This is a Validated Antibody Database (VAD) review about dogs KRT3, based on 17 published articles (read how Labome selects the articles), using KRT3 antibody in all methods. It is aimed to help Labome visitors find the most suited KRT3 antibody. Please note the number of articles fluctuates since newly identified citations are added and citations for discontinued catalog numbers are removed regularly.
Invitrogen
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:100; loading ...; fig 6b
Invitrogen KRT3 antibody (eBioscience, 53-9003-82) was used in immunohistochemistry - paraffin section on human samples at 1:100 (fig 6b). Commun Biol (2022) ncbi
mouse monoclonal (AE1/AE3)
  • flow cytometry; human; loading ...
Invitrogen KRT3 antibody (eBioscience, 53-9003-82) was used in flow cytometry on human samples . Nat Commun (2021) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; rhesus macaque; 0.2 ug/ml; loading ...; fig 4g
Invitrogen KRT3 antibody (Thermo Fisher, 41-9003-82) was used in immunohistochemistry - paraffin section on rhesus macaque samples at 0.2 ug/ml (fig 4g). Science (2020) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:500; loading ...; fig 1a
Invitrogen KRT3 antibody (eBioscience, 53-9003-80) was used in immunohistochemistry - paraffin section on human samples at 1:500 (fig 1a). Nat Cell Biol (2020) ncbi
mouse monoclonal (AE1/AE3)
  • immunocytochemistry; human; fig 4, 5
Invitrogen KRT3 antibody (eBioscience, AE1/AE3) was used in immunocytochemistry on human samples (fig 4, 5). Breast Cancer Res (2019) ncbi
mouse monoclonal (AE3)
  • flow cytometry; human; loading ...
In order to examine epithelial cell populations from touch samples, Invitrogen KRT3 antibody (eBioscience, 14-900-80) was used in flow cytometry on human samples . F1000Res (2016) ncbi
mouse monoclonal (AE1/AE3)
  • immunocytochemistry; mouse; 1:100; loading ...; tbl 2
In order to investigate if conditioned medium from proliferating fibroblasts induce a subset of hematopoietic cells to become adherent fibroblast-like cells, Invitrogen KRT3 antibody (eBioscience, 41-9003) was used in immunocytochemistry on mouse samples at 1:100 (tbl 2). J Cell Physiol (2016) ncbi
mouse monoclonal (AE1/AE3)
  • flow cytometry; human
  • immunocytochemistry; human; 1 ul
Invitrogen KRT3 antibody (eBioscience, 53-9003-82) was used in flow cytometry on human samples and in immunocytochemistry on human samples at 1 ul. Nanomedicine (2015) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:200; fig 3
In order to study juxtacrine signaling from macrophages and monocytes and a breast cancer stem cell niche, Invitrogen KRT3 antibody (eBioscience, 53-9003-80) was used in immunohistochemistry - paraffin section on human samples at 1:200 (fig 3). Nat Cell Biol (2014) ncbi
mouse monoclonal (AE1/AE3)
  • immunocytochemistry; human; 1:100; fig 1
Invitrogen KRT3 antibody (eBioscience, AE1/AE3) was used in immunocytochemistry on human samples at 1:100 (fig 1). PLoS ONE (2013) ncbi
Abcam
mouse monoclonal (AE1/AE3 + 5D3)
  • immunohistochemistry - paraffin section; dogs; 1:200; loading ...; fig 3a
  • immunocytochemistry; dogs; 1:200; loading ...; fig 3b
Abcam KRT3 antibody (Abcam, ab86734) was used in immunohistochemistry - paraffin section on dogs samples at 1:200 (fig 3a) and in immunocytochemistry on dogs samples at 1:200 (fig 3b). Int J Mol Sci (2021) ncbi
mouse monoclonal (AE1/AE3 + 5D3)
  • immunocytochemistry; human; 1:100; loading ...; fig 2g
Abcam KRT3 antibody (abcam, ab86734) was used in immunocytochemistry on human samples at 1:100 (fig 2g). Stem Cell Res Ther (2021) ncbi
mouse monoclonal (AE1/AE3 + 5D3)
  • immunohistochemistry; mouse; 1:300; loading ...; fig s8
Abcam KRT3 antibody (Abcam, ab86734) was used in immunohistochemistry on mouse samples at 1:300 (fig s8). Mol Ther (2020) ncbi
mouse monoclonal
  • immunocytochemistry; human; 1:300
Abcam KRT3 antibody (Abcam, ab961) was used in immunocytochemistry on human samples at 1:300. Chin Med J (Engl) (2020) ncbi
mouse monoclonal
  • immunohistochemistry - paraffin section; human; fig 6
Abcam KRT3 antibody (Abcam, ab961) was used in immunohistochemistry - paraffin section on human samples (fig 6). Neoplasia (2016) ncbi
mouse monoclonal
  • immunohistochemistry; mouse; fig 1e
Abcam KRT3 antibody (Abcam, ab961) was used in immunohistochemistry on mouse samples (fig 1e). BMC Cancer (2015) ncbi
mouse monoclonal
  • immunohistochemistry; human; fig 2
Abcam KRT3 antibody (Abcam, ab-961) was used in immunohistochemistry on human samples (fig 2). Exp Cell Res (2015) ncbi
Articles Reviewed
  1. Rodriguez E, Boelaars K, Brown K, Madunić K, van Ee T, Dijk F, et al. Analysis of the glyco-code in pancreatic ductal adenocarcinoma identifies glycan-mediated immune regulatory circuits. Commun Biol. 2022;5:41 pubmed publisher
  2. Baek S, Lee S, Kim T, Choi S, Yun S, Lee W, et al. Senescence Marker Protein 30 (SMP30): A Novel Pan-Species Diagnostic Marker for the Histopathological Diagnosis of Breast Cancer in Humans and Animals. Int J Mol Sci. 2021;22: pubmed publisher
  3. Rodriguez E, Boelaars K, Brown K, Eveline Li R, Kruijssen L, Bruijns S, et al. Sialic acids in pancreatic cancer cells drive tumour-associated macrophage differentiation via the Siglec receptors Siglec-7 and Siglec-9. Nat Commun. 2021;12:1270 pubmed publisher
  4. Yokomizo R, Fujiki Y, Kishigami H, Kishi H, Kiyono T, Nakayama S, et al. Endometrial regeneration with endometrial epithelium: homologous orchestration with endometrial stroma as a feeder. Stem Cell Res Ther. 2021;12:130 pubmed publisher
  5. Luna Sánchez M, Benincá C, Cerutti R, Brea Calvo G, Yeates A, Scorrano L, et al. Opa1 Overexpression Protects from Early-Onset Mpv17-/--Related Mouse Kidney Disease. Mol Ther. 2020;28:1918-1930 pubmed publisher
  6. Chandrashekar A, Liu J, Martinot A, McMahan K, Mercado N, Peter L, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020;: pubmed publisher
  7. Gaglia G, Rashid R, Yapp C, Joshi G, Li C, Lindquist S, et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol. 2020;22:151-158 pubmed publisher
  8. Jin Y, Shi C, Wu Y, Sun J, Gao J, Yang Y. Encapsulated three-dimensional bioprinted structure seeded with urothelial cells: a new construction technique for tissue-engineered urinary tract patch. Chin Med J (Engl). 2020;133:424-434 pubmed publisher
  9. Ramani V, Lemaire C, Triboulet M, Casey K, Heirich K, Renier C, et al. Investigating circulating tumor cells and distant metastases in patient-derived orthotopic xenograft models of triple-negative breast cancer. Breast Cancer Res. 2019;21:98 pubmed publisher
  10. Kwon Y, Stanciu C, Philpott M, Ehrhardt C. Flow cytometry dataset for cells collected from touched surfaces. F1000Res. 2016;5:390 pubmed publisher
  11. Jung I, Chung Y, Jung D, Kim Y, Kim D, Kim K, et al. Impaired Lymphocytes Development and Xenotransplantation of Gastrointestinal Tumor Cells in Prkdc-Null SCID Zebrafish Model. Neoplasia. 2016;18:468-79 pubmed publisher
  12. Chinyengetere F, Sekula D, Lu Y, Giustini A, Sanglikar A, Kawakami M, et al. Mice null for the deubiquitinase USP18 spontaneously develop leiomyosarcomas. BMC Cancer. 2015;15:886 pubmed publisher
  13. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed publisher
  14. Muhanna N, Mepham A, Mohamadi R, Chan H, Khan T, Akens M, et al. Nanoparticle-based sorting of circulating tumor cells by epithelial antigen expression during disease progression in an animal model. Nanomedicine. 2015;11:1613-20 pubmed publisher
  15. Li H, Chen L, Zeng S, Li X, Zhang X, Lin C, et al. Matrigel basement membrane matrix induces eccrine sweat gland cells to reconstitute sweat gland-like structures in nude mice. Exp Cell Res. 2015;332:67-77 pubmed publisher
  16. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed publisher
  17. Hosokawa M, Kenmotsu H, Koh Y, Yoshino T, Yoshikawa T, Naito T, et al. Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system. PLoS ONE. 2013;8:e67466 pubmed publisher