This is a Validated Antibody Database (VAD) review about dogs KRT14, based on 13 published articles (read how Labome selects the articles), using KRT14 antibody in all methods. It is aimed to help Labome visitors find the most suited KRT14 antibody. Please note the number of articles fluctuates since newly identified citations are added and citations for discontinued catalog numbers are removed regularly.
Invitrogen
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:100; loading ...; fig 6b
Invitrogen KRT14 antibody (eBioscience, 53-9003-82) was used in immunohistochemistry - paraffin section on human samples at 1:100 (fig 6b). Commun Biol (2022) ncbi
mouse monoclonal (AE1/AE3)
  • flow cytometry; human; loading ...
Invitrogen KRT14 antibody (eBioscience, 53-9003-82) was used in flow cytometry on human samples . Nat Commun (2021) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; rhesus macaque; 0.2 ug/ml; loading ...; fig 4g
Invitrogen KRT14 antibody (Thermo Fisher, 41-9003-82) was used in immunohistochemistry - paraffin section on rhesus macaque samples at 0.2 ug/ml (fig 4g). Science (2020) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:500; loading ...; fig 1a
Invitrogen KRT14 antibody (eBioscience, 53-9003-80) was used in immunohistochemistry - paraffin section on human samples at 1:500 (fig 1a). Nat Cell Biol (2020) ncbi
mouse monoclonal (AE1/AE3)
  • immunocytochemistry; human; fig 4, 5
Invitrogen KRT14 antibody (eBioscience, AE1/AE3) was used in immunocytochemistry on human samples (fig 4, 5). Breast Cancer Res (2019) ncbi
mouse monoclonal (AE1/AE3)
  • immunocytochemistry; mouse; 1:100; loading ...; tbl 2
In order to investigate if conditioned medium from proliferating fibroblasts induce a subset of hematopoietic cells to become adherent fibroblast-like cells, Invitrogen KRT14 antibody (eBioscience, 41-9003) was used in immunocytochemistry on mouse samples at 1:100 (tbl 2). J Cell Physiol (2016) ncbi
mouse monoclonal (AE1/AE3)
  • flow cytometry; human
  • immunocytochemistry; human; 1 ul
Invitrogen KRT14 antibody (eBioscience, 53-9003-82) was used in flow cytometry on human samples and in immunocytochemistry on human samples at 1 ul. Nanomedicine (2015) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:200; fig 3
In order to study juxtacrine signaling from macrophages and monocytes and a breast cancer stem cell niche, Invitrogen KRT14 antibody (eBioscience, 53-9003-80) was used in immunohistochemistry - paraffin section on human samples at 1:200 (fig 3). Nat Cell Biol (2014) ncbi
mouse monoclonal (AE1/AE3)
  • immunocytochemistry; human; 1:100; fig 1
Invitrogen KRT14 antibody (eBioscience, AE1/AE3) was used in immunocytochemistry on human samples at 1:100 (fig 1). PLoS ONE (2013) ncbi
Abcam
mouse monoclonal (RCK107)
  • immunohistochemistry - paraffin section; pigs ; 1:400; loading ...; fig s3a
Abcam KRT14 antibody (Abcam, ab9220) was used in immunohistochemistry - paraffin section on pigs samples at 1:400 (fig s3a). Cell Rep Med (2022) ncbi
mouse monoclonal (RCK107)
  • immunocytochemistry; mouse; 1:100; fig 1B
  • western blot; mouse; fig 1C
Abcam KRT14 antibody (Abcam, ab9220) was used in immunocytochemistry on mouse samples at 1:100 (fig 1B) and in western blot on mouse samples (fig 1C). Mol Med Rep (2016) ncbi
mouse monoclonal (RCK107)
  • immunohistochemistry - frozen section; human
  • western blot; human
Abcam KRT14 antibody (Abcam, ab9220) was used in immunohistochemistry - frozen section on human samples and in western blot on human samples . PLoS ONE (2013) ncbi
Santa Cruz Biotechnology
mouse monoclonal (RCK107)
  • immunocytochemistry; human; 1:1000; fig 4
Santa Cruz Biotechnology KRT14 antibody (Santa Cruz, SC23878) was used in immunocytochemistry on human samples at 1:1000 (fig 4). PLoS ONE (2015) ncbi
Articles Reviewed
  1. Bach M, de Vries C, Khosravi A, Sweere J, Popescu M, Chen Q, et al. Filamentous bacteriophage delays healing of Pseudomonas-infected wounds. Cell Rep Med. 2022;3:100656 pubmed publisher
  2. Rodriguez E, Boelaars K, Brown K, Madunić K, van Ee T, Dijk F, et al. Analysis of the glyco-code in pancreatic ductal adenocarcinoma identifies glycan-mediated immune regulatory circuits. Commun Biol. 2022;5:41 pubmed publisher
  3. Rodriguez E, Boelaars K, Brown K, Eveline Li R, Kruijssen L, Bruijns S, et al. Sialic acids in pancreatic cancer cells drive tumour-associated macrophage differentiation via the Siglec receptors Siglec-7 and Siglec-9. Nat Commun. 2021;12:1270 pubmed publisher
  4. Chandrashekar A, Liu J, Martinot A, McMahan K, Mercado N, Peter L, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020;: pubmed publisher
  5. Gaglia G, Rashid R, Yapp C, Joshi G, Li C, Lindquist S, et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol. 2020;22:151-158 pubmed publisher
  6. Ramani V, Lemaire C, Triboulet M, Casey K, Heirich K, Renier C, et al. Investigating circulating tumor cells and distant metastases in patient-derived orthotopic xenograft models of triple-negative breast cancer. Breast Cancer Res. 2019;21:98 pubmed publisher
  7. Ou L, Fang L, Tang H, Qiao H, Zhang X, Wang Z. Dickkopf Wnt signaling pathway inhibitor 1 regulates the differentiation of mouse embryonic stem cells in vitro and in vivo. Mol Med Rep. 2016;13:720-30 pubmed publisher
  8. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed publisher
  9. Wu Y, Feng G, Song J, Zhang Y, Yu Y, Huang L, et al. TrAmplification of Human Dental Follicle Cells by piggyBac Transposon - Mediated Reversible Immortalization System. PLoS ONE. 2015;10:e0130937 pubmed publisher
  10. Muhanna N, Mepham A, Mohamadi R, Chan H, Khan T, Akens M, et al. Nanoparticle-based sorting of circulating tumor cells by epithelial antigen expression during disease progression in an animal model. Nanomedicine. 2015;11:1613-20 pubmed publisher
  11. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed publisher
  12. Dai J, Brooks Y, Lefort K, Getsios S, Dotto G. The retinoid-related orphan receptor ROR? promotes keratinocyte differentiation via FOXN1. PLoS ONE. 2013;8:e70392 pubmed publisher
  13. Hosokawa M, Kenmotsu H, Koh Y, Yoshino T, Yoshikawa T, Naito T, et al. Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system. PLoS ONE. 2013;8:e67466 pubmed publisher