This is a Validated Antibody Database (VAD) review about dog PVALB, based on 94 published articles (read how Labome selects the articles), using PVALB antibody in all methods. It is aimed to help Labome visitors find the most suited PVALB antibody. Please note the number of articles fluctuates since newly identified citations are added and citations for discontinued catalog numbers are removed regularly.
PVALB synonym: parvalbumin alpha

Sigma-Aldrich
mouse monoclonal (PARV-19)
  • immunohistochemistry; mouse; 1:500; loading ...; fig 8c
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry on mouse samples at 1:500 (fig 8c). J Comp Neurol (2019) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - frozen section; galagos; 1:2000; loading ...; fig 2b
Sigma-Aldrich PVALB antibody (Sigma-Aldrich, P3088) was used in immunohistochemistry - frozen section on galagos samples at 1:2000 (fig 2b). J Comp Neurol (2019) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; grey mouse lemur; 1:2000; loading ...; fig 3b
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry on grey mouse lemur samples at 1:2000 (fig 3b). J Comp Neurol (2019) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - frozen section; mouse; 1:500; loading ...; tbl 1
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry - frozen section on mouse samples at 1:500 (tbl 1). J Comp Neurol (2017) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - frozen section; African green monkey; 1:2000; loading ...; fig 2d
Sigma-Aldrich PVALB antibody (Sigma-Aldrich, P3088) was used in immunohistochemistry - frozen section on African green monkey samples at 1:2000 (fig 2d). J Comp Neurol (2017) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; chicken; 1:10,000; loading ...; fig 8h
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry on chicken samples at 1:10,000 (fig 8h). J Comp Neurol (2017) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; jirds; 1:300; loading ...; tbl 1
Sigma-Aldrich PVALB antibody (Sigma, P-3088) was used in immunohistochemistry on jirds samples at 1:300 (tbl 1). J Comp Neurol (2017) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; mouse; 1:500; loading ...; fig 1b
Sigma-Aldrich PVALB antibody (Sigma, Parv-19) was used in immunohistochemistry on mouse samples at 1:500 (fig 1b). Front Neural Circuits (2017) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - frozen section; mouse; 1:3000; loading ...; fig 5a
Sigma-Aldrich PVALB antibody (Sigma-Aldrich, P3088) was used in immunohistochemistry - frozen section on mouse samples at 1:3000 (fig 5a). Transl Psychiatry (2017) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; mouse; 1:300; loading ...; fig s4a
Sigma-Aldrich PVALB antibody (sigma, P3088) was used in immunohistochemistry on mouse samples at 1:300 (fig s4a). J Neuroinflammation (2017) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; Nothoprocta perdicaria; loading ...; fig 8d
Sigma-Aldrich PVALB antibody (Sigma-Aldrich, P3088) was used in immunohistochemistry on Nothoprocta perdicaria samples (fig 8d). J Comp Neurol (2017) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; human; 1:10,000; loading ...; fig 1
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry on human samples at 1:10,000 (fig 1). J Comp Neurol (2017) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - frozen section; mouse; 1:1000; loading ...; fig 1a
In order to characterize parvalbumin interneurons and perineuronal nets in the prefrontal cortex, Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry - frozen section on mouse samples at 1:1000 (fig 1a). Neuroscience (2017) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; mouse; 1:200; loading ...; tbl 1
In order to report that nuclear factor one X aids in regulating progenitor cell biology within the embryonic and post-natal cerebellum and has a role within multiple neuronal and glial populations within the adult cerebellum, Sigma-Aldrich PVALB antibody (SIGMA, P3088) was used in immunohistochemistry on mouse samples at 1:200 (tbl 1). Brain Struct Funct (2017) ncbi
mouse monoclonal (PARV-19)
  • immunocytochemistry; rat; 1:500; loading ...; fig s1b
In order to test if Syngap1 contributes to the development of cortical GABAergic connectivity and function, Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunocytochemistry on rat samples at 1:500 (fig s1b). Nat Commun (2016) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - frozen section; mouse; 1:10,000; loading ...; fig 3a
Sigma-Aldrich PVALB antibody (Sigma-Aldrich, P-3088) was used in immunohistochemistry - frozen section on mouse samples at 1:10,000 (fig 3a). J Comp Neurol (2017) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; mouse; 1:500; loading ...; tbl 1
In order to characterize the auditory thalamotectal pathway using mice, Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry on mouse samples at 1:500 (tbl 1). J Comp Neurol (2017) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; mouse; 1:500; loading ...; fig s1d
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry on mouse samples at 1:500 (fig s1d). Science (2016) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - free floating section; rat; 1:1000; loading ...; fig 4a
Sigma-Aldrich PVALB antibody (Sigma Aldrich, P3088) was used in immunohistochemistry - free floating section on rat samples at 1:1000 (fig 4a). J Comp Neurol (2017) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; rat; 1:250; loading ...; fig 1a
In order to develop methods to transduce basal forebrain cholinergic neurons selectively in vivo, Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry on rat samples at 1:250 (fig 1a). Neurotherapeutics (2016) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - frozen section; rat; 1:1000; loading ...; fig 2
Sigma-Aldrich PVALB antibody (Sigma-Aldrich, P3088) was used in immunohistochemistry - frozen section on rat samples at 1:1000 (fig 2). J Comp Neurol (2016) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; rat; 1:1000; loading ...; fig s1
In order to identify the site of action for oxytocin in the limbic circuit, Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry on rat samples at 1:1000 (fig s1). Hippocampus (2016) ncbi
mouse monoclonal (PARV-19)
  • western blot; Spanish mackerel; fig 2b
In order to assess the thermostability of parvalbumin, Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in western blot on Spanish mackerel samples (fig 2b). Food Chem (2016) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; northern tree shrew; 1:5000; loading ...; fig 3c
Sigma-Aldrich PVALB antibody (Sigma-Aldrich, P3088) was used in immunohistochemistry on northern tree shrew samples at 1:5000 (fig 3c). J Comp Neurol (2017) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - frozen section; mouse; 1:100; loading ...; fig 5b
Sigma-Aldrich PVALB antibody (Sigma-Aldrich, PARV-19) was used in immunohistochemistry - frozen section on mouse samples at 1:100 (fig 5b). Cereb Cortex (2016) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; Rhesus monkey; 1:500
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry on Rhesus monkey samples at 1:500. Neural Plast (2016) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - frozen section; rat; 1:500; fig 8
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry - frozen section on rat samples at 1:500 (fig 8). Sci Rep (2016) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; mouse; 1:2000; fig 2
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry on mouse samples at 1:2000 (fig 2). Mol Psychiatry (2016) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - free floating section; mouse; 1:1000; loading ...; fig 2b
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry - free floating section on mouse samples at 1:1000 (fig 2b). Cereb Cortex (2016) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - frozen section; mouse; 1:1000; fig 7
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry - frozen section on mouse samples at 1:1000 (fig 7). J Comp Neurol (2016) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - frozen section; rat; 1:2000; fig 5
Sigma-Aldrich PVALB antibody (Sigma-Aldrich, P3088) was used in immunohistochemistry - frozen section on rat samples at 1:2000 (fig 5). Front Neurosci (2015) ncbi
mouse monoclonal (PARV-19)
  • immunocytochemistry; human; 1:1000; tbl 1
In order to study of normal human retina and macromolecular markers and applications to human retinal disease, Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunocytochemistry on human samples at 1:1000 (tbl 1). Exp Eye Res (2016) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; mouse; 1:160,000; loading ...; fig 7b
Sigma-Aldrich PVALB antibody (Sigma, P-3088) was used in immunohistochemistry on mouse samples at 1:160,000 (fig 7b). Cereb Cortex (2016) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - paraffin section; rat; 1:400
In order to examine the distribution of peroxiredoxins in the eye, Sigma-Aldrich PVALB antibody (Sigma, PARV-19) was used in immunohistochemistry - paraffin section on rat samples at 1:400. Brain Struct Funct (2016) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; rat; 1:2000; loading ...; tbl 1
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry on rat samples at 1:2000 (tbl 1). Sci Rep (2015) ncbi
mouse monoclonal (PARV-19)
  • immunocytochemistry; mouse; 1:400; tbl 1
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunocytochemistry on mouse samples at 1:400 (tbl 1). J Neurosci Res (2016) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; mouse; 1:2000
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry on mouse samples at 1:2000. J Neurosci (2015) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - free floating section; mouse; 1:2000
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry - free floating section on mouse samples at 1:2000. PLoS ONE (2015) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; mouse; 1:1000; loading ...; fig 2
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry on mouse samples at 1:1000 (fig 2). Hippocampus (2016) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - paraffin section; mouse; 1:1000; fig s3c
In order to elucidate SOX2-mediated reprogramming of astrocytes to neurons, Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry - paraffin section on mouse samples at 1:1000 (fig s3c). Stem Cell Reports (2015) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - paraffin section; mouse; 1:1000; fig 2d
Sigma-Aldrich PVALB antibody (Sigma, PARV-19) was used in immunohistochemistry - paraffin section on mouse samples at 1:1000 (fig 2d). J Neurosci (2015) ncbi
mouse monoclonal (PARV-19)
  • immunocytochemistry; rat; 1:2000
  • immunohistochemistry; rat; 1:2000
Sigma-Aldrich PVALB antibody (Sigma Aldrich, P3088) was used in immunocytochemistry on rat samples at 1:2000 and in immunohistochemistry on rat samples at 1:2000. J Comp Neurol (2015) ncbi
mouse monoclonal (PARV-19)
  • immunocytochemistry; mouse; 1:2000
  • immunohistochemistry; mouse; 1:2000
Sigma-Aldrich PVALB antibody (Sigma- Aldrich, P3088) was used in immunocytochemistry on mouse samples at 1:2000 and in immunohistochemistry on mouse samples at 1:2000. F1000Res (2014) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; rat; 1:1000
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry on rat samples at 1:1000. Psychopharmacology (Berl) (2015) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; rat; 1:200
In order to investigate the interrelationship between epileptiform neuronal oscillations and electrical synapses in the rat hippocampus, Sigma-Aldrich PVALB antibody (Sigma-Aldrich, P3088) was used in immunohistochemistry on rat samples at 1:200. PLoS ONE (2014) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; Rhesus monkey
Sigma-Aldrich PVALB antibody (Sigma-Aldrich, P-3088) was used in immunohistochemistry on Rhesus monkey samples . J Comp Neurol (2013) ncbi
mouse monoclonal (PARV-19)
  • immunocytochemistry; human
In order to study the relation between human cortical formation and impaired sonic hedgehog signaling, Sigma-Aldrich PVALB antibody (Sigma-Aldrich, P3088) was used in immunocytochemistry on human samples . Cereb Cortex (2016) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - frozen section; Rhesus monkey; 1:2000
Sigma-Aldrich PVALB antibody (Sigma-Aldrich, p3088) was used in immunohistochemistry - frozen section on Rhesus monkey samples at 1:2000. J Comp Neurol (2014) ncbi
mouse monoclonal (PARV-19)
  • immunocytochemistry; human; 1:1000
  • immunocytochemistry; rat; 1:1000
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunocytochemistry on human samples at 1:1000 and in immunocytochemistry on rat samples at 1:1000. Arch Biochem Biophys (2014) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; rat; 1:1,000
Sigma-Aldrich PVALB antibody (Sigma Immunochemicals, P3088) was used in immunohistochemistry on rat samples at 1:1,000. Brain Struct Funct (2014) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - free floating section; domestic ferret; 1:6000
In order to study the cholinergic circuitry between basal forebrain and auditory cortex in the ferret, Sigma-Aldrich PVALB antibody (Sigma-Aldrich, P3088) was used in immunohistochemistry - free floating section on domestic ferret samples at 1:6000. Eur J Neurosci (2014) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - free floating section; mouse; 1:500
Sigma-Aldrich PVALB antibody (Sigma-Aldrich, P3088) was used in immunohistochemistry - free floating section on mouse samples at 1:500. J Physiol (2014) ncbi
mouse monoclonal (PARV-19)
  • immunocytochemistry; rat; 1:40000
Sigma-Aldrich PVALB antibody (Sigma-Aldrich, P3088) was used in immunocytochemistry on rat samples at 1:40000. J Neurosci (2014) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; mouse; 1:1000; fig e4
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry on mouse samples at 1:1000 (fig e4). Nature (2014) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; rat; 1:200
  • immunohistochemistry; gerbils; 1:200
Sigma-Aldrich PVALB antibody (Sigma-Aldrich, P3088) was used in immunohistochemistry on rat samples at 1:200 and in immunohistochemistry on gerbils samples at 1:200. J Comp Neurol (2014) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - frozen section; rat; 1:8,000
Sigma-Aldrich PVALB antibody (Sigma-Aldrich, P-3088) was used in immunohistochemistry - frozen section on rat samples at 1:8,000. J Comp Neurol (2014) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; mouse; 1:2000
In order to study the conversion inner border cells and inner phalangeal cells to inner hair cells, Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry on mouse samples at 1:2000. PLoS ONE (2014) ncbi
mouse monoclonal (PARV-19)
  • immunocytochemistry; mouse; 1:10000
  • immunocytochemistry; human; 1:5000
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunocytochemistry on mouse samples at 1:10000 and in immunocytochemistry on human samples at 1:5000. Cell Mol Neurobiol (2014) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; mouse; 1:300; fig 2, 3
In order to test if cell-autonomous Otx2 is required to control the identity and fate of dorsal mesencephalic progenitors, Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry on mouse samples at 1:300 (fig 2, 3). Development (2014) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - frozen section; mouse; 1:2000
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry - frozen section on mouse samples at 1:2000. Brain Struct Funct (2015) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; mouse; 1:2000
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry on mouse samples at 1:2000. Dev Biol (2014) ncbi
mouse monoclonal (PARV-19)
  • immunocytochemistry; mouse
Sigma-Aldrich PVALB antibody (Sigma-Aldrich, P 3088) was used in immunocytochemistry on mouse samples . J Comp Neurol (2014) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - paraffin section; pig; 1:50
Sigma-Aldrich PVALB antibody (Sigma-Aldrich, PARV19) was used in immunohistochemistry - paraffin section on pig samples at 1:50. Toxicon (2013) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - paraffin section; mouse; 1:100
In order to study the involvement of tissue-type plasminogen activator in Purkinje cell damage, Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry - paraffin section on mouse samples at 1:100. Exp Neurol (2013) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; Rhesus monkey; 1:2,000
Sigma-Aldrich PVALB antibody (Sigma-Aldrich, P3088) was used in immunohistochemistry on Rhesus monkey samples at 1:2,000. J Comp Neurol (2013) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - frozen section; mouse; 1:500
Sigma-Aldrich PVALB antibody (Sigma-aldrich, P3088) was used in immunohistochemistry - frozen section on mouse samples at 1:500. PLoS ONE (2013) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - paraffin section; elephantnose fish; 1:1,000
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry - paraffin section on elephantnose fish samples at 1:1,000. J Comp Neurol (2013) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; mouse; 1:1000
In order to study the expression of the alpha-1 and alpha-3 isoforms of the Na(+)/K(+)-ATPase in alpha- and gamma-motoneurons, Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry on mouse samples at 1:1000. J Neurosci (2013) ncbi
mouse monoclonal (PARV-19)
  • immunocytochemistry; mouse; 1:1000
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunocytochemistry on mouse samples at 1:1000. Genesis (2013) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - paraffin section; rat; 1:500
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry - paraffin section on rat samples at 1:500. J Comp Neurol (2013) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; mouse; 1:4000
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry on mouse samples at 1:4000. Neurotox Res (2013) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - frozen section; African green monkey; 1:1000
Sigma-Aldrich PVALB antibody (Sigma-Aldrich, P3088) was used in immunohistochemistry - frozen section on African green monkey samples at 1:1000. J Comp Neurol (2013) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - frozen section; mouse; 1:1000
Sigma-Aldrich PVALB antibody (Sigma, PARV19) was used in immunohistochemistry - frozen section on mouse samples at 1:1000. J Comp Neurol (2011) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; mouse
  • immunohistochemistry; rat
Sigma-Aldrich PVALB antibody (Sigma-Aldrich, P3088) was used in immunohistochemistry on mouse samples and in immunohistochemistry on rat samples . J Comp Neurol (2011) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - frozen section; Rhesus monkey; 1:2000
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry - frozen section on Rhesus monkey samples at 1:2000. J Comp Neurol (2011) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - free floating section; human; 1:2500
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry - free floating section on human samples at 1:2500. J Comp Neurol (2010) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - frozen section; mouse; 1:1000
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry - frozen section on mouse samples at 1:1000. J Comp Neurol (2010) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - frozen section; mouse; 1:10000
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry - frozen section on mouse samples at 1:10000. J Comp Neurol (2009) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; mouse; 1:1000
Sigma-Aldrich PVALB antibody (Sigma, PARV19) was used in immunohistochemistry on mouse samples at 1:1000. J Comp Neurol (2009) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - frozen section; gray squirrel; 1:2000
Sigma-Aldrich PVALB antibody (Sigma-Aldrich, P3088) was used in immunohistochemistry - frozen section on gray squirrel samples at 1:2000. J Comp Neurol (2008) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - free floating section; mouse; 1:2000
  • immunohistochemistry - frozen section; mouse; 1:2000
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry - free floating section on mouse samples at 1:2000 and in immunohistochemistry - frozen section on mouse samples at 1:2000. J Comp Neurol (2008) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; rat; 1:2000
Sigma-Aldrich PVALB antibody (Sigma Aldrich, P3088) was used in immunohistochemistry on rat samples at 1:2000. J Comp Neurol (2008) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - free floating section; rat; 1:8000
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry - free floating section on rat samples at 1:8000. J Comp Neurol (2008) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - frozen section; rat; 1:500
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry - frozen section on rat samples at 1:500. J Comp Neurol (2007) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - free floating section; rat; 1:500
Sigma-Aldrich PVALB antibody (Sigma, P 3088) was used in immunohistochemistry - free floating section on rat samples at 1:500. J Comp Neurol (2007) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - free floating section; rat; 1:1000
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry - free floating section on rat samples at 1:1000. J Comp Neurol (2007) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; zebra finch; 1:1000
In order to identify the song system neurons in songbirds, Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry on zebra finch samples at 1:1000. J Comp Neurol (2007) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; rat; 1:4000
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry on rat samples at 1:4000. J Comp Neurol (2007) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - free floating section; rat; 1:500
In order to examine soluble guanylyl cyclase in rat retina, Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry - free floating section on rat samples at 1:500. J Comp Neurol (2007) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; mouse
In order to examine the neuronal cell death in the spinal cords of mSOD1 and wtSOD1 mice, Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry on mouse samples . J Comp Neurol (2007) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - frozen section; rat; 1:500
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry - frozen section on rat samples at 1:500. J Comp Neurol (2006) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; Rhesus monkey; 1:1000
Sigma-Aldrich PVALB antibody (Sigma, PARV19) was used in immunohistochemistry on Rhesus monkey samples at 1:1000. J Comp Neurol (2006) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry - free floating section; rat; 1:1,000-1:4,000
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry - free floating section on rat samples at 1:1,000-1:4,000. J Comp Neurol (2006) ncbi
mouse monoclonal (PARV-19)
  • immunohistochemistry; mouse; 1:2000
Sigma-Aldrich PVALB antibody (Sigma, P3088) was used in immunohistochemistry on mouse samples at 1:2000. J Comp Neurol (2005) ncbi
Articles Reviewed
  1. Bienkowski M, Benavidez N, Wu K, Gou L, Becerra M, Dong H. Extrastriate connectivity of the mouse dorsal lateral geniculate thalamic nucleus. J Comp Neurol. 2019;527:1419-1442 pubmed publisher
  2. Moore B, Li K, Kaas J, Liao C, Boal A, Mavity Hudson J, et al. Cortical projections to the two retinotopic maps of primate pulvinar are distinct. J Comp Neurol. 2019;527:577-588 pubmed publisher
  3. Saraf M, Balaram P, Pifferi F, Gămănuţ R, Kennedy H, Kaas J. Architectonic features and relative locations of primary sensory and related areas of neocortex in mouse lemurs. J Comp Neurol. 2019;527:625-639 pubmed publisher
  4. Seigneur E, Südhof T. Cerebellins are differentially expressed in selective subsets of neurons throughout the brain. J Comp Neurol. 2017;525:3286-3311 pubmed publisher
  5. Scott B, Saleem K, Kikuchi Y, Fukushima M, Mishkin M, Saunders R. Thalamic connections of the core auditory cortex and rostral supratemporal plane in the macaque monkey. J Comp Neurol. 2017;525:3488-3513 pubmed publisher
  6. Wang Y, Zorio D, Karten H. Heterogeneous organization and connectivity of the chicken auditory thalamus (Gallus gallus). J Comp Neurol. 2017;525:3044-3071 pubmed publisher
  7. Hammoum I, Benlarbi M, Dellaa A, Szabó K, Dékány B, Csaba D, et al. Study of retinal neurodegeneration and maculopathy in diabetic Meriones shawi: A particular animal model with human-like macula. J Comp Neurol. 2017;525:2890-2914 pubmed publisher
  8. Zhang X, Sullivan C, Kratz M, Kasten M, Maness P, Manis P. NCAM Regulates Inhibition and Excitability in Layer 2/3 Pyramidal Cells of Anterior Cingulate Cortex. Front Neural Circuits. 2017;11:19 pubmed publisher
  9. Kawata M, Morikawa S, Shiosaka S, Tamura H. Ablation of neuropsin-neuregulin 1 signaling imbalances ErbB4 inhibitory networks and disrupts hippocampal gamma oscillation. Transl Psychiatry. 2017;7:e1052 pubmed publisher
  10. Fonseca M, Chu S, Hernandez M, Fang M, Modarresi L, Selvan P, et al. Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain. J Neuroinflammation. 2017;14:48 pubmed publisher
  11. Krabichler Q, Vega Zuniga T, Carrasco D, Fernández M, Gutiérrez Ibáñez C, Marín G, et al. The centrifugal visual system of a palaeognathous bird, the Chilean Tinamou (Nothoprocta perdicaria). J Comp Neurol. 2017;525:2514-2534 pubmed publisher
  12. Glausier J, Roberts R, Lewis D. Ultrastructural analysis of parvalbumin synapses in human dorsolateral prefrontal cortex. J Comp Neurol. 2017;525:2075-2089 pubmed publisher
  13. Ueno H, Suemitsu S, Okamoto M, Matsumoto Y, Ishihara T. Parvalbumin neurons and perineuronal nets in the mouse prefrontal cortex. Neuroscience. 2017;343:115-127 pubmed publisher
  14. Fraser J, Essebier A, Gronostajski R, Boden M, Wainwright B, Harvey T, et al. Cell-type-specific expression of NFIX in the developing and adult cerebellum. Brain Struct Funct. 2017;222:2251-2270 pubmed publisher
  15. Berryer M, Chattopadhyaya B, Xing P, Riebe I, Bosoi C, Sanon N, et al. Decrease of SYNGAP1 in GABAergic cells impairs inhibitory synapse connectivity, synaptic inhibition and cognitive function. Nat Commun. 2016;7:13340 pubmed publisher
  16. Yamada J, Jinno S. Molecular heterogeneity of aggrecan-based perineuronal nets around five subclasses of parvalbumin-expressing neurons in the mouse hippocampus. J Comp Neurol. 2017;525:1234-1249 pubmed publisher
  17. Patel M, Sons S, Yudintsev G, Lesicko A, Yang L, Taha G, et al. Anatomical characterization of subcortical descending projections to the inferior colliculus in mouse. J Comp Neurol. 2017;525:885-900 pubmed publisher
  18. Habib N, Li Y, Heidenreich M, Swiech L, Avraham Davidi I, Trombetta J, et al. Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science. 2016;353:925-8 pubmed publisher
  19. Botterill J, Nogovitsyn N, Caruncho H, Kalynchuk L. Selective plasticity of hippocampal GABAergic interneuron populations following kindling of different brain regions. J Comp Neurol. 2017;525:389-406 pubmed publisher
  20. Antyborzec I, O Leary V, Dolly J, Ovsepian S. Low-Affinity Neurotrophin Receptor p75 Promotes the Transduction of Targeted Lentiviral Vectors to Cholinergic Neurons of Rat Basal Forebrain. Neurotherapeutics. 2016;13:859-870 pubmed publisher
  21. Olsen G, Witter M. Posterior parietal cortex of the rat: Architectural delineation and thalamic differentiation. J Comp Neurol. 2016;524:3774-3809 pubmed publisher
  22. Harden S, Frazier C. Oxytocin depolarizes fast-spiking hilar interneurons and induces GABA release onto mossy cells of the rat dentate gyrus. Hippocampus. 2016;26:1124-39 pubmed publisher
  23. Kubota H, Kobayashi A, Kobayashi Y, Shiomi K, Hamada Sato N. Reduction in IgE reactivity of Pacific mackerel parvalbumin by heat treatment. Food Chem. 2016;206:78-84 pubmed publisher
  24. Day Brown J, Slusarczyk A, Zhou N, Quiggins R, Petry H, Bickford M. Synaptic organization of striate cortex projections in the tree shrew: A comparison of the claustrum and dorsal thalamus. J Comp Neurol. 2017;525:1403-1420 pubmed publisher
  25. Bonini S, Mastinu A, Maccarinelli G, Mitola S, Premoli M, La Rosa L, et al. Cortical Structure Alterations and Social Behavior Impairment in p50-Deficient Mice. Cereb Cortex. 2016;26:2832-49 pubmed publisher
  26. Mueller A, Davis A, Sovich S, Carlson S, Robinson F. Distribution of N-Acetylgalactosamine-Positive Perineuronal Nets in the Macaque Brain: Anatomy and Implications. Neural Plast. 2016;2016:6021428 pubmed publisher
  27. Kinjo E, Higa G, Santos B, de Sousa E, Damico M, Walter L, et al. Pilocarpine-induced seizures trigger differential regulation of microRNA-stability related genes in rat hippocampal neurons. Sci Rep. 2016;6:20969 pubmed publisher
  28. Canetta S, Bolkan S, Padilla Coreano N, Song L, Sahn R, Harrison N, et al. Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons. Mol Psychiatry. 2016;21:956-68 pubmed publisher
  29. De Stasi A, Farisello P, Marcon I, Cavallari S, Forli A, Vecchia D, et al. Unaltered Network Activity and Interneuronal Firing During Spontaneous Cortical Dynamics In Vivo in a Mouse Model of Severe Myoclonic Epilepsy of Infancy. Cereb Cortex. 2016;26:1778-94 pubmed publisher
  30. Villette V, Guigue P, Picardo M, Sousa V, Leprince E, Lachamp P, et al. Development of early-born ?-Aminobutyric acid hub neurons in mouse hippocampus from embryogenesis to adulthood. J Comp Neurol. 2016;524:2440-61 pubmed publisher
  31. Lee S, Kang B, Shin M, Min J, Heo C, Lee Y, et al. Chronic Stress Decreases Cerebrovascular Responses During Rat Hindlimb Electrical Stimulation. Front Neurosci. 2015;9:462 pubmed publisher
  32. de Souza C, Nivison Smith L, Christie D, Polkinghorne P, McGhee C, Kalloniatis M, et al. Macromolecular markers in normal human retina and applications to human retinal disease. Exp Eye Res. 2016;150:135-48 pubmed publisher
  33. Wagener R, Witte M, Guy J, Mingo Moreno N, Kügler S, Staiger J. Thalamocortical Connections Drive Intracortical Activation of Functional Columns in the Mislaminated Reeler Somatosensory Cortex. Cereb Cortex. 2016;26:820-37 pubmed publisher
  34. Chidlow G, Wood J, Knoops B, Casson R. Expression and distribution of peroxiredoxins in the retina and optic nerve. Brain Struct Funct. 2016;221:3903-3925 pubmed
  35. Ang S, Lee A, Foo F, Ng L, Low C, Khanna S. GABAergic neurons of the medial septum play a nodal role in facilitation of nociception-induced affect. Sci Rep. 2015;5:15419 pubmed publisher
  36. Hirata H, Umemori J, Yoshioka H, Koide T, Watanabe K, Shimoda Y. Cell adhesion molecule contactin-associated protein 3 is expressed in the mouse basal ganglia during early postnatal stages. J Neurosci Res. 2016;94:74-89 pubmed publisher
  37. Miyoshi G, Young A, PETROS T, Karayannis T, McKenzie Chang M, Lavado A, et al. Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons. J Neurosci. 2015;35:12869-89 pubmed publisher
  38. Chugh D, Ali I, Bakochi A, Bahonjic E, Etholm L, Ekdahl C. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2. PLoS ONE. 2015;10:e0132366 pubmed publisher
  39. Hooper A, Maguire J. Characterization of a novel subtype of hippocampal interneurons that express corticotropin-releasing hormone. Hippocampus. 2016;26:41-53 pubmed publisher
  40. Niu W, Zang T, Smith D, Vue T, Zou Y, Bachoo R, et al. SOX2 reprograms resident astrocytes into neural progenitors in the adult brain. Stem Cell Reports. 2015;4:780-94 pubmed publisher
  41. Zhang N, Zhong P, Shin S, Metallo J, Danielson E, Olsen C, et al. S-SCAM, a rare copy number variation gene, induces schizophrenia-related endophenotypes in transgenic mouse model. J Neurosci. 2015;35:1892-904 pubmed publisher
  42. Fekete C, Chiou T, Miralles C, Harris R, Fiondella C, LoTurco J, et al. In vivo clonal overexpression of neuroligin 3 and neuroligin 2 in neurons of the rat cerebral cortex: Differential effects on GABAergic synapses and neuronal migration. J Comp Neurol. 2015;523:1359-78 pubmed publisher
  43. Molgaard S, Ulrichsen M, Boggild S, Holm M, Vaegter C, Nyengaard J, et al. Immunohistochemical visualization of mouse interneuron subtypes. F1000Res. 2014;3:242 pubmed publisher
  44. Zohar I, Dosoretz Abittan L, Shoham S, Weinstock M. Sex dependent reduction by prenatal stress of the expression of 5HT1A receptors in the prefrontal cortex and CRF type 2 receptors in the raphe nucleus in rats: reversal by citalopram. Psychopharmacology (Berl). 2015;232:1643-53 pubmed publisher
  45. Kinjo E, Higa G, Morya E, Valle A, Kihara A, Britto L. Reciprocal regulation of epileptiform neuronal oscillations and electrical synapses in the rat hippocampus. PLoS ONE. 2014;9:e109149 pubmed publisher
  46. Gray D, Engle J, Recanzone G. Age-related neurochemical changes in the rhesus macaque superior olivary complex. J Comp Neurol. 2013;522:573-91 pubmed publisher
  47. Radonjić N, Memi F, Ortega J, Glidden N, Zhan H, Zecevic N. The Role of Sonic Hedgehog in the Specification of Human Cortical Progenitors In Vitro. Cereb Cortex. 2016;26:131-43 pubmed publisher
  48. Gray D, Engle J, Rudolph M, Recanzone G. Regional and age-related differences in GAD67 expression of parvalbumin- and calbindin-expressing neurons in the rhesus macaque auditory midbrain and brainstem. J Comp Neurol. 2014;522:4074-84 pubmed publisher
  49. Oenarto J, Gorg B, Moos M, Bidmon H, Haussinger D. Expression of organic osmolyte transporters in cultured rat astrocytes and rat and human cerebral cortex. Arch Biochem Biophys. 2014;560:59-72 pubmed publisher
  50. Roland J, Janke K, Servatius R, Pang K. GABAergic neurons in the medial septum-diagonal band of Broca (MSDB) are important for acquisition of the classically conditioned eyeblink response. Brain Struct Funct. 2014;219:1231-7 pubmed publisher
  51. Bajo V, Leach N, Cordery P, Nodal F, King A. The cholinergic basal forebrain in the ferret and its inputs to the auditory cortex. Eur J Neurosci. 2014;40:2922-40 pubmed publisher
  52. Yi F, Ball J, Stoll K, Satpute V, Mitchell S, Pauli J, et al. Direct excitation of parvalbumin-positive interneurons by M1 muscarinic acetylcholine receptors: roles in cellular excitability, inhibitory transmission and cognition. J Physiol. 2014;592:3463-94 pubmed publisher
  53. Cruz F, Babin K, Leão R, Goldart E, Bossert J, Shaham Y, et al. Role of nucleus accumbens shell neuronal ensembles in context-induced reinstatement of cocaine-seeking. J Neurosci. 2014;34:7437-46 pubmed publisher
  54. Karayannis T, Au E, Patel J, Kruglikov I, Markx S, Delorme R, et al. Cntnap4 differentially contributes to GABAergic and dopaminergic synaptic transmission. Nature. 2014;511:236-40 pubmed
  55. Pujol R, Pickett S, Nguyen T, Stone J. Large basolateral processes on type II hair cells are novel processing units in mammalian vestibular organs. J Comp Neurol. 2014;522:3141-59 pubmed publisher
  56. Oda S, Funato H, Sato F, Adachi Akahane S, Ito M, Takase K, et al. A subset of thalamocortical projections to the retrosplenial cortex possesses two vesicular glutamate transporter isoforms, VGluT1 and VGluT2, in axon terminals and somata. J Comp Neurol. 2014;522:2089-106 pubmed publisher
  57. Liu Z, Fang J, Dearman J, Zhang L, Zuo J. In vivo generation of immature inner hair cells in neonatal mouse cochleae by ectopic Atoh1 expression. PLoS ONE. 2014;9:e89377 pubmed publisher
  58. Balu D, Takagi S, Puhl M, Benneyworth M, Coyle J. D-serine and serine racemase are localized to neurons in the adult mouse and human forebrain. Cell Mol Neurobiol. 2014;34:419-35 pubmed publisher
  59. Di Giovannantonio L, Di Salvio M, Omodei D, Prakash N, Wurst W, Pierani A, et al. Otx2 cell-autonomously determines dorsal mesencephalon versus cerebellum fate independently of isthmic organizing activity. Development. 2014;141:377-88 pubmed publisher
  60. Kao F, Su S, Carlson G, Liao W. MeCP2-mediated alterations of striatal features accompany psychomotor deficits in a mouse model of Rett syndrome. Brain Struct Funct. 2015;220:419-34 pubmed publisher
  61. Zhao Y, Flandin P, Vogt D, Blood A, Hermesz E, Westphal H, et al. Ldb1 is essential for development of Nkx2.1 lineage derived GABAergic and cholinergic neurons in the telencephalon. Dev Biol. 2014;385:94-106 pubmed publisher
  62. Sohn J, Hioki H, Okamoto S, Kaneko T. Preprodynorphin-expressing neurons constitute a large subgroup of somatostatin-expressing GABAergic interneurons in the mouse neocortex. J Comp Neurol. 2014;522:1506-26 pubmed publisher
  63. Cholich L, Marquez M, Pumarola I Batlle M, Gimeno E, Teibler G, Rios E, et al. Experimental intoxication of guinea pigs with Ipomoea carnea: behavioural and neuropathological alterations. Toxicon. 2013;76:28-36 pubmed publisher
  64. Cops E, Sashindranath M, Daglas M, Short K, da Fonseca Pereira C, Pang T, et al. Tissue-type plasminogen activator is an extracellular mediator of Purkinje cell damage and altered gait. Exp Neurol. 2013;249:8-19 pubmed publisher
  65. Cerkevich C, Qi H, Kaas J. Thalamic input to representations of the teeth, tongue, and face in somatosensory area 3b of macaque monkeys. J Comp Neurol. 2013;521:3954-71 pubmed publisher
  66. Puglisi F, Vanni V, Ponterio G, Tassone A, Sciamanna G, Bonsi P, et al. Torsin A Localization in the Mouse Cerebellar Synaptic Circuitry. PLoS ONE. 2013;8:e68063 pubmed publisher
  67. Pusch R, Wagner H, von der Emde G, Engelmann J. Spatial resolution of an eye containing a grouped retina: ganglion cell morphology and tectal physiology in the weakly electric fish Gnathonemus petersii. J Comp Neurol. 2013;521:4075-93 pubmed publisher
  68. Edwards I, Bruce G, Lawrenson C, Howe L, Clapcote S, Deuchars S, et al. Na+/K+ ATPase α1 and α3 isoforms are differentially expressed in α- and γ-motoneurons. J Neurosci. 2013;33:9913-9 pubmed publisher
  69. Ohtsuka N, Badurek S, Busslinger M, Benes F, Minichiello L, Rudolph U. GABAergic neurons regulate lateral ventricular development via transcription factor Pax5. Genesis. 2013;51:234-45 pubmed publisher
  70. Nivison Smith L, Sun D, Fletcher E, Marc R, Kalloniatis M. Mapping kainate activation of inner neurons in the rat retina. J Comp Neurol. 2013;521:2416-38 pubmed publisher
  71. Li J, Xue Z, Deng S, Luo X, Patrylo P, Rose G, et al. Amyloid plaque pathogenesis in 5XFAD mouse spinal cord: retrograde transneuronal modulation after peripheral nerve injury. Neurotox Res. 2013;24:1-14 pubmed publisher
  72. Marion R, Li K, Purushothaman G, Jiang Y, Casagrande V. Morphological and neurochemical comparisons between pulvinar and V1 projections to V2. J Comp Neurol. 2013;521:813-32 pubmed publisher
  73. Tereshchenko Y, Morellini F, Dityatev A, Schachner M, Irintchev A. Neural cell adhesion molecule ablation in mice causes hippocampal dysplasia and loss of septal cholinergic neurons. J Comp Neurol. 2011;519:2475-92 pubmed publisher
  74. Liu X, Murray K, Jones E. Low-threshold calcium channel subunit Ca(v) 3.3 is specifically localized in GABAergic neurons of rodent thalamus and cerebral cortex. J Comp Neurol. 2011;519:1181-95 pubmed publisher
  75. Qi H, Gharbawie O, Wong P, Kaas J. Cell-poor septa separate representations of digits in the ventroposterior nucleus of the thalamus in monkeys and prosimian galagos. J Comp Neurol. 2011;519:738-58 pubmed publisher
  76. Kataoka Y, Kalanithi P, Grantz H, Schwartz M, Saper C, Leckman J, et al. Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J Comp Neurol. 2010;518:277-91 pubmed publisher
  77. Kotani T, Murata Y, Ohnishi H, Mori M, Kusakari S, Saito Y, et al. Expression of PTPRO in the interneurons of adult mouse olfactory bulb. J Comp Neurol. 2010;518:119-36 pubmed publisher
  78. Liguz Lecznar M, Waleszczyk W, Zakrzewska R, Skangiel Kramska J, Kossut M. Associative pairing involving monocular stimulation selectively mobilizes a subclass of GABAergic interneurons in the mouse visual cortex. J Comp Neurol. 2009;516:482-92 pubmed publisher
  79. Jakovcevski I, Siering J, Hargus G, Karl N, Hoelters L, Djogo N, et al. Close homologue of adhesion molecule L1 promotes survival of Purkinje and granule cells and granule cell migration during murine cerebellar development. J Comp Neurol. 2009;513:496-510 pubmed publisher
  80. Wong P, Gharbawie O, Luethke L, Kaas J. Thalamic connections of architectonic subdivisions of temporal cortex in grey squirrels (Sciurus carolinensis). J Comp Neurol. 2008;510:440-61 pubmed publisher
  81. Zhao Y, Flandin P, Long J, Cuesta M, Westphal H, Rubenstein J. Distinct molecular pathways for development of telencephalic interneuron subtypes revealed through analysis of Lhx6 mutants. J Comp Neurol. 2008;510:79-99 pubmed publisher
  82. Wee K, Zhang Y, Khanna S, Low C. Immunolocalization of NMDA receptor subunit NR3B in selected structures in the rat forebrain, cerebellum, and lumbar spinal cord. J Comp Neurol. 2008;509:118-35 pubmed publisher
  83. Reznikov L, Reagan L, Fadel J. Activation of phenotypically distinct neuronal subpopulations in the anterior subdivision of the rat basolateral amygdala following acute and repeated stress. J Comp Neurol. 2008;508:458-72 pubmed publisher
  84. Sun D, Vingrys A, Kalloniatis M. Metabolic and functional profiling of the normal rat retina. J Comp Neurol. 2007;505:92-113 pubmed
  85. Ding J, Weinberg R. Distribution of soluble guanylyl cyclase in rat retina. J Comp Neurol. 2007;502:734-45 pubmed
  86. Wolansky T, Pagliardini S, Greer J, Dickson C. Immunohistochemical characterization of substance P receptor (NK(1)R)-expressing interneurons in the entorhinal cortex. J Comp Neurol. 2007;502:427-41 pubmed
  87. Scott B, Lois C. Developmental origin and identity of song system neurons born during vocal learning in songbirds. J Comp Neurol. 2007;502:202-14 pubmed
  88. Kuramoto E, Fujiyama F, Unzai T, Nakamura K, Hioki H, Furuta T, et al. Metabotropic glutamate receptor 4-immunopositive terminals of medium-sized spiny neurons selectively form synapses with cholinergic interneurons in the rat neostriatum. J Comp Neurol. 2007;500:908-22 pubmed
  89. Ding J, Weinberg R. Distribution of soluble guanylyl cyclase in rat retina. J Comp Neurol. 2007;500:734-45 pubmed
  90. Martin L, Liu Z, Chen K, Price A, Pan Y, Swaby J, et al. Motor neuron degeneration in amyotrophic lateral sclerosis mutant superoxide dismutase-1 transgenic mice: mechanisms of mitochondriopathy and cell death. J Comp Neurol. 2007;500:20-46 pubmed
  91. Meyer E, Illig K, Brunjes P. Differences in chemo- and cytoarchitectural features within pars principalis of the rat anterior olfactory nucleus suggest functional specialization. J Comp Neurol. 2006;498:786-95 pubmed
  92. Bordt A, Hoshi H, Yamada E, Perryman Stout W, Marshak D. Synaptic input to OFF parasol ganglion cells in macaque retina. J Comp Neurol. 2006;498:46-57 pubmed
  93. Rainnie D, Mania I, Mascagni F, McDonald A. Physiological and morphological characterization of parvalbumin-containing interneurons of the rat basolateral amygdala. J Comp Neurol. 2006;498:142-61 pubmed
  94. Treloar H, Uboha U, Jeromin A, Greer C. Expression of the neuronal calcium sensor protein NCS-1 in the developing mouse olfactory pathway. J Comp Neurol. 2005;482:201-16 pubmed