe K, Takebayashi H, Toyoda Y, Tohyama K, et al. Deficiency of mDia, an actin nucleator, disrupts integrity of neuroepithelium and causes periventricular dysplasia. PLoS ONE. 2011;6:e25465 pubmed publisher
  403. Kye M, Neveu P, Lee Y, Zhou M, Steen J, Sahin M, et al. NMDA mediated contextual conditioning changes miRNA expression. PLoS ONE. 2011;6:e24682 pubmed publisher
  404. Zumer K, Plemenitas A, Saksela K, Peterlin B. Patient mutation in AIRE disrupts P-TEFb binding and target gene transcription. Nucleic Acids Res. 2011;39:7908-19 pubmed publisher
  405. Michaelson J, Amatucci A, Kelly R, Su L, Garber E, Day E, et al. Development of an Fn14 agonistic antibody as an anti-tumor agent. MAbs. 2011;3:362-75 pubmed
  406. Selinger C, Cooper W, Al Sohaily S, Mladenova D, Pangon L, Kennedy C, et al. Loss of special AT-rich binding protein 1 expression is a marker of poor survival in lung cancer. J Thorac Oncol. 2011;6:1179-89 pubmed publisher
  407. Billington C, Ng B, Forsman C, Schmidt B, Bagchi A, Symer D, et al. The molecular and cellular basis of variable craniofacial phenotypes and their genetic rescue in Twisted gastrulation mutant mice. Dev Biol. 2011;355:21-31 pubmed publisher
  408. Kim S, Welsch C, Yi M, Lemon S. Regulation of the production of infectious genotype 1a hepatitis C virus by NS5A domain III. J Virol. 2011;85:6645-56 pubmed publisher
  409. Baras A, Solomon A, Davidson R, Moskaluk C. Loss of VOPP1 overexpression in squamous carcinoma cells induces apoptosis through oxidative cellular injury. Lab Invest. 2011;91:1170-80 pubmed publisher
  410. Selvais C, D Auria L, Tyteca D, Perrot G, Lemoine P, Troeberg L, et al. Cell cholesterol modulates metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 (LRP-1) and clearance function. FASEB J. 2011;25:2770-81 pubmed publisher
  411. Beguin P, Gosselin H, Mamarbachi M, Calderone A. Nestin expression is lost in ventricular fibroblasts during postnatal development of the rat heart and re-expressed in scar myofibroblasts. J Cell Physiol. 2012;227:813-20 pubmed publisher
  412. Revuelta Cervantes J, Mayoral R, Miranda S, Gonzalez Rodriguez A, Fernandez M, Martín Sanz P, et al. Protein Tyrosine Phosphatase 1B (PTP1B) deficiency accelerates hepatic regeneration in mice. Am J Pathol. 2011;178:1591-604 pubmed publisher
  413. Wang D, Li Y, Wu C, Liu Y. PINCH1 is transcriptional regulator in podocytes that interacts with WT1 and represses podocalyxin expression. PLoS ONE. 2011;6:e17048 pubmed publisher
  414. Fabritz L, Hoogendijk M, Scicluna B, van Amersfoorth S, Fortmueller L, Wolf S, et al. Load-reducing therapy prevents development of arrhythmogenic right ventricular cardiomyopathy in plakoglobin-deficient mice. J Am Coll Cardiol. 2011;57:740-50 pubmed publisher
  415. Stoepker C, Hain K, Schuster B, Hilhorst Hofstee Y, Rooimans M, Steltenpool J, et al. SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype. Nat Genet. 2011;43:138-41 pubmed publisher
  416. Inaki M, Kato D, Utsugi T, Onoda F, Hanaoka F, Murakami Y. Genetic analyses using a mouse cell cycle mutant identifies magoh as a novel gene involved in Cdk regulation. Genes Cells. 2011;16:166-78 pubmed publisher
  417. Derbigny W, Johnson R, Toomey K, Ofner S, Jayarapu K. The Chlamydia muridarum-induced IFN-? response is TLR3-dependent in murine oviduct epithelial cells. J Immunol. 2010;185:6689-97 pubmed publisher
  418. Nassirpour R, Bahima L, Lalive A, Lüscher C, Lujan R, Slesinger P. Morphine- and CaMKII-dependent enhancement of GIRK channel signaling in hippocampal neurons. J Neurosci. 2010;30:13419-30 pubmed publisher
  419. Andersen N, Chopra A, Monahan T, Malek J, Jain M, Pradhan L, et al. Endothelial cells are susceptible to rapid siRNA transfection and gene silencing ex vivo. J Vasc Surg. 2010;52:1608-15 pubmed publisher
  420. Fett M, Pilsl A, Paquet D, van Bebber F, Haass C, Tatzelt J, et al. Parkin is protective against proteotoxic stress in a transgenic zebrafish model. PLoS ONE. 2010;5:e11783 pubmed publisher
  421. Stankowski J, Zeiger S, Cohen E, DeFranco D, Cai J, McLaughlin B. C-terminus of heat shock cognate 70 interacting protein increases following stroke and impairs survival against acute oxidative stress. Antioxid Redox Signal. 2011;14:1787-801 pubmed publisher
  422. Weber K, Hildner K, Murphy K, Allen P. Trpm4 differentially regulates Th1 and Th2 function by altering calcium signaling and NFAT localization. J Immunol. 2010;185:2836-46 pubmed publisher
  423. Dasgupta J, Kar S, Liu R, Joseph J, Kalyanaraman B, Remington S, et al. Reactive oxygen species control senescence-associated matrix metalloproteinase-1 through c-Jun-N-terminal kinase. J Cell Physiol. 2010;225:52-62 pubmed publisher
  424. Magdeldin S, Li H, Yoshida Y, Enany S, Zhang Y, Xu B, et al. Comparison of two dimensional electrophoresis mouse colon proteomes before and after knocking out Aquaporin 8. J Proteomics. 2010;73:2031-40 pubmed publisher
  425. Smith N, Baker D, James N, Ratcliffe K, Jenkins M, Ashton S, et al. Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clin Cancer Res. 2010;16:3548-61 pubmed publisher
  426. Miller E, Berman S, Yuan T, Lees J. Disruption of calvarial ossification in E2f4 mutant embryos correlates with increased proliferation and progenitor cell populations. Cell Cycle. 2010;9:2620-8 pubmed publisher
  427. Dalmasso G, Nguyen H, Charrier Hisamuddin L, Yan Y, Laroui H, Demoulin B, et al. PepT1 mediates transport of the proinflammatory bacterial tripeptide L-Ala-{gamma}-D-Glu-meso-DAP in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2010;299:G687-96 pubmed publisher
  428. Smrt R, Szulwach K, Pfeiffer R, Li X, Guo W, Pathania M, et al. MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells. 2010;28:1060-70 pubmed publisher
  429. Bergstrom R, Savary K, Morén A, Guibert S, Heldin C, Ohlsson R, et al. Transforming growth factor beta promotes complexes between Smad proteins and the CCCTC-binding factor on the H19 imprinting control region chromatin. J Biol Chem. 2010;285:19727-37 pubmed publisher
  430. Peluso J, Liu X, Gawkowska A, Lodde V, Wu C. Progesterone inhibits apoptosis in part by PGRMC1-regulated gene expression. Mol Cell Endocrinol. 2010;320:153-61 pubmed publisher
  431. Feingold K, Shigenaga J, Patzek S, Chui L, Moser A, Grunfeld C. Endotoxin, zymosan, and cytokines decrease the expression of the transcription factor, carbohydrate response element binding protein, and its target genes. Innate Immun. 2011;17:174-82 pubmed publisher
  432. Qiang L, Yu W, Liu M, Solowska J, Baas P. Basic fibroblast growth factor elicits formation of interstitial axonal branches via enhanced severing of microtubules. Mol Biol Cell. 2010;21:334-44 pubmed publisher
  433. Nguyen H, Dalmasso G, Yan Y, Laroui H, Dahan S, Mayer L, et al. MicroRNA-7 modulates CD98 expression during intestinal epithelial cell differentiation. J Biol Chem. 2010;285:1479-89 pubmed publisher
  434. Hoffmann M, Bellance N, Rossignol R, Koopman W, Willems P, Mayatepek E, et al. C. elegans ATAD-3 is essential for mitochondrial activity and development. PLoS ONE. 2009;4:e7644 pubmed publisher
  435. Hoover A, Strand G, Nowicki P, Anderson M, Vermeer P, Klingelhutz A, et al. Impaired PTPN13 phosphatase activity in spontaneous or HPV-induced squamous cell carcinomas potentiates oncogene signaling through the MAP kinase pathway. Oncogene. 2009;28:3960-70 pubmed publisher
  436. Yu Z, Li M, Zhang D, Xu W, Kone B. Sp1 trans-activates the murine H(+)-K(+)-ATPase alpha(2)-subunit gene. Am J Physiol Renal Physiol. 2009;297:F63-70 pubmed publisher
  437. Dasgupta J, Kar S, Van Remmen H, Melendez J. Age-dependent increases in interstitial collagenase and MAP Kinase levels are exacerbated by superoxide dismutase deficiencies. Exp Gerontol. 2009;44:503-10 pubmed publisher
  438. Judson M, BERGMAN M, Campbell D, Eagleson K, Levitt P. Dynamic gene and protein expression patterns of the autism-associated met receptor tyrosine kinase in the developing mouse forebrain. J Comp Neurol. 2009;513:511-31 pubmed publisher
  439. Szeles L, Keresztes G, Torocsik D, Balajthy Z, Krenacs L, Poliska S, et al. 1,25-dihydroxyvitamin D3 is an autonomous regulator of the transcriptional changes leading to a tolerogenic dendritic cell phenotype. J Immunol. 2009;182:2074-83 pubmed publisher
  440. Semsroth S, Stigler R, Bernecker O, Ruttmann Ulmer E, Troppmair J, Macfelda K, et al. Everolimus attenuates neointimal hyperplasia in cultured human saphenous vein grafts. Eur J Cardiothorac Surg. 2009;35:515-20 pubmed publisher
  441. Hohjoh H, Akari H, Fujiwara Y, Tamura Y, Hirai H, Wada K. Molecular cloning and characterization of the common marmoset huntingtin gene. Gene. 2009;432:60-6 pubmed publisher
  442. Sugawara S, Kawano T, Omoto T, Hosono M, Tatsuta T, Nitta K. Binding of Silurus asotus lectin to Gb3 on Raji cells causes disappearance of membrane-bound form of HSP70. Biochim Biophys Acta. 2009;1790:101-9 pubmed publisher
  443. Argyropoulos G, Stütz A, Ilnytska O, Rice T, Teran Garcia M, Rao D, et al. KIF5B gene sequence variation and response of cardiac stroke volume to regular exercise. Physiol Genomics. 2009;36:79-88 pubmed publisher
  444. Jorgensen E, Stinson A, Shan L, Yang J, Gietl D, Albino A. Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells. BMC Cancer. 2008;8:229 pubmed publisher
  445. Inoue H, Ha V, Prekeris R, Randazzo P. Arf GTPase-activating protein ASAP1 interacts with Rab11 effector FIP3 and regulates pericentrosomal localization of transferrin receptor-positive recycling endosome. Mol Biol Cell. 2008;19:4224-37 pubmed publisher
  446. Kano S, Miyajima N, Fukuda S, Hatakeyama S. Tripartite motif protein 32 facilitates cell growth and migration via degradation of Abl-interactor 2. Cancer Res. 2008;68:5572-80 pubmed publisher
  447. Zhang Q, Wu J, Nguyen A, Wang B, He P, Laurent G, et al. Molecular mechanism underlying differential apoptosis between human melanoma cell lines UACC903 and UACC903(+6) revealed by mitochondria-focused cDNA microarrays. Apoptosis. 2008;13:993-1004 pubmed publisher
  448. Cuende J, Moreno S, Bolanos J, Almeida A. Retinoic acid downregulates Rae1 leading to APC(Cdh1) activation and neuroblastoma SH-SY5Y differentiation. Oncogene. 2008;27:3339-44 pubmed publisher
  449. Kuznetsov A, Smigelskaite J, Doblander C, Janakiraman M, Hermann M, Wurm M, et al. Survival signaling by C-RAF: mitochondrial reactive oxygen species and Ca2+ are critical targets. Mol Cell Biol. 2008;28:2304-13 pubmed publisher
  450. Beck S, Carethers J. BMP suppresses PTEN expression via RAS/ERK signaling. Cancer Biol Ther. 2007;6:1313-7 pubmed
  451. Battaglino R, Pham L, Morse L, Vokes M, Sharma A, Odgren P, et al. NHA-oc/NHA2: a mitochondrial cation-proton antiporter selectively expressed in osteoclasts. Bone. 2008;42:180-92 pubmed
  452. Saelim N, Holstein D, Chocron E, Camacho P, Lechleiter J. Inhibition of apoptotic potency by ligand stimulated thyroid hormone receptors located in mitochondria. Apoptosis. 2007;12:1781-94 pubmed
  453. Lu Z, Lam K, Wang N, Xu X, Cortes M, Andersen B. LMO4 can interact with Smad proteins and modulate transforming growth factor-beta signaling in epithelial cells. Oncogene. 2006;25:2920-30 pubmed