This is a Validated Antibody Database (VAD) review about cow KRT8, based on 45 published articles (read how Labome selects the articles), using KRT8 antibody in all methods. It is aimed to help Labome visitors find the most suited KRT8 antibody. Please note the number of articles fluctuates since newly identified citations are added and citations for discontinued catalog numbers are removed regularly.
KRT8 synonym: KRT2-8; keratin, type II cytoskeletal 8; CK-8; KERA; cytokeratin 8; cytokeratin-A; type-II keratin Kb8

Invitrogen
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:150; loading ...; tbl 2
In order to describe the differences between Xp11 translocation renal cell carcinoma and the corresponding mesenchymal neoplasm, Invitrogen KRT8 antibody (Zymed, AE1/AE3) was used in immunohistochemistry - paraffin section on human samples at 1:150 (tbl 2). Hum Pathol (2017) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry; human; loading ...; fig 3d
In order to discuss a case of mixed adenoneuroendocrine carcinoma of stomach with tubular adenoma and well-differentiated neuroendocrine tumor in the primary tumor in the stomach, Invitrogen KRT8 antibody (Thermo Scientific, AE1-AE3) was used in immunohistochemistry on human samples (fig 3d). Case Rep Pathol (2016) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; loading ...; fig 5b
In order to investigate inflammatory responses present at the breast cancer biopsy wound site, Invitrogen KRT8 antibody (Thermo Scientific, AE1/AE3) was used in immunohistochemistry - paraffin section on human samples (fig 5b). Breast Cancer Res Treat (2016) ncbi
mouse monoclonal (AE1/AE3)
  • immunocytochemistry; human; 1:50; fig 1
In order to analyze the induction of apoptosis in ovarian stromal cells obtained from cryopreserved human ovarian tissue by cisplatin and doxorubicin, Invitrogen KRT8 antibody (ThermoFisher Scientific, MA5-13156) was used in immunocytochemistry on human samples at 1:50 (fig 1). Future Oncol (2016) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; fig s3
In order to test if the operating room environment contains human skin bacteria that could be seeding C-section born infants, Invitrogen KRT8 antibody (Molecular Probes, 985542A) was used in immunohistochemistry - paraffin section on human samples (fig s3). Microbiome (2015) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:50; fig 3
In order to determine the desmoplastic interface in xenograft tumor in mice comprised of stromal and endothelial cells, Invitrogen KRT8 antibody (Zymed, AE1/AE3) was used in immunohistochemistry - paraffin section on human samples at 1:50 (fig 3). Pathol Res Pract (2015) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry; human; tbl 2
In order to study a northern New England hospital and increased utilization, verification, and clinical implications of immunocytochemistry, Invitrogen KRT8 antibody (Thermo Scientific, AE1/AE3) was used in immunohistochemistry on human samples (tbl 2). Diagn Cytopathol (2015) ncbi
mouse monoclonal (AE1/AE3)
  • immunocytochemistry; fancy carp
In order to establish and characterize a new cell line generated from the caudal fin tissue of ornamental common carp, Invitrogen KRT8 antibody (Life Technologies, MA5-13156) was used in immunocytochemistry on fancy carp samples . In Vitro Cell Dev Biol Anim (2015) ncbi
mouse monoclonal (AE1/AE3)
In order to generate and characterize a thymic cell line derived from Channa striatus, Invitrogen KRT8 antibody (Invitrogen, AE1/AE3) was used . In Vitro Cell Dev Biol Anim (2015) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 10-20 ug/ml
In order to identify biomarkers for nasopharyngeal carcinoma, Invitrogen KRT8 antibody (Lab.Vision, Ab-1) was used in immunohistochemistry - paraffin section on human samples at 10-20 ug/ml. Asian Pac J Cancer Prev (2015) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; mouse; 1:100; fig s6
In order to study how redox-dependent senescence is induced by fumarate to modify glutathione metabolism, Invitrogen KRT8 antibody (Thermo, MS-34) was used in immunohistochemistry - paraffin section on mouse samples at 1:100 (fig s6). Nat Commun (2015) ncbi
mouse monoclonal (AE1)
  • immunohistochemistry - paraffin section; mouse; 1:100; fig s6
In order to study how redox-dependent senescence is induced by fumarate to modify glutathione metabolism, Invitrogen KRT8 antibody (Thermo, MS-34) was used in immunohistochemistry - paraffin section on mouse samples at 1:100 (fig s6). Nat Commun (2015) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; mouse; 1:200; fig 5
In order to determine the link between cell cycle control and proliferative potential of epidermal progenitor cells by the carboxy-terminus of p63, Invitrogen KRT8 antibody (ThermoFisher Scientific, AE1/AE3) was used in immunohistochemistry - paraffin section on mouse samples at 1:200 (fig 5). Development (2015) ncbi
mouse monoclonal (AE1)
  • immunohistochemistry; human; ready-to-use
In order to describe a tumor from a patient with oncocytic cystadenoma, Invitrogen KRT8 antibody (Thermo Scientific, AE1) was used in immunohistochemistry on human samples at ready-to-use. Medicine (Baltimore) (2014) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:100
In order to assess the prognostic value of immunohistochemical markers in nonhuman primates, Invitrogen KRT8 antibody (Neo Markers, MS343) was used in immunohistochemistry - paraffin section on human samples at 1:100. Comp Med (2014) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:100
Invitrogen KRT8 antibody (Zymed, AE1/AE3) was used in immunohistochemistry - paraffin section on human samples at 1:100. Hum Pathol (2014) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:100
Invitrogen KRT8 antibody (Thermo Fisher Scientific, AE1/AE3) was used in immunohistochemistry - paraffin section on human samples at 1:100. Rom J Morphol Embryol (2014) ncbi
mouse monoclonal (AE1/AE3)
  • immunocytochemistry; human
In order to determine the role of myofibroblasts in salivary gland adenoid cystic carcinoma invasiveness, Invitrogen KRT8 antibody (Invitrogen, AE1/AE3) was used in immunocytochemistry on human samples . Histopathology (2015) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry; human
In order to test if computed tomography-lymphography distinguishes sentinel nodes from non-sentinel nodes in patients with breast cancer, Invitrogen KRT8 antibody (Thermo, AE1/AE3) was used in immunohistochemistry on human samples . BMC Med Imaging (2013) ncbi
mouse monoclonal (AE1/AE3)
  • immunocytochemistry; human
Invitrogen KRT8 antibody (Thermo Fisher, AE1/AE3) was used in immunocytochemistry on human samples . Biomed Mater (2013) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human
In order to determine the predictive criteria of the size of nodal metastases with superparamagnetic iron oxide-enhanced MR imaging in breast cancer, Invitrogen KRT8 antibody (Thermoelectron, AE1/AE3) was used in immunohistochemistry - paraffin section on human samples . BMC Med Imaging (2013) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:100; tbl 2
In order to report the clinicopathological features of 9 breast malignant fibrous histiocytoma patients, Invitrogen KRT8 antibody (Invitrogen, AE1/AE3) was used in immunohistochemistry - paraffin section on human samples at 1:100 (tbl 2). Sci Rep (2013) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry; human; tbl 1
In order to characterize a case of malignant ossifying fibromyxoid tumor in the tongue, Invitrogen KRT8 antibody (Invitrogen, AE1/AE3) was used in immunohistochemistry on human samples (tbl 1). Head Face Med (2013) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry; human; 1:200; fig 4
In order to present the third case of thymoma and the second invasive thymoma to metastasize to the cavernous sinus and adjacent to the pituitary, Invitrogen KRT8 antibody (Zymed, AE1-AE3) was used in immunohistochemistry on human samples at 1:200 (fig 4). Surg Neurol Int (2013) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry; human; fig 2
In order to present a case of not otherwise specified-type sarcoma with CD10 expression in the left breast, Invitrogen KRT8 antibody (Invitrogen, AE1/AE3) was used in immunohistochemistry on human samples (fig 2). Diagn Pathol (2013) ncbi
mouse monoclonal (AE1/AE3)
  • immunocytochemistry; Atlantic salmon; 1:50; fig 2
In order to study cell tropism of infectious salmon anemia virus, Invitrogen KRT8 antibody (Invitrogen, AE1/AE3) was used in immunocytochemistry on Atlantic salmon samples at 1:50 (fig 2). Virol J (2013) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:100
In order to review features of choroid plexus carcinoma, Invitrogen KRT8 antibody (Invitrogen, AE1/AE3) was used in immunohistochemistry - paraffin section on human samples at 1:100. Med Sci Monit (2012) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; mouse
In order to investigate the positioning of taste buds in circumvallate papilla and branching morphogenesis of von Ebners' gland in tongue development, Invitrogen KRT8 antibody (Thermo Scientific, MS-343) was used in immunohistochemistry - paraffin section on mouse samples . Anat Cell Biol (2011) ncbi
mouse monoclonal (C-11)
  • immunohistochemistry - paraffin section; human; 1:100
  • immunocytochemistry; human; 1:100
In order to investigate epithelial to mesenchymal transition during metastasis of pancreatic cancer, Invitrogen KRT8 antibody (Labvision, MS-149) was used in immunohistochemistry - paraffin section on human samples at 1:100 and in immunocytochemistry on human samples at 1:100. Br J Cancer (2012) ncbi
mouse monoclonal (AE1)
  • immunohistochemistry - paraffin section; human; 1:300; tbl 2
In order to characterize feline endometrial adenocarcinomas immunohistochemically, Invitrogen KRT8 antibody (Zymed, AE1) was used in immunohistochemistry - paraffin section on human samples at 1:300 (tbl 2). J Comp Pathol (2009) ncbi
mouse monoclonal (AE3)
  • immunohistochemistry - paraffin section; human; 1:300; tbl 2
In order to characterize feline endometrial adenocarcinomas immunohistochemically, Invitrogen KRT8 antibody (Zymed, AE3) was used in immunohistochemistry - paraffin section on human samples at 1:300 (tbl 2). J Comp Pathol (2009) ncbi
mouse monoclonal (C-11)
  • western blot; mouse
In order to develop and characterize a murine model to study enterotoxigenic Bacteroides fragilis infection, Invitrogen KRT8 antibody (Invitrogen, C-11) was used in western blot on mouse samples . Infect Immun (2009) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:200
In order to discuss the morphological diversity of glioblastomas, Invitrogen KRT8 antibody (Zymed, AE1/AE3) was used in immunohistochemistry - paraffin section on human samples at 1:200. Cancer (2008) ncbi
mouse monoclonal (AE1/AE3)
  • western blot; human; fig 5
In order to investigate the effect of COX-2 overexpression on inhibiting proliferation, apoptosis and differentiation, Invitrogen KRT8 antibody (Lab Vision, MS-343-P) was used in western blot on human samples (fig 5). Int J Cancer (2005) ncbi
mouse monoclonal (C-11)
  • western blot; mouse
In order to study the role of keratins in modulating cFlip and ERK1/2 apoptotic signaling in epithelial cells, Invitrogen KRT8 antibody (NeoMarkers, C-11) was used in western blot on mouse samples . Mol Cell Biol (2004) ncbi
mouse monoclonal (AE1/AE3)
  • immunohistochemistry - paraffin section; human; 1:80; tbl 1
In order to describe four cases of oncocytic adrenocortical carcinomas, Invitrogen KRT8 antibody (Zymed, AE1/AE3) was used in immunohistochemistry - paraffin section on human samples at 1:80 (tbl 1). Pathol Int (2004) ncbi
mouse monoclonal (AE1/AE3)
  • western blot; human; 1:1000; fig 2
In order to study how cell-matrix interactions influence the invasive behavior of a novel, primary peritoneal carcinosarcoma cell line, Invitrogen KRT8 antibody (Zymed, AE1/AE3) was used in western blot on human samples at 1:1000 (fig 2). Gynecol Oncol (2003) ncbi
Abcam
mouse monoclonal (C-43)
  • immunocytochemistry; human; loading ...; fig 5d
Abcam KRT8 antibody (Abcam, ab2530) was used in immunocytochemistry on human samples (fig 5d). J Exp Med (2017) ncbi
mouse monoclonal (C-43)
  • immunocytochemistry; human; 1:50; fig 4b
  • western blot; human; 1:1000; fig 4a
Abcam KRT8 antibody (Abcam, Ab2530) was used in immunocytochemistry on human samples at 1:50 (fig 4b) and in western blot on human samples at 1:1000 (fig 4a). Biochimie (2014) ncbi
MilliporeSigma
mouse monoclonal (M20)
  • western blot; human; 1:10; loading ...; fig 2a
In order to describe a microfluidic western blot for an eight-plex protein panel for individual circulating tumor cells derived from estrogen receptor-positive breast cancer patients, MilliporeSigma KRT8 antibody (Sigma, C5301) was used in western blot on human samples at 1:10 (fig 2a). Nat Commun (2017) ncbi
mouse monoclonal (M20)
  • immunohistochemistry - paraffin section; human; 1:200; loading ...; fig 5c
  • immunocytochemistry; human; 1:250; loading ...; fig 1c
In order to determine the role of 420 kinases in bi-lineage triple-negative breast cancer, MilliporeSigma KRT8 antibody (Sigma, C5301) was used in immunohistochemistry - paraffin section on human samples at 1:200 (fig 5c) and in immunocytochemistry on human samples at 1:250 (fig 1c). Oncotarget (2016) ncbi
mouse monoclonal (K8.13)
  • immunohistochemistry - paraffin section; human; loading ...; fig 4
In order to explore the synovial protein targets of peptidylarginine deiminases, MilliporeSigma KRT8 antibody (Sigma, C6909) was used in immunohistochemistry - paraffin section on human samples (fig 4). Eur J Rheumatol (2016) ncbi
mouse monoclonal (M20)
  • immunoprecipitation; human; fig 3
  • western blot; human; fig 3
In order to characterize O-GlcNAcylation-dependent phosphorylation and functional implications at a proximal site on keratin 18, MilliporeSigma KRT8 antibody (Sigma, C5301) was used in immunoprecipitation on human samples (fig 3) and in western blot on human samples (fig 3). J Biol Chem (2016) ncbi
mouse monoclonal (M20)
  • immunocytochemistry; human; 1:1000; loading ...; fig 5b
In order to determine the crystal structure of envoplakin's complete plakin repeat domain fold, MilliporeSigma KRT8 antibody (Sigma, C5301) was used in immunocytochemistry on human samples at 1:1000 (fig 5b). Nat Commun (2016) ncbi
mouse monoclonal (M20)
  • immunocytochemistry; human
In order to investigate the localization of POF1B in desmosomes and its role in human intestinal and keratinocyte cell lines, MilliporeSigma KRT8 antibody (Sigma Aldrich, C5301) was used in immunocytochemistry on human samples . J Invest Dermatol (2015) ncbi
mouse monoclonal (M20)
  • western blot; human
In order to describe a new in vitro model to test the effect of an aligned fibrous environment on cancer cell morphology and behavior, MilliporeSigma KRT8 antibody (Sigma Aldrich, C5301) was used in western blot on human samples . Acta Biomater (2014) ncbi
mouse monoclonal (M20)
  • immunohistochemistry - paraffin section; rabbit; 1:100
MilliporeSigma KRT8 antibody (Sigma-Aldrich, M-20) was used in immunohistochemistry - paraffin section on rabbit samples at 1:100. Biomaterials (2014) ncbi
Articles Reviewed
  1. Sinkala E, Sollier Christen E, Renier C, Rosàs Canyelles E, Che J, Heirich K, et al. Profiling protein expression in circulating tumour cells using microfluidic western blotting. Nat Commun. 2017;8:14622 pubmed publisher
  2. Wang X, Xia Q, Ni H, Ye S, Li R, Wang X, et al. SFPQ/PSF-TFE3 renal cell carcinoma: a clinicopathologic study emphasizing extended morphology and reviewing the differences between SFPQ-TFE3 RCC and the corresponding mesenchymal neoplasm despite an identical gene fusion. Hum Pathol. 2017;63:190-200 pubmed publisher
  3. Volpi S, Yamazaki Y, Brauer P, van Rooijen E, Hayashida A, Slavotinek A, et al. EXTL3 mutations cause skeletal dysplasia, immune deficiency, and developmental delay. J Exp Med. 2017;214:623-637 pubmed publisher
  4. De Luca Johnson J, Zenali M. A Previously Undescribed Presentation of Mixed Adenoneuroendocrine Carcinoma. Case Rep Pathol. 2016;2016:9063634 pubmed
  5. Strietz J, Stepputtis S, Preca B, Vannier C, Kim M, Castro D, et al. ERN1 and ALPK1 inhibit differentiation of bi-potential tumor-initiating cells in human breast cancer. Oncotarget. 2016;7:83278-83293 pubmed publisher
  6. Badillo Soto M, Rodríguez Rodríguez M, Pérez Pérez M, Daza Benítez L, Bollain Y Goytia J, Carrillo Jiménez M, et al. Potential protein targets of the peptidylarginine deiminase 2 and peptidylarginine deiminase 4 enzymes in rheumatoid synovial tissue and its possible meaning. Eur J Rheumatol. 2016;3:44-49 pubmed
  7. Szalayova G, Ogrodnik A, Spencer B, Wade J, Bunn J, Ambaye A, et al. Human breast cancer biopsies induce eosinophil recruitment and enhance adjacent cancer cell proliferation. Breast Cancer Res Treat. 2016;157:461-74 pubmed publisher
  8. Fabbri R, Macciocca M, Vicenti R, Paradisi R, Klinger F, Pasquinelli G, et al. Doxorubicin and cisplatin induce apoptosis in ovarian stromal cells obtained from cryopreserved human ovarian tissue. Future Oncol. 2016;12:1699-711 pubmed publisher
  9. Kakade P, Budnar S, Kalraiya R, Vaidya M. Functional Implications of O-GlcNAcylation-dependent Phosphorylation at a Proximal Site on Keratin 18. J Biol Chem. 2016;291:12003-13 pubmed publisher
  10. Fogl C, Mohammed F, Al Jassar C, Jeeves M, Knowles T, Rodriguez Zamora P, et al. Mechanism of intermediate filament recognition by plakin repeat domains revealed by envoplakin targeting of vimentin. Nat Commun. 2016;7:10827 pubmed publisher
  11. Shin H, Pei Z, Martinez K, Rivera Viñas J, Méndez K, Cavallin H, et al. The first microbial environment of infants born by C-section: the operating room microbes. Microbiome. 2015;3:59 pubmed publisher
  12. Jung M, Ryu Y, Kang G. Investigation of the origin of stromal and endothelial cells at the desmoplastic interface in xenograft tumor in mice. Pathol Res Pract. 2015;211:925-30 pubmed publisher
  13. Sauter J, Ambaye A, Mount S. Increased utilization, verification, and clinical implications of immunocytochemistry: Experience in a northern New England hospital. Diagn Cytopathol. 2015;43:688-95 pubmed publisher
  14. Swaminathan T, Basheer V, Kumar R, Kathirvelpandian A, Sood N, Jena J. Establishment and characterization of fin-derived cell line from ornamental carp, Cyprinus carpio koi, for virus isolation in India. In Vitro Cell Dev Biol Anim. 2015;51:705-13 pubmed publisher
  15. Sood N, Chaudhary D, Pradhan P, Verma D, Raja Swaminathan T, Kushwaha B, et al. Establishment and characterization of a continuous cell line from thymus of striped snakehead, Channa striatus (Bloch 1793). In Vitro Cell Dev Biol Anim. 2015;51:787-96 pubmed publisher
  16. Ahmed H, Abdul Gader Suliman R, Abd El Aziz M, Alshammari F. Immunohistochemical expression of cytokeratins and epithelial membrane protein 2 in nasopharyngeal carcinoma and its potential implications. Asian Pac J Cancer Prev. 2015;16:653-6 pubmed
  17. Zheng L, Cardaci S, Jerby L, MacKenzie E, Sciacovelli M, Johnson T, et al. Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nat Commun. 2015;6:6001 pubmed publisher
  18. Suzuki D, Sahu R, Leu N, Senoo M. The carboxy-terminus of p63 links cell cycle control and the proliferative potential of epidermal progenitor cells. Development. 2015;142:282-90 pubmed publisher
  19. BaÅŸak K, KiroÄŸlu K. Multiple oncocytic cystadenoma with intraluminal crystalloids in parotid gland: case report. Medicine (Baltimore). 2014;93:e246 pubmed publisher
  20. Beck A, Brooks A, Zeiss C. Invasive ductular carcinoma in 2 rhesus macaques (Macaca mulatta). Comp Med. 2014;64:314-22 pubmed
  21. Li L, Fan X, Xia Q, Rao Q, Liu B, Yu B, et al. Concurrent loss of INI1, PBRM1, and BRM expression in epithelioid sarcoma: implications for the cocontributions of multiple SWI/SNF complex members to pathogenesis. Hum Pathol. 2014;45:2247-54 pubmed publisher
  22. Costache M, Pătraşcu O, Dumitru A, Costache D, Voinea L, Simionescu O, et al. Histopathological findings concerning ocular melanomas. Rom J Morphol Embryol. 2014;55:649-53 pubmed
  23. Guan H, Tan J, Zhang F, Gao L, Bai L, Qi D, et al. Myofibroblasts from salivary gland adenoid cystic carcinomas promote cancer invasion by expressing MMP2 and CXCL12. Histopathology. 2015;66:781-90 pubmed publisher
  24. Crespi A, Bertoni A, Ferrari I, Padovano V, Della Mina P, Berti E, et al. POF1B localizes to desmosomes and regulates cell adhesion in human intestinal and keratinocyte cell lines. J Invest Dermatol. 2015;135:192-201 pubmed publisher
  25. McLane J, Rivet C, Gilbert R, Ligon L. A biomaterial model of tumor stromal microenvironment promotes mesenchymal morphology but not epithelial to mesenchymal transition in epithelial cells. Acta Biomater. 2014;10:4811-4821 pubmed publisher
  26. Liu Z, Yu N, Holz F, Yang F, Stanzel B. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials. 2014;35:2837-50 pubmed publisher
  27. Motomura K, Sumino H, Noguchi A, Horinouchi T, Nakanishi K. Sentinel nodes identified by computed tomography-lymphography accurately stage the axilla in patients with breast cancer. BMC Med Imaging. 2013;13:42 pubmed publisher
  28. Elakoum R, Gauchotte G, Oussalah A, Wissler M, Clément Duchêne C, Vignaud J, et al. CARM1 and PRMT1 are dysregulated in lung cancer without hierarchical features. Biochimie. 2014;97:210-8 pubmed publisher
  29. Bulysheva A, Bowlin G, Petrova S, Yeudall W. Enhanced chemoresistance of squamous carcinoma cells grown in 3D cryogenic electrospun scaffolds. Biomed Mater. 2013;8:055009 pubmed publisher
  30. Motomura K, Izumi T, Tateishi S, Sumino H, Noguchi A, Horinouchi T, et al. Correlation between the area of high-signal intensity on SPIO-enhanced MR imaging and the pathologic size of sentinel node metastases in breast cancer patients with positive sentinel nodes. BMC Med Imaging. 2013;13:32 pubmed publisher
  31. Qiu S, Wei X, Huang W, Wu M, Qin Y, Li Y, et al. Diagnostic and therapeutic strategy and the most efficient prognostic factors of breast malignant fibrous histiocytoma. Sci Rep. 2013;3:2529 pubmed publisher
  32. Ohta K, Taki M, Ogawa I, Ono S, Mizuta K, Fujimoto S, et al. Malignant ossifying fibromyxoid tumor of the tongue: case report and review of the literature. Head Face Med. 2013;9:16 pubmed publisher
  33. Nassiri F, Scheithauer B, Corwin D, Kaplan H, Mayberg M, Cusimano M, et al. Invasive thymoma metastatic to the cavernous sinus. Surg Neurol Int. 2013;4:74 pubmed publisher
  34. Yang G, Li J, Jin H, Ding H. Is mammary not otherwise specified-type sarcoma with CD10 expression a distinct entity? A rare case report with immunohistochemical and ultrastructural study. Diagn Pathol. 2013;8:14 pubmed publisher
  35. Weli S, Aamelfot M, Dale O, Koppang E, Falk K. Infectious salmon anaemia virus infection of Atlantic salmon gill epithelial cells. Virol J. 2013;10:5 pubmed publisher
  36. Lv S, Song Y, Xu J, Shu H, Zhou Z, An N, et al. A novel TP53 somatic mutation involved in the pathogenesis of pediatric choroid plexus carcinoma. Med Sci Monit. 2012;18:CS37-41 pubmed
  37. Sohn W, Gwon G, An C, Moon C, Bae Y, Yamamoto H, et al. Morphological evidences in circumvallate papilla and von Ebners' gland development in mice. Anat Cell Biol. 2011;44:274-83 pubmed publisher
  38. Khoja L, Backen A, Sloane R, Menasce L, Ryder D, Krebs M, et al. A pilot study to explore circulating tumour cells in pancreatic cancer as a novel biomarker. Br J Cancer. 2012;106:508-16 pubmed publisher
  39. Gil da Costa R, Santos M, Amorim I, Lopes C, Pereira P, Faustino A. An immunohistochemical study of feline endometrial adenocarcinoma. J Comp Pathol. 2009;140:254-9 pubmed publisher
  40. Rhee K, Wu S, Wu X, Huso D, Karim B, Franco A, et al. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun. 2009;77:1708-18 pubmed publisher
  41. Rodriguez F, Scheithauer B, Giannini C, Bryant S, Jenkins R. Epithelial and pseudoepithelial differentiation in glioblastoma and gliosarcoma: a comparative morphologic and molecular genetic study. Cancer. 2008;113:2779-89 pubmed publisher
  42. Lu S, Yu G, Zhu Y, Archer M. Cyclooxygenase-2 overexpression in MCF-10F human breast epithelial cells inhibits proliferation, apoptosis and differentiation, and causes partial transformation. Int J Cancer. 2005;116:847-52 pubmed
  43. Gilbert S, Loranger A, Marceau N. Keratins modulate c-Flip/extracellular signal-regulated kinase 1 and 2 antiapoptotic signaling in simple epithelial cells. Mol Cell Biol. 2004;24:7072-81 pubmed
  44. Song S, Park S, Kim S, Suh Y. Oncocytic adrenocortical carcinomas: a pathological and immunohistochemical study of four cases in comparison with conventional adrenocortical carcinomas. Pathol Int. 2004;54:603-10 pubmed
  45. Kokenyesi R, Murray K, Benshushan A, Huntley E, Kao M. Invasion of interstitial matrix by a novel cell line from primary peritoneal carcinosarcoma, and by established ovarian carcinoma cell lines: role of cell-matrix adhesion molecules, proteinases, and E-cadherin expression. Gynecol Oncol. 2003;89:60-72 pubmed