This is a Validated Antibody Database (VAD) review about chicken beta actin, based on 424 published articles (read how Labome selects the articles), using beta actin antibody in all methods. It is aimed to help Labome visitors find the most suited beta actin antibody. Please note the number of articles fluctuates since newly identified citations are added and citations for discontinued catalog numbers are removed regularly.
beta actin synonym: Bact; actin

Abcam
mouse monoclonal (AC-15)
  • western blot; human; loading ...; fig 1b
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples (fig 1b). elife (2020) ncbi
domestic rabbit polyclonal
  • western blot; mouse; 1:5000; loading ...; fig 5d
Abcam beta actin antibody (Abcam, AB8227) was used in western blot on mouse samples at 1:5000 (fig 5d). Exp Neurobiol (2020) ncbi
mouse monoclonal (mAbcam 8224)
  • western blot; rat; 1:500; loading ...; fig 1d
Abcam beta actin antibody (Abcam, ab8224) was used in western blot on rat samples at 1:500 (fig 1d). Mol Med Rep (2020) ncbi
domestic rabbit polyclonal
  • western blot; human; 1:2000; loading ...; fig 2d
Abcam beta actin antibody (Abcam, ab8227) was used in western blot on human samples at 1:2000 (fig 2d). PLoS ONE (2020) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; 1:10,000; loading ...; fig 3h
Abcam beta actin antibody (Abcam, Ab20272) was used in western blot on mouse samples at 1:10,000 (fig 3h). Cancer Cell (2020) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; 1:5000; loading ...; fig 1b
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on mouse samples at 1:5000 (fig 1b). elife (2020) ncbi
domestic rabbit polyclonal
  • western blot; human; 1:20,000; loading ...; fig s3d
Abcam beta actin antibody (Abcam, ab8227) was used in western blot on human samples at 1:20,000 (fig s3d). Aging Cell (2020) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; loading ...; fig 5f
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples (fig 5f). Cell (2019) ncbi
domestic rabbit polyclonal
  • western blot; human; 1:1000; loading ...; fig 2a
Abcam beta actin antibody (Abcam, ab8227) was used in western blot on human samples at 1:1000 (fig 2a). Aging (Albany NY) (2019) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; 1:5000; loading ...; fig 5s1a
Abcam beta actin antibody (Abcam, Ab8226) was used in western blot on human samples at 1:5000 (fig 5s1a). elife (2019) ncbi
domestic rabbit polyclonal
  • western blot; human; 1:5000; fig 7a
Abcam beta actin antibody (Abcam, ab8227) was used in western blot on human samples at 1:5000 (fig 7a). Aging (Albany NY) (2019) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; 1:1000; loading ...; fig 3d
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples at 1:1000 (fig 3d). BMC Mol Biol (2019) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; 1:500; loading ...; fig 1
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples at 1:500 (fig 1). BMC Cancer (2019) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 1:50,000; loading ...; fig 2b
Abcam beta actin antibody (Abcam, ab49900) was used in western blot on mouse samples at 1:50,000 (fig 2b). Mol Cancer Ther (2019) ncbi
domestic rabbit polyclonal
  • western blot; rat; loading ...; fig 3b
Abcam beta actin antibody (Abcam, ab8227) was used in western blot on rat samples (fig 3b). Biosci Rep (2019) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; 1:1000; loading ...; fig 2c
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples at 1:1000 (fig 2c). Biosci Rep (2019) ncbi
domestic rabbit polyclonal
  • western blot; human; loading ...; fig 1c
Abcam beta actin antibody (Abcam, ab8227) was used in western blot on human samples (fig 1c). Biol Res (2019) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; 1:10,000; loading ...; fig s1b
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on mouse samples at 1:10,000 (fig s1b). Sci Adv (2019) ncbi
domestic rabbit polyclonal
  • western blot; rat; loading ...; fig 4
Abcam beta actin antibody (Abcam, ab8227) was used in western blot on rat samples (fig 4). BMC Complement Altern Med (2019) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; rat; 1:1000; loading ...; fig 1c
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on rat samples at 1:1000 (fig 1c). BMC Biotechnol (2019) ncbi
domestic rabbit polyclonal
  • western blot; human; 1 ug/ml; loading ...; fig 2a
Abcam beta actin antibody (Abcam, ab8227) was used in western blot on human samples at 1 ug/ml (fig 2a). J Virol (2019) ncbi
domestic rabbit polyclonal
  • western blot; human; loading ...; fig 2b
Abcam beta actin antibody (Abcam, ab8227) was used in western blot on human samples (fig 2b). J Clin Invest (2019) ncbi
domestic rabbit polyclonal
  • western blot; human; 1:2500; loading ...; fig s1b
Abcam beta actin antibody (Abcam, ab8227) was used in western blot on human samples at 1:2500 (fig s1b). Brain Pathol (2019) ncbi
domestic rabbit polyclonal
  • western blot; human; loading ...; fig 2a
Abcam beta actin antibody (Abcam, ab8227) was used in western blot on human samples (fig 2a). PLoS Pathog (2018) ncbi
mouse monoclonal (AC-40)
  • western blot; bovine; 500 ng/ml; loading ...; fig 5c
Abcam beta actin antibody (Abcam, ab11003) was used in western blot on bovine samples at 500 ng/ml (fig 5c). Graefes Arch Clin Exp Ophthalmol (2019) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 1:10,000; loading ...; fig 5m
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples at 1:10,000 (fig 5m). Science (2018) ncbi
domestic rabbit polyclonal
  • western blot; human; loading ...; fig 2c
Abcam beta actin antibody (abcam, ab8227) was used in western blot on human samples (fig 2c). MAbs (2018) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; loading ...; fig 1a
Abcam beta actin antibody (Abcam, 20272) was used in western blot on mouse samples (fig 1a). J Cell Commun Signal (2018) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; loading ...; fig 6e
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on mouse samples (fig 6e). Cell Death Dis (2017) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; fig 6d
In order to establish a mouse model of Rett syndrome that has many of the features of impacted human patients, Abcam beta actin antibody (Abcam, Ab8226) was used in western blot on mouse samples (fig 6d). J Clin Invest (2017) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; loading ...; fig 5f
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples (fig 5f). J Biol Chem (2017) ncbi
mouse monoclonal (AC-15)
  • immunocytochemistry; human; loading ...; fig s6a
Abcam beta actin antibody (Abcam, ab6276) was used in immunocytochemistry on human samples (fig s6a). Oncotarget (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig 1
Abcam beta actin antibody (Abcam, AC-15) was used in western blot on human samples (fig 1). Sci Rep (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 1:10,000; fig 7b
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples at 1:10,000 (fig 7b). Nat Commun (2016) ncbi
domestic rabbit polyclonal
  • western blot; fruit fly ; 1:2000; fig 8
In order to report the mechanism by which thrombospondin-4 regulates skeletal muscle integrity, Abcam beta actin antibody (Abcam, ab8227) was used in western blot on fruit fly samples at 1:2000 (fig 8). elife (2016) ncbi
domestic rabbit polyclonal
  • western blot; human; fig 1
In order to describe the effects of long- and short-term exposure to erythropoietin on white adipose tissue, Abcam beta actin antibody (Abcam, ab8227) was used in western blot on human samples (fig 1). Lipids Health Dis (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; fig 9
In order to examine synaptic connectivity and dysmyelination during cerebellar morphogenesis in Npc1 (nmf164) homozygous mice, Abcam beta actin antibody (AbCam, ab6276) was used in western blot on mouse samples (fig 9). Acta Neuropathol Commun (2016) ncbi
domestic rabbit polyclonal
  • western blot; rat; 1:2000; fig 5
Abcam beta actin antibody (abcam, ab8227) was used in western blot on rat samples at 1:2000 (fig 5). Sci Rep (2016) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; fig s1
Abcam beta actin antibody (Abcam, Ab20272) was used in western blot on human samples (fig s1). PLoS ONE (2016) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; 1:2000; fig 1d
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on mouse samples at 1:2000 (fig 1d). J Neuroinflammation (2016) ncbi
domestic rabbit polyclonal
  • western blot; great pond snail; 1:20,000; fig 2
Abcam beta actin antibody (AbCam, ab8227) was used in western blot on great pond snail samples at 1:20,000 (fig 2). Sci Rep (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:25,000; fig 5
Abcam beta actin antibody (abcam, ab49900) was used in western blot on human samples at 1:25,000 (fig 5). Nat Commun (2016) ncbi
domestic rabbit polyclonal
  • western blot; human; fig 1
Abcam beta actin antibody (Abcam, ab8227) was used in western blot on human samples (fig 1). Stem Cell Reports (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig 1
In order to show the feasibility of adenoviral retargeting of tumor cells using the GRP78-binding peptide, Abcam beta actin antibody (abcam, ab6276) was used in western blot on human samples (fig 1). Cancer Gene Ther (2016) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; 1:5000; fig 3
Abcam beta actin antibody (Abcam, ab20272) was used in western blot on mouse samples at 1:5000 (fig 3). Dis Model Mech (2016) ncbi
domestic rabbit polyclonal
  • western blot; rat; 1:5000; fig 2
Abcam beta actin antibody (Abcam, ab8227) was used in western blot on rat samples at 1:5000 (fig 2). Neural Regen Res (2016) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; fig 2D
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on mouse samples (fig 2D). Stem Cell Res Ther (2016) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; 1:5000; fig 1
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples at 1:5000 (fig 1). Exp Ther Med (2016) ncbi
domestic rabbit polyclonal
  • western blot; human; 1:500; fig 4
In order to study the role of kif3a in dental mesenchymal stem and precursor cell differentiation, Abcam beta actin antibody (Abcam, ab8227) was used in western blot on human samples at 1:500 (fig 4). Mol Med Rep (2016) ncbi
domestic rabbit polyclonal
  • western blot; mouse; fig 4
Abcam beta actin antibody (Abcam, ab8227) was used in western blot on mouse samples (fig 4). PLoS Genet (2016) ncbi
mouse monoclonal (AC-40)
  • western blot; human; 1:2000; fig 3
In order to characterize regulation of lysosome integrity and axonal morphology in diverse cellular contexts by RAB7L1 and LRRK2 coordination, Abcam beta actin antibody (Abcam, C4) was used in western blot on human samples at 1:2000 (fig 3). Sci Rep (2016) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; 1:5000; fig 4
In order to study moderately differentiated oral tongue squamous cell carcinoma that expression of components of the renin-angiotensin system in cancer stem cells, Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples at 1:5000 (fig 4). J Clin Pathol (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; fig 5
Abcam beta actin antibody (abcam, ab6276) was used in western blot on mouse samples (fig 5). Am J Transl Res (2016) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; 1:1000; fig s1
Abcam beta actin antibody (Abcam, 8226) was used in western blot on mouse samples at 1:1000 (fig s1). Nat Commun (2016) ncbi
domestic rabbit polyclonal
  • western blot; mouse; 1:2000; fig 1
In order to utilize a mouse hindlimb ischemia model to show improvement of tissue regeneration and stem cell engraftment through polymer-DNA nanoparticle-induced CXCR4 overexpression, Abcam beta actin antibody (Abcam, ab8227) was used in western blot on mouse samples at 1:2000 (fig 1). Theranostics (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; dogs; 1:10,000; fig 1a
In order to analyze the production of a synergistic effect on cancer cell proliferation and migration in vitro due to dual targeting of ERBB2 and EGFR pathways, Abcam beta actin antibody (Abcam, ab6276) was used in western blot on dogs samples at 1:10,000 (fig 1a). Vet Comp Oncol (2017) ncbi
domestic rabbit polyclonal
  • chromatin immunoprecipitation; mouse; fig 1
  • western blot; mouse; fig 1
Abcam beta actin antibody (Abcam, ab8227) was used in chromatin immunoprecipitation on mouse samples (fig 1) and in western blot on mouse samples (fig 1). J Biol Chem (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig 1
In order to study the production of a dominantly-acting oncogene in human breast cancer due to premature polyadenylation of MAGI3, Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples (fig 1). elife (2016) ncbi
domestic goat polyclonal
  • western blot; human; fig 4
Abcam beta actin antibody (AbCam, ab8229) was used in western blot on human samples (fig 4). PLoS Genet (2016) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; fig 1
Abcam beta actin antibody (Abcam, 8226) was used in western blot on mouse samples (fig 1). PLoS ONE (2016) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; domestic sheep; 1:500; fig 2
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on domestic sheep samples at 1:500 (fig 2). J Neuroinflammation (2016) ncbi
mouse monoclonal (mAbcam 8224)
  • western blot; fruit fly ; 1:5000; fig 5
In order to analyze organ growth in drosophila regulating the Tctp-Rheb interaction by 14-3-3 proteins, Abcam beta actin antibody (Abcam, Ab8224) was used in western blot on fruit fly samples at 1:5000 (fig 5). Nat Commun (2016) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; 1:1000; fig st2
In order to study inhibition of growth of diffuse large B-cell lymphoma by cytoplasmic sequestration of sumoylated C-MYB/TRAF6 complex by ON 01910.Na, Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples at 1:1000 (fig st2). Transl Res (2016) ncbi
domestic rabbit polyclonal
  • western blot; human; 1:10,000; fig 3
  • western blot; mouse; 1:10,000; fig 3
Abcam beta actin antibody (Abcam, 8227) was used in western blot on human samples at 1:10,000 (fig 3) and in western blot on mouse samples at 1:10,000 (fig 3). Nat Commun (2016) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; rat; 1:5000; fig 3
Abcam beta actin antibody (Abcam, ab20272) was used in western blot on rat samples at 1:5000 (fig 3). Iran J Basic Med Sci (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; fig 7
In order to determine the major role for alveolar epithelial type 1 cells in alveolar fluid clearance revealed by knockout mice, Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples (fig 7). Am J Respir Cell Mol Biol (2016) ncbi
domestic rabbit polyclonal
  • western blot; human; fig 4
Abcam beta actin antibody (Abcam, ab8227) was used in western blot on human samples (fig 4). J Biochem (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; fig 4
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples (fig 4). Front Neurosci (2016) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; fig 1
In order to investigate the role of sciellin in colorectal cancer, Abcam beta actin antibody (abcam, ab8226) was used in western blot on human samples (fig 1). Oncotarget (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; fig 4
In order to study experimental traumatic brain injury and the role of aberrant Cdk5/p25 activity, Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples (fig 4). J Neurochem (2016) ncbi
domestic rabbit polyclonal
Abcam beta actin antibody (Abcam, Ab8227) was used . Sci Rep (2016) ncbi
mouse monoclonal (mAbcam 8224)
  • western blot; fruit fly ; fig s3
In order to analyze regulation of the calcium threshold for the mitochondrial permeability transition by mitochondrial calcium uniporter regulator 1 (MCUR1), Abcam beta actin antibody (Abcam, ab8224) was used in western blot on fruit fly samples (fig s3). Proc Natl Acad Sci U S A (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; rat; 1:10,000; fig 3
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on rat samples at 1:10,000 (fig 3). J Diabetes Res (2016) ncbi
domestic rabbit polyclonal
  • western blot; human; fig 4
Abcam beta actin antibody (abcam, ab8227) was used in western blot on human samples (fig 4). Sci Rep (2016) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; domestic sheep; 1:5000; fig 5
Abcam beta actin antibody (AbCam, AB8226) was used in western blot on domestic sheep samples at 1:5000 (fig 5). Sci Rep (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig 1
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples (fig 1). PLoS ONE (2016) ncbi
domestic rabbit polyclonal
  • western blot; human; 1:20,000; fig 1d
In order to identify factors that initiata ciliogenesis, Abcam beta actin antibody (Abcam, ab8227) was used in western blot on human samples at 1:20,000 (fig 1d). Nat Commun (2016) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; hamsters; fig 3
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on hamsters samples (fig 3). Biotechnol Bioeng (2016) ncbi
domestic rabbit polyclonal
  • western blot; domestic rabbit; 1:500; fig 5a
Abcam beta actin antibody (abcam, ab8227) was used in western blot on domestic rabbit samples at 1:500 (fig 5a). J Transl Med (2016) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; fig 1
In order to determine the role of fibroblast growth factor 21 (FGF21) in protecting from iselt hyperplasia and high fat diet induced inflammation in the pancreas, Abcam beta actin antibody (Abcam, ab8226) was used in western blot on mouse samples (fig 1). PLoS ONE (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; fig 3
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples (fig 3). Oncotarget (2016) ncbi
domestic rabbit polyclonal
  • western blot; rat; 1:1000; fig 7
Abcam beta actin antibody (abcam, ab8227) was used in western blot on rat samples at 1:1000 (fig 7). Sci Rep (2016) ncbi
domestic rabbit polyclonal
  • western blot; human; fig 3f
Abcam beta actin antibody (Abcam, ab8227) was used in western blot on human samples (fig 3f). Nat Commun (2016) ncbi
domestic rabbit polyclonal
  • western blot; human; 1:1000; fig 9
Abcam beta actin antibody (Abcam, ab8227) was used in western blot on human samples at 1:1000 (fig 9). Drug Des Devel Ther (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:10,000; fig 6
Abcam beta actin antibody (Abcam, Ab6276) was used in western blot on human samples at 1:10,000 (fig 6). Nat Commun (2016) ncbi
domestic rabbit polyclonal
  • western blot; human; 1:5000; fig 4
Abcam beta actin antibody (Abcam, ab8227) was used in western blot on human samples at 1:5000 (fig 4). Nat Commun (2016) ncbi
domestic rabbit polyclonal
  • western blot; human; fig s6
In order to discuss the use of Crispr/Cas to develop models for non-allelic homologous recombination based diseases, Abcam beta actin antibody (Abcam, ab8227) was used in western blot on human samples (fig s6). Nat Neurosci (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig 3
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples (fig 3). J Neurosci (2016) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; 1:3000; fig s4
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on mouse samples at 1:3000 (fig s4). Development (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; rat; 1:5000; loading ...; fig s9
  • western blot; human; 1:5000; loading ...; fig s9
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on rat samples at 1:5000 (fig s9) and in western blot on human samples at 1:5000 (fig s9). Nat Commun (2016) ncbi
mouse monoclonal (mAbcam 8224)
  • western blot; brewer's yeast; loading ...
In order to demonstrate that Asr1-mediated ubiquitylation of pol II is required for silencing of subtelomeric gene transcription, Abcam beta actin antibody (Abcam, ab8224) was used in western blot on brewer's yeast samples . Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit polyclonal
  • western blot; mouse; 1:1000; fig 6h
In order to elucidate enrichment of oxidized mitochondrial DNA in neutrophil extracellular traps contributes to lupus-like disease, Abcam beta actin antibody (Abcam, ab8227) was used in western blot on mouse samples at 1:1000 (fig 6h). Nat Med (2016) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; 1:5000; fig 3
Abcam beta actin antibody (abcam, ab8226) was used in western blot on mouse samples at 1:5000 (fig 3). Sci Rep (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig 1
In order to study the role between SRSF3 and how it represses the expression of PDCD4 protein by coordinated regulation and alternative splicing, translation and export, Abcam beta actin antibody (Abcam, ab6276-100) was used in western blot on human samples (fig 1). Biochem Biophys Res Commun (2016) ncbi
mouse monoclonal (mAbcam 8224)
  • western blot; rat; 1:5000; fig 3
Abcam beta actin antibody (Abcam, ab8224) was used in western blot on rat samples at 1:5000 (fig 3). PLoS ONE (2016) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; 1:5000; fig s2
In order to study a mouse model of ALS that focuses on early and gender-specific differences in oxidated stress markers and spinal cord mitochondrial function, Abcam beta actin antibody (Abcam, AB20272) was used in western blot on mouse samples at 1:5000 (fig s2). Acta Neuropathol Commun (2016) ncbi
mouse monoclonal (mAbcam 8224)
  • western blot; rat; 1:1000
Abcam beta actin antibody (Abcam, ab8224) was used in western blot on rat samples at 1:1000. Int J Mol Med (2016) ncbi
domestic rabbit polyclonal
Abcam beta actin antibody (Abcam, ab8227) was used . Biomed Res Int (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; fig 3b
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on mouse samples (fig 3b). Nat Commun (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; rat
In order to test the relationship between epithelial mesenchymal transition induced by transforming growth factor beta 1 is blocked by an antagonist of translation factor eIF4E, Abcam beta actin antibody (Abcam, ab6276) was used in western blot on rat samples . Sci Rep (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; rat; 1:3000; fig 3
Abcam beta actin antibody (abcam, ab6276) was used in western blot on rat samples at 1:3000 (fig 3). PLoS ONE (2015) ncbi
domestic rabbit polyclonal
  • western blot; mouse; fig 1
Abcam beta actin antibody (Abcam, ab8227) was used in western blot on mouse samples (fig 1). J Biol Chem (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; loading ...; fig 5a
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples (fig 5a). Proteome Sci (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:10,000; fig 4
In order to analyze high-grade serous epithelial ovarian cancer cell lines that show sporadic and hereditary disease and the molecular diversity, Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples at 1:10,000 (fig 4). Genes Cancer (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:3000; fig 3
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples at 1:3000 (fig 3). Oncol Lett (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:5000; fig 1
Abcam beta actin antibody (Abcam, AC-15) was used in western blot on human samples at 1:5000 (fig 1). Nat Chem Biol (2016) ncbi
domestic rabbit polyclonal
  • western blot; human; fig 1
In order to test if osteoblasts regulate the intratumoral steroidogenesis of castration-resistant prostate cancer, Abcam beta actin antibody (Abcam, ab8227) was used in western blot on human samples (fig 1). Mol Cell Endocrinol (2016) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; fig s3
In order to elucidate how genome integrity is protected from R-loops in the fanconi anemia pathway, Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples (fig s3). PLoS Genet (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 1:5000; fig 4
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples at 1:5000 (fig 4). Cell Death Dis (2015) ncbi
domestic rabbit polyclonal
  • western blot; mouse; 1:5000; fig 4
Abcam beta actin antibody (Abcam, 8227) was used in western blot on mouse samples at 1:5000 (fig 4). Leukemia (2016) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; fig s1
Abcam beta actin antibody (Abcam, 8226) was used in western blot on human samples (fig s1). Eur J Immunol (2016) ncbi
domestic goat polyclonal
  • western blot; mouse; fig 1
Abcam beta actin antibody (abcam, ab8229) was used in western blot on mouse samples (fig 1). Kidney Int (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; fig 4
In order to investigate changes to AURKA signaling after treatment with erlotinib/alisertib combination therapy, Abcam beta actin antibody (Abcam, ab49900) was used in western blot on mouse samples (fig 4). Front Oncol (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; fig 4
In order to reveal Cyclin D1 dynamics in adult mice by hyper sensitive protein detection by tandem-HTRF, Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples (fig 4). Sci Rep (2015) ncbi
mouse monoclonal (mAbcam 8224)
  • western blot; fruit fly ; 1:1000; fig 2
Abcam beta actin antibody (Abcam, ab8224) was used in western blot on fruit fly samples at 1:1000 (fig 2). Nat Cell Biol (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 1:5000; fig 8
In order to discuss the use of ketamine to treat complex regional pain syndrome, Abcam beta actin antibody (abcam, ab6276) was used in western blot on mouse samples at 1:5000 (fig 8). Anesthesiology (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig 2
In order to characterize serine biosynthesis and NRF2 regulation in non-small cell lung cancer, Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples (fig 2). Nat Genet (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; 1:5000; fig 3
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on mouse samples at 1:5000 (fig 3). Nat Commun (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; rat; fig 4
  • western blot; mouse; fig 5
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on rat samples (fig 4) and in western blot on mouse samples (fig 5). Sci Rep (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; fig 2f
In order to elucidate how hepatitis C virus infection alters B cell proliferation, Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples (fig 2f). Oncogene (2016) ncbi
domestic rabbit polyclonal
  • western blot; human; fig 4a
Abcam beta actin antibody (Abcam, ab8227) was used in western blot on human samples (fig 4a). Nucleic Acids Res (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; fig 6
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples (fig 6). PLoS ONE (2015) ncbi
mouse monoclonal (mAbcam 8224)
  • western blot; human; fig 3
Abcam beta actin antibody (Abcam, ab8224) was used in western blot on human samples (fig 3). Stem Cells Dev (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; fig 3
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples (fig 3). PLoS ONE (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 1:1000; fig 1
Abcam beta actin antibody (abcam, ab6276) was used in western blot on mouse samples at 1:1000 (fig 1). Mol Cancer (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:20,000; fig 2
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples at 1:20,000 (fig 2). Mol Cell Proteomics (2015) ncbi
mouse monoclonal (mAbcam 8224)
  • western blot; human; fig 3
Abcam beta actin antibody (Abcam, ab8224) was used in western blot on human samples (fig 3). Genome Res (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; 1:2000
In order to present data from the first donated Lothian Birth Cohort of 1936 and compare it with other aged and diseased samples, Abcam beta actin antibody (Abcam, Ab8226) was used in western blot on human samples at 1:2000. Acta Neuropathol Commun (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; rat; 1:5000
Abcam beta actin antibody (Abcam, ab20272) was used in western blot on rat samples at 1:5000. J Physiol Sci (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; rat; 1:2500
In order to identify transcription factors that regulate neurite outgrowth, Abcam beta actin antibody (Abcam, ab6276) was used in western blot on rat samples at 1:2500. Mol Cell Neurosci (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:5000
In order to study the insulin/IGF1 signaling pathway in human astrocytes, Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples at 1:5000. Mol Brain (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; 1:1000; fig 4
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples at 1:1000 (fig 4). Nat Chem (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:5000; fig 5
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples at 1:5000 (fig 5). Nat Commun (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 1:15,000; fig 3
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples at 1:15,000 (fig 3). Mol Brain (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:20,000; fig 5
Abcam beta actin antibody (Abcam, ab49900) was used in western blot on human samples at 1:20,000 (fig 5). Cancer Sci (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig 1
Abcam beta actin antibody (Abcam, Ab6276) was used in western blot on human samples (fig 1). PLoS ONE (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig 1
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples (fig 1). Autophagy (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig 4b
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples (fig 4b). Mol Cell Biol (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:10,000; fig 2
Abcam beta actin antibody (Abcam, ab49900) was used in western blot on human samples at 1:10,000 (fig 2). Cancer Res (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; 1:1000; fig 3
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples at 1:1000 (fig 3). Cancer Biol Ther (2015) ncbi
mouse monoclonal (mAbcam 8224)
Abcam beta actin antibody (Abcam, ab8224) was used . J Biol Chem (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; fig 3
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples (fig 3). Reprod Sci (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig 3
Abcam beta actin antibody (Abcam, AC15) was used in western blot on human samples (fig 3). PLoS ONE (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples . PLoS ONE (2015) ncbi
mouse monoclonal (mAbcam 8224)
  • western blot; mouse; fig 5.c
Abcam beta actin antibody (Abcam, ab8224) was used in western blot on mouse samples (fig 5.c). Nucleic Acids Res (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:5000; fig 5
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples at 1:5000 (fig 5). Nat Commun (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; fig 1
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples (fig 1). Brain Pathol (2016) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; loading ...; fig 3b
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples (fig 3b). PLoS Genet (2015) ncbi
mouse monoclonal (AC-15)
  • immunocytochemistry; human; 1:10000
In order to study the role of apolipoprotein E in cerebral amyloid angiopathy, Abcam beta actin antibody (Abcam, AC-15) was used in immunocytochemistry on human samples at 1:10000. J Neurochem (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human
Abcam beta actin antibody (Abcam, ab6276-100) was used in western blot on human samples . J Biol Chem (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; 1:1000; fig 2
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on mouse samples at 1:1000 (fig 2). Nat Commun (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples . Metallomics (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; 1:5000; fig 1
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples at 1:5000 (fig 1). J Virol (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; 1:5000; fig 3
Abcam beta actin antibody (Abcam, 8226) was used in western blot on human samples at 1:5000 (fig 3). Oncotarget (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; 1:2000
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples at 1:2000. BMC Biotechnol (2015) ncbi
mouse monoclonal (AC-40)
  • western blot; mouse; 1:500; fig 6
Abcam beta actin antibody (Abcam, ab11003) was used in western blot on mouse samples at 1:500 (fig 6). Mol Ther Methods Clin Dev (2015) ncbi
mouse monoclonal (AC-40)
Abcam beta actin antibody (Abcam, ab11003) was used . Cilia (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; fig  3
Abcam beta actin antibody (Abcam, ab20272) was used in western blot on human samples (fig  3). Hum Genet (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 1:5000; fig 1
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples at 1:5000 (fig 1). Exp Neurol (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; fig 2
In order to investigate if and how sHB-EGF treatment results in EGFR nuclear importation, Abcam beta actin antibody (Abcam, 8226) was used in western blot on human samples (fig 2). PLoS ONE (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 1:10,000; fig 5
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples at 1:10,000 (fig 5). Arch Toxicol (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig 7
Abcam beta actin antibody (Abcam, AC15) was used in western blot on human samples (fig 7). J Virol (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig 2
In order to compare the chemosensitizing effect of nucleoside analogues in cells derived from pancreatic cancer and in osteosarcoma-derived cells, Abcam beta actin antibody (Abcam, ab6276-100) was used in western blot on human samples (fig 2). Oncotarget (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human
In order to investigate the effect of PC4 on genome stability and DNA repair, Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples . Oncogene (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig  5
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples (fig  5). Cancer Lett (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human
Abcam beta actin antibody (Abcam, 8226) was used in western blot on human samples . Cell Mol Life Sci (2015) ncbi
mouse monoclonal (mAbcam 8224)
  • immunocytochemistry; human; 1:100
In order to test if altering the transcription programming in pancreatic ductal adenocarcinomas can revert these cancerous cells back to quiescent acinar cells, Abcam beta actin antibody (Abcam, ab8224) was used in immunocytochemistry on human samples at 1:100. Pancreas (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 1:1000; fig s9
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples at 1:1000 (fig s9). Nat Commun (2015) ncbi
mouse monoclonal (mAbcam 8224)
  • western blot; fission yeast
Abcam beta actin antibody (Abcam, ab8224) was used in western blot on fission yeast samples . Nucleic Acids Res (2015) ncbi
domestic rabbit polyclonal
In order to delineate the role of PYCR2 mutation in microcephaly and hypomyelination, Abcam beta actin antibody (Abcam, ab8227) was used . Am J Hum Genet (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; fig 1
Abcam beta actin antibody (Abcam, 8226) was used in western blot on human samples (fig 1). PLoS ONE (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 1:1000; fig 5
  • western blot; human; 1:30,000; fig 1
Abcam beta actin antibody (Abcam, ab49900) was used in western blot on mouse samples at 1:1000 (fig 5) and in western blot on human samples at 1:30,000 (fig 1). Nat Commun (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; fig 1,6
  • western blot; mouse; fig 1,6
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples (fig 1,6) and in western blot on mouse samples (fig 1,6). Nat Genet (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:500
Abcam beta actin antibody (Abcam, ab49900) was used in western blot on human samples at 1:500. Front Cell Dev Biol (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; fig 4
Abcam beta actin antibody (Abcam, 8226) was used in western blot on human samples (fig 4). PLoS ONE (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human
In order to test if base excision repair-deficient cells are a source of pre-cancerous cells, Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples . Nucleic Acids Res (2015) ncbi
mouse monoclonal (mAbcam 8224)
  • western blot; fission yeast
In order to study the role of Fft3 in chromatin organization, Abcam beta actin antibody (abcam, ab8224) was used in western blot on fission yeast samples . PLoS Genet (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; 1:10,000; fig 2
In order to assess the role of RBBP4 during meiosis, Abcam beta actin antibody (Abcam, ab20272) was used in western blot on mouse samples at 1:10,000 (fig 2). Biol Reprod (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig 1
In order to study the coordination of SSB repair and cell cycle progression where ATM prevents DSB formation, Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples (fig 1). Proc Natl Acad Sci U S A (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples . PLoS ONE (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples . Cell Signal (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human
In order to discuss the use of PCSK9 as a non-statin cholesterol reducing agent, Abcam beta actin antibody (ABCAM, #ab49900) was used in western blot on human samples . Eur J Med Chem (2015) ncbi
mouse monoclonal (mAbcam 8224)
  • western blot; human; fig 3
Abcam beta actin antibody (Abcam, ab8224) was used in western blot on human samples (fig 3). Endocr Relat Cancer (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:20,000
Abcam beta actin antibody (Abcam, Ab6276-100) was used in western blot on human samples at 1:20,000. J Biol Chem (2015) ncbi
mouse monoclonal (AC-15)
  • immunoprecipitation; human
In order to study the interaction between BRCA1 tumor suppressor and inositol 1,4,5-trisphosphate receptors and its effect on apoptotic calcium release, Abcam beta actin antibody (Abcam, ab6276) was used in immunoprecipitation on human samples . J Biol Chem (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 1:10000
In order to characterize corneal nerve network alterations induced by HSV-1 infection, Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples at 1:10000. Invest Ophthalmol Vis Sci (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; fig 5
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples (fig 5). Am J Physiol Endocrinol Metab (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; fig 2
Abcam beta actin antibody (Abcam, mAbcam 8226) was used in western blot on human samples (fig 2). Cytotherapy (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig 2
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples (fig 2). Br J Cancer (2015) ncbi
mouse monoclonal (mAbcam 8224)
  • immunohistochemistry; fruit fly ; 1:5000
In order to assess the developmental origin of subcompartments in axons and dendrites, Abcam beta actin antibody (Abcam, ab8224) was used in immunohistochemistry on fruit fly samples at 1:5000. Development (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; rat; 1:5000
Abcam beta actin antibody (Abcam, ab-6276) was used in western blot on rat samples at 1:5000. Ann Anat (2015) ncbi
mouse monoclonal (AC-40)
  • western blot; rat; 1:1000
Abcam beta actin antibody (Abcam, ab11003) was used in western blot on rat samples at 1:1000. PLoS ONE (2014) ncbi
mouse monoclonal (mAbcam 8224)
  • immunocytochemistry; human; 1:200
Abcam beta actin antibody (Abcam, mAbcam 8224) was used in immunocytochemistry on human samples at 1:200. Proc Natl Acad Sci U S A (2014) ncbi
mouse monoclonal (AC-40)
  • immunocytochemistry; rat; 1:100; fig 7c
In order to characterize a small population of Thy1(+) mesenchymal-epithelial cells present in rat liver., Abcam beta actin antibody (Abcam, Ab11003) was used in immunocytochemistry on rat samples at 1:100 (fig 7c). Am J Pathol (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; fig 3a
Abcam beta actin antibody (Abcam, AC-15) was used in western blot on mouse samples (fig 3a). Free Radic Biol Med (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human
Abcam beta actin antibody (Abcam, ab49900) was used in western blot on human samples . J Biol Chem (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig 3
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples (fig 3). Int J Cancer (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:20,000; fig 1
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples at 1:20,000 (fig 1). Arch Toxicol (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 0.16 ug/ml
Abcam beta actin antibody (Abcam, AC-15) was used in western blot on human samples at 0.16 ug/ml. Histochem Cell Biol (2015) ncbi
mouse monoclonal (mAbcam 8224)
  • western blot; brewer's yeast; fig 7
Abcam beta actin antibody (Abcam, ab8224) was used in western blot on brewer's yeast samples (fig 7). PLoS Genet (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; human
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples . J Mol Endocrinol (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; rhesus macaque; 1:1000
In order to study the impact of amyloid-beta oligomers in the brains of rats and adult cynomolgus macaques, Abcam beta actin antibody (Abcam, ab6276) was used in western blot on rhesus macaque samples at 1:1000. J Neurosci (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; human
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples . J Proteomics (2015) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; 1:1000
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples at 1:1000. Hum Pathol (2014) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; 1:1000; fig 6
In order to study juxtacrine signaling from macrophages and monocytes and a breast cancer stem cell niche, Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples at 1:1000 (fig 6). Nat Cell Biol (2014) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human
Abcam beta actin antibody (Abcam, Ab8226) was used in western blot on human samples . PLoS ONE (2014) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; 1:10000
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples at 1:10000. Hum Mutat (2014) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse
  • western blot; human
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on mouse samples and in western blot on human samples . Clin Cancer Res (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; fig 1
In order to study GRAF1a that promotes lipid droplet clustering and growth and its enrichment at lipid droplet junctions, Abcam beta actin antibody (Abcam, AC-15) was used in western blot on mouse samples (fig 1). J Cell Sci (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:25000; fig 7
Abcam beta actin antibody (Abcam, ab49900) was used in western blot on human samples at 1:25000 (fig 7). Biochem Biophys Res Commun (2014) ncbi
mouse monoclonal (mAbcam 8224)
  • western blot; Saccharomycetales
Abcam beta actin antibody (Abcam, ab8224) was used in western blot on Saccharomycetales samples . Biochim Biophys Acta (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 1:5000
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples at 1:5000. Anesthesiology (2014) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on mouse samples . Toxicology (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; rat; 1:20000
In order to study the effect of environment enrichment on maternal immune activation, Abcam beta actin antibody (Abcam, ab49900) was used in western blot on rat samples at 1:20000. Brain Behav Immun (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; human
In order to explore the parkin-dependent regulation of apoptosis and the turnover of damaged mitochondria in various cell types, Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples . Cell Death Dis (2014) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; 1:1000
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on mouse samples at 1:1000. Front Neural Circuits (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:5000
In order to evaluate the therapeutic potential of oligonucleotide F10 against against acute lymphoblastic leukemia, Abcam beta actin antibody (Abcam, AC-15) was used in western blot on human samples at 1:5000. Oncotarget (2014) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; 1:10000
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on mouse samples at 1:10000. Neurochem Int (2014) ncbi
mouse monoclonal (AC-15)
  • immunocytochemistry; human
Abcam beta actin antibody (Abcam, Ab6276) was used in immunocytochemistry on human samples . Traffic (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:5000
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples at 1:5000. Mol Cell Proteomics (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 1:5000
Abcam beta actin antibody (Abcam, Ab6276) was used in western blot on mouse samples at 1:5000. J Biol Chem (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 1:10000
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples at 1:10000. Glia (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:20,000
Abcam beta actin antibody (Abcam, AC-15) was used in western blot on human samples at 1:20,000. Mediators Inflamm (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; human
Abcam beta actin antibody (Abcam, ab49900) was used in western blot on human samples . Cell Death Differ (2014) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; fig 1a
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples (fig 1a). BMC Cancer (2014) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples . PLoS ONE (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples . PLoS ONE (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; human
In order to study the role in prostate cancer poliferation of a complex containing COP9 subunits 4 and 5 along with sGC-alpha1 and p53, Abcam beta actin antibody (Abcam, ab-6276) was used in western blot on human samples . Mol Endocrinol (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 1:1000
In order to study the regulation of autophagosome biogenesis by connexins, Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples at 1:1000. Nat Cell Biol (2014) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; 1:2000
Abcam beta actin antibody (Abcam, ab-8226) was used in western blot on human samples at 1:2000. Anticancer Res (2014) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; pigs ; 1:1000
In order to investigate the effect of acrolein exposure on vocal fold ion transport and mucin expression, Abcam beta actin antibody (Abcam, ab8226) was used in western blot on pigs samples at 1:1000. J Membr Biol (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; human
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples . Biochem Pharmacol (2014) ncbi
mouse monoclonal (mAbcam 8224)
  • western blot; brewer's yeast
Abcam beta actin antibody (Abcam, ab8224) was used in western blot on brewer's yeast samples . PLoS Genet (2014) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; 1:1000
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples at 1:1000. Metabolism (2014) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; 1:1000
In order to investigate the effect of epidermal growth factor on Skp2/Cks1 and p27kip1 in human extrahepatic cholangiocarcinoma cells, Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples at 1:1000. World J Gastroenterol (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; hamsters; 1:5000
In order to charcaterize antibodies suitable for the dection of O-linked beta-D-N-acetylglucose on secreted proteins and the extracellular domain of membrane proteins, Abcam beta actin antibody (Abcam, ab6276) was used in western blot on hamsters samples at 1:5000. J Biol Chem (2014) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; 1:4000
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples at 1:4000. PLoS ONE (2014) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse
Abcam beta actin antibody (Abcam, 20272) was used in western blot on mouse samples . Biochim Biophys Acta (2014) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on mouse samples . Leukemia (2014) ncbi
mouse monoclonal (AC-15)
  • immunocytochemistry; human; 1:1000
  • western blot; human; 1:1000
Abcam beta actin antibody (Abcam, ab6276) was used in immunocytochemistry on human samples at 1:1000 and in western blot on human samples at 1:1000. J Pharm Pharmacol (2014) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; bovine; fig 5, 6
In order to study the role of TLR-1, -2 and -6 on bovine endometrial stromal and epithelial cells in the immune and inflammatory responses to bacterial lipopeptides, Abcam beta actin antibody (Abcam, ab8226) was used in western blot on bovine samples (fig 5, 6). Endocrinology (2014) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; 1:6000
Abcam beta actin antibody (Abcam, Ab8226) was used in western blot on mouse samples at 1:6000. J Sex Med (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 1:5000
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples at 1:5000. J Biol Chem (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; rat; 1:5000
Abcam beta actin antibody (Abcam, 6276) was used in western blot on rat samples at 1:5000. Acta Histochem (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:2,000
Abcam beta actin antibody (Abcam, AC-15) was used in western blot on human samples at 1:2,000. Nucleic Acid Ther (2014) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; fig 1
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples (fig 1). DNA Repair (Amst) (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; human
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples . J Rheumatol (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; human
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples . Am J Pathol (2014) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human
In order to investigate the effect of antimesothelin immunotoxin SS1P and BH3-mimetic ABT-737 on SS1P-resistant pancreatic cancer cells, Abcam beta actin antibody (Abcam, 8226) was used in western blot on human samples . J Immunother (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; human
Abcam beta actin antibody (Abcam, AC15) was used in western blot on human samples . Cell Death Differ (2014) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; fig 2
Abcam beta actin antibody (Abcam, 8226) was used in western blot on human samples (fig 2). PLoS ONE (2013) ncbi
mouse monoclonal (AC-15)
  • western blot; human
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples . Lab Invest (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:5000
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples at 1:5000. J Biol Chem (2013) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:10,000
Abcam beta actin antibody (Abcam, ab6276-100) was used in western blot on human samples at 1:10,000. J Neurooncol (2014) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples . Anal Chem (2013) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:10000
Abcam beta actin antibody (Abcam, AB6276) was used in western blot on human samples at 1:10000. PLoS ONE (2013) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human
Abcam beta actin antibody (Abcam, AB20272) was used in western blot on human samples . elife (2013) ncbi
mouse monoclonal (AC-15)
  • western blot; human
Abcam beta actin antibody (Abcam, ab49900) was used in western blot on human samples . PLoS ONE (2013) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:10000
Abcam beta actin antibody (Abcam, Ab6276) was used in western blot on human samples at 1:10000. PLoS ONE (2013) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; 1:5000
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on human samples at 1:5000. PLoS ONE (2013) ncbi
mouse monoclonal (AC-15)
  • western blot; human
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples . Cell Res (2013) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; fig 4
Abcam beta actin antibody (AbCam, ab8226) was used in western blot on human samples (fig 4). Magn Reson Med (2014) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; 1:2,000
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on mouse samples at 1:2,000. Stem Cells (2013) ncbi
mouse monoclonal (AC-15)
  • western blot; human
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples . Haematologica (2013) ncbi
mouse monoclonal (AC-15)
  • western blot; rat; 1:5000
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on rat samples at 1:5000. Reprod Toxicol (2013) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:5000; fig 5
Abcam beta actin antibody (Abcam, ab49900) was used in western blot on human samples at 1:5000 (fig 5). J Biol Chem (2013) ncbi
mouse monoclonal (AC-40)
  • western blot; human
In order to study the role of p63 in epithelial homeostasis and development, Abcam beta actin antibody (Abcam, ab11003) was used in western blot on human samples . PLoS ONE (2013) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse
Abcam beta actin antibody (Abcam, ab20272) was used in western blot on mouse samples . Mol Genet Metab (2013) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 1:10000
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples at 1:10000. Development (2013) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig 5
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples (fig 5). Oncogenesis (2012) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; rat
In order to examine the roles of SAP102 in cortical synapse development, Abcam beta actin antibody (Abcam, ab8226) was used in western blot on rat samples . J Neurosci (2013) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:5000
Abcam beta actin antibody (Abcam, AB6276) was used in western blot on human samples at 1:5000. Glia (2013) ncbi
mouse monoclonal (mAbcam 8224)
  • western blot; fruit fly ; 1:1000
Abcam beta actin antibody (Abcam, 8224) was used in western blot on fruit fly samples at 1:1000. FEBS Lett (2013) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:500; fig s2c
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples at 1:500 (fig s2c). Proteomics (2013) ncbi
mouse monoclonal (AC-15)
  • western blot; human
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples . FASEB J (2013) ncbi
mouse monoclonal (AC-15)
  • western blot; human
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples . Nucleic Acids Res (2013) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 1:25000
Abcam beta actin antibody (Abcam, ab49900) was used in western blot on mouse samples at 1:25000. J Neurochem (2013) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig s10b
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples (fig s10b). Genes Cells (2012) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse
In order to investigate the role of ARID1a-DNA interactions in the SWI/SNF chromatin-remodeling complex, Abcam beta actin antibody (Abcam, ab8226) was used in western blot on mouse samples . Mol Cell Biol (2013) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; 1:5000
Abcam beta actin antibody (Abcam, ab8226) was used in western blot on mouse samples at 1:5000. Nat Med (2012) ncbi
mouse monoclonal (AC-15)
  • western blot; human
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples . Leukemia (2013) ncbi
mouse monoclonal (AC-15)
  • western blot; hamsters
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on hamsters samples . J Virol (2012) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; human; 1:4000
In order to determine the distribution of hypoxia-inducible factor-1alpha and metallothionein in varicocele and varicose veins, Abcam beta actin antibody (Abcam, 8226) was used in western blot on human samples at 1:4000. Phlebology (2012) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig 1
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on human samples (fig 1). Cell Cycle (2012) ncbi
mouse monoclonal (mAbcam 8226)
  • western blot; mouse; 1:3000
Abcam beta actin antibody (Abcam, 8226) was used in western blot on mouse samples at 1:3000. J Comp Neurol (2011) ncbi
mouse monoclonal (AC-15)
  • immunohistochemistry - paraffin section; human; 1:1000
In order to examine the change of caspase 8 during the fusion of villous trophoblast, Abcam beta actin antibody (Abcam, AC15) was used in immunohistochemistry - paraffin section on human samples at 1:1000. Placenta (2009) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse
Abcam beta actin antibody (Abcam, ab6276) was used in western blot on mouse samples . Dev Biol (2008) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 1:5000
Abcam beta actin antibody (Abcam Ltd., ab6276) was used in western blot on mouse samples at 1:5000. Mol Cell Biol (2005) ncbi
Invitrogen
mouse monoclonal (ACTN05 (C4))
  • western blot; human; 1:4000; loading ...; fig 1b
Invitrogen beta actin antibody (Thermo fisher, MA5-11869) was used in western blot on human samples at 1:4000 (fig 1b). Nature (2019) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; loading ...; fig 1b
Invitrogen beta actin antibody (Thermo Fisher, AM4302) was used in western blot on mouse samples (fig 1b). elife (2019) ncbi
mouse monoclonal (BA3R)
  • western blot; human; loading ...; fig 1g
Invitrogen beta actin antibody (ThermoFisher, MA5-15739) was used in western blot on human samples (fig 1g). Mol Cell (2019) ncbi
mouse monoclonal (BA3R)
  • western blot; mouse; 1:2000; loading ...; fig 2b
Invitrogen beta actin antibody (Thermo Fisher, MA5-15739-HRP) was used in western blot on mouse samples at 1:2000 (fig 2b). elife (2019) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; human; 1:50; loading ...; fig 2d
Invitrogen beta actin antibody (Thermo, MA5-11869) was used in western blot on human samples at 1:50 (fig 2d). Nat Commun (2018) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; human; 1:1000; loading ...; fig 2e
In order to study the involvement of RNase III nucleases in antiviral systems, Invitrogen beta actin antibody (Thermo Fisher, MS-1295-P) was used in western blot on human samples at 1:1000 (fig 2e). Nature (2017) ncbi
mouse monoclonal (BA3R)
  • western blot; mouse; 1:1000; loading ...; fig 5h
In order to investigate the role of lysine specific demethylase 1 in neuronal maturation in the olfactory system, Invitrogen beta actin antibody (Thermo Fisher Scientific, MA5-15739) was used in western blot on mouse samples at 1:1000 (fig 5h). J Comp Neurol (2017) ncbi
mouse monoclonal (BA3R)
  • western blot; human; 1:3000; loading ...; fig 4a
In order to discuss mechanisms associated with platelet-derived growth factor, subtype BB protection against oxidative damage, Invitrogen beta actin antibody (Thermo Fisher, MA5-15739) was used in western blot on human samples at 1:3000 (fig 4a). Mol Neurobiol (2018) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:5000; loading ...; fig 4b
In order to analyze the mechanistic relationship between sirtuin 2 and alpha-synuclein in Parkinson's disease, Invitrogen beta actin antibody (Ambion, AM4302) was used in western blot on human samples at 1:5000 (fig 4b). PLoS Biol (2017) ncbi
mouse monoclonal (BA3R)
  • western blot; human; loading ...; fig 4b
In order to screen an shRNA library to identify genes whose depletion preferentially inhibit cancer cell growth, Invitrogen beta actin antibody (Thermo Scientific, MA5-15739) was used in western blot on human samples (fig 4b). Sci Rep (2017) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 1:20,000; loading ...; fig 1a
In order to demonstrate a crosstalk between stromal fibroblasts and epithelial cells under starvation, Invitrogen beta actin antibody (Invitrogen, AM4302) was used in western blot on mouse samples at 1:20,000 (fig 1a). Nat Commun (2017) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig 5
In order to investigate the effects of Brilliant Cresyl Blue on human follicular cells exposed to Brilliant Cresyl Blue, Invitrogen beta actin antibody (Ambion, AM4302) was used in western blot on human samples (fig 5). Reprod Biol (2017) ncbi
mouse monoclonal (BA3R)
  • western blot; human; 1:2000; loading ...; fig 8b
In order to find the specific gene signature related to iron metabolism consisting of genes regulating iron uptake, mitochondrial FeS cluster biogenesis and hypoxic response, Invitrogen beta actin antibody (Thermoscientific, MA5-15739-HRP) was used in western blot on human samples at 1:2000 (fig 8b). Oncotarget (2017) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; zebrafish ; 1:5000; loading ...; fig s2e
In order to propose that neurodevelopmental disorders and brain tumors may arise from changes in oncogenes, Invitrogen beta actin antibody (Neomarkers, ACTN05) was used in western blot on zebrafish samples at 1:5000 (fig s2e). Dis Model Mech (2017) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; human; 1:100; loading ...; fig 1b
In order to find that TrpC5 regulates differentiation in colorectal cancer, Invitrogen beta actin antibody (Invitrogen, MA5-11869) was used in western blot on human samples at 1:100 (fig 1b). Clin Sci (Lond) (2017) ncbi
mouse monoclonal (BA3R)
  • western blot; rat; 1:3000; loading ...; fig 5
In order to assess the effect of alpha-linolenic acid and gamma-linolenic acid in an autism model, Invitrogen beta actin antibody (Thermo Scientific, MA5-15,739) was used in western blot on rat samples at 1:3000 (fig 5). J Physiol Biochem (2017) ncbi
mouse monoclonal (BA3R)
  • western blot; mouse; 1:3000; loading ...; fig s5a
In order to study the benefits of heterochronic parabiosis in young and old mice, Invitrogen beta actin antibody (Fisher scientific, MA5-15739) was used in western blot on mouse samples at 1:3000 (fig s5a). Nat Commun (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; rat; 1:5000; loading ...; fig 2
In order to measure brain insulin signaling in response to dexamethasone treatment in female Charles Foster rats, Invitrogen beta actin antibody (Thermo Scientific, MA1-91399) was used in western blot on rat samples at 1:5000 (fig 2). Mol Neurobiol (2017) ncbi
mouse monoclonal (BA3R)
  • western blot; mouse; 1:5000; fig 1b
In order to study sex-dependent Glut9 expression, Invitrogen beta actin antibody (Thermo Fisher, MA5-15739) was used in western blot on mouse samples at 1:5000 (fig 1b). J Pharmacol Exp Ther (2017) ncbi
mouse monoclonal (BA3R)
  • western blot; human; loading ...; fig 2a
In order to study histone deacetylase 9 in diffuse large B-cell lymphoma, Invitrogen beta actin antibody (Thermo Scientific, MA5-15739) was used in western blot on human samples (fig 2a). Dis Model Mech (2016) ncbi
mouse monoclonal (BA3R)
  • western blot; human; loading ...; fig 3c
In order to identify cellular factors involved in the development of the cytoplasmic viral assembly compartment, Invitrogen beta actin antibody (Thermo Fisher Scientific, BA3R) was used in western blot on human samples (fig 3c). J Virol (2017) ncbi
mouse monoclonal (BA3R)
  • western blot; mouse; loading ...; fig 2e
In order to elucidate how FoxO1 regulates mitochondrial uncoupling proteins, Invitrogen beta actin antibody (Pierce, MA5-15739) was used in western blot on mouse samples (fig 2e). Cell Death Discov (2016) ncbi
mouse monoclonal (BA3R)
  • western blot; human; loading ...; fig 4d
In order to report that stiffer pancreatic ductal adenocarcinoma cells are more invasive than more compliant cells, Invitrogen beta actin antibody (ThermoFisher, MA5-15739) was used in western blot on human samples (fig 4d). Integr Biol (Camb) (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 1:1000; loading ...; fig 2b
In order to test if IL-6 regulation gp130 and related neuroinflammatory, cell survival, and regulatory signaling in both healthy and glaucomatous retina, Invitrogen beta actin antibody (Ambion, AM4302) was used in western blot on mouse samples at 1:1000 (fig 2b). J Clin Cell Immunol (2016) ncbi
mouse monoclonal (BA3R)
  • western blot; human; loading ...; fig 1d
In order to study mitochondrial biogenesis and mitophagy in cancer cells, Invitrogen beta actin antibody (Pierce, MA5-15739) was used in western blot on human samples (fig 1d). Oxid Med Cell Longev (2016) ncbi
mouse monoclonal (BA3R)
  • western blot; human; 1:10,000; loading ...; fig s2b
In order to elucidate the role of DUOX1 silencing in lung cancer development or progression, Invitrogen beta actin antibody (Invitrogen, MA5-15739) was used in western blot on human samples at 1:10,000 (fig s2b). Oncogenesis (2016) ncbi
mouse monoclonal (BA3R)
  • western blot; mouse; loading ...; fig 4c
In order to study the role of Lumican in TH17 cell-mediated inflammation, Invitrogen beta actin antibody (Thermo Fisher, MA5-15739) was used in western blot on mouse samples (fig 4c). Eur J Immunol (2016) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; human; loading ...; fig 5g
In order to investigate the alternative splicing of E-cadherin mRNA, Invitrogen beta actin antibody (Neomarkers, ACTN05) was used in western blot on human samples (fig 5g). J Cell Physiol (2017) ncbi
mouse monoclonal (BA3R)
  • western blot; rat; 1:3000; fig 3
In order to determine the effect of alpha-chymotrypsin on methyl nitrosourea-induced mammary gland carcinoma using albino wistar rats, Invitrogen beta actin antibody (Pierce, Thermo scientific, MA5-15739) was used in western blot on rat samples at 1:3000 (fig 3). Inflammopharmacology (2016) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; human; 1:300; fig 2
In order to study CD133+ subpopulations in pancreatic cancer, Invitrogen beta actin antibody (Thermo Fisher Scientific, Ab-5) was used in western blot on human samples at 1:300 (fig 2). Oncol Lett (2016) ncbi
mouse monoclonal (BA3R)
  • western blot; human; loading ...; fig 4b
In order to elucidate pathways in pancreatic ductal adenocarcinoma involved in vesicular stomatitis virus resistance, Invitrogen beta actin antibody (Thermo Fisher, MA5-15739) was used in western blot on human samples (fig 4b). Oncotarget (2016) ncbi
mouse monoclonal (BA3R)
  • western blot; human; 1:5000; loading ...; fig 2a
In order to evaluate the effects of pioglitazone on human Sertoli cells metabolism, Invitrogen beta actin antibody (Thermo Scientific, MA5-15739) was used in western blot on human samples at 1:5000 (fig 2a). Int J Biochem Cell Biol (2016) ncbi
mouse monoclonal (BA3R)
  • western blot; human; 1:1000; fig 1a
In order to find functional interferon-stimulated response elements in the promoter of endogenous retrovirus K in patients with amyotrophic lateral sclerosis, Invitrogen beta actin antibody (Thermo Pierce, MA5-15739) was used in western blot on human samples at 1:1000 (fig 1a). J Virol (2016) ncbi
mouse monoclonal (BA3R)
  • western blot; rat; 1:3000; loading ...; fig 4
In order to determine the role of metformin-associated H2 release during lipopolysaccharide-induced neuroinflammation, Invitrogen beta actin antibody (Thermo Fisher Scientific, MA5-15739- HRP) was used in western blot on rat samples at 1:3000 (fig 4). Inflammopharmacology (2016) ncbi
mouse monoclonal (BA3R)
  • western blot; rat; 1:3000; loading ...; fig 4
In order to assess the effects of beta-sitosterol on methyl nitrosourea-induced mammary gland carcinoma using albino wistar rats, Invitrogen beta actin antibody (Thermo Scientific, MA5-15739-HRP) was used in western blot on rat samples at 1:3000 (fig 4). BMC Complement Altern Med (2016) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; human; fig 1
In order to study how PARylation regulates Top1 nuclear dynamics, Invitrogen beta actin antibody (Neo Markers, ACTN05) was used in western blot on human samples (fig 1). Nucleic Acids Res (2016) ncbi
mouse monoclonal (BA3R)
  • western blot; human; fig 4a
In order to test if Compound 49b protects the retina in hypoxic conditions, Invitrogen beta actin antibody (Invitrogen, MA5-15739-HRP) was used in western blot on human samples (fig 4a). PLoS ONE (2016) ncbi
mouse monoclonal (BA3R)
  • western blot; human; 1:5000; loading ...; fig 2c
In order to examine the effect of ghrelin in human Sertoli cells metabolism, Invitrogen beta actin antibody (Thermo Fisher, MA5-15739) was used in western blot on human samples at 1:5000 (fig 2c). Mol Cell Endocrinol (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; human; loading ...; fig 7a
In order to identify inhibitors of the Aurora B::INCENP interaction, Invitrogen beta actin antibody (Invitrogen, MA1-91399) was used in western blot on human samples (fig 7a). Chem Biol Drug Des (2016) ncbi
mouse monoclonal (BA3R)
  • western blot; human; 1:5000; fig 1
In order to compare colorectal and gastric cancer and their expression patterns and diagnostic efficacies of SR splicing factors and HNRNPA1, Invitrogen beta actin antibody (Invitrogen, MA5-15739) was used in western blot on human samples at 1:5000 (fig 1). BMC Cancer (2016) ncbi
mouse monoclonal (BA3R)
  • western blot; mouse; fig s1
In order to learn suppression of autophagy and lipid droplet growth in adipocytes by FoxO1 antagonist, Invitrogen beta actin antibody (Pierce, MA5-15739) was used in western blot on mouse samples (fig s1). Cell Cycle (2016) ncbi
mouse monoclonal (BA3R)
  • western blot; mouse; fig 1
In order to analyze prevention of metastasis in murine mammary carcinoma by targeting serglycin, Invitrogen beta actin antibody (Thermo Scientific, BA3R) was used in western blot on mouse samples (fig 1). PLoS ONE (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; chicken; fig s4
In order to study promotion of IgV gene diversification by enhancing formation of AID-accessible single-stranded DNA by histone H3.3, Invitrogen beta actin antibody (Thermo, AM4302) was used in western blot on chicken samples (fig s4). EMBO J (2016) ncbi
mouse monoclonal (BA3R)
  • western blot; human; fig 8
In order to study the beneficial and imical roles in HSV-1 replication by PML, Invitrogen beta actin antibody (ThermoFisher Scientific, MA5-15739) was used in western blot on human samples (fig 8). Proc Natl Acad Sci U S A (2016) ncbi
mouse monoclonal (BA3R)
  • western blot; human; 1:10,000; fig 2
In order to compare activation of complement both on their own NETs and bacteria via non-alternative and alternative pathways by NETosing neutrophils, Invitrogen beta actin antibody (Thermo Scientific, BA3R) was used in western blot on human samples at 1:10,000 (fig 2). Front Immunol (2016) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; mouse; fig 3b
In order to screen for deubiquitinase inhibitors that prevent infection of macrophages by intracellular pathogens, Invitrogen beta actin antibody (Thermo Scientific, ACTN05) was used in western blot on mouse samples (fig 3b). Antimicrob Agents Chemother (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:20,000; fig 2
In order to elucidate variants in TELO2, a gene encoding a component of the TTT complex, causing a syndromic intellectual disability disorder, Invitrogen beta actin antibody (Ambion, AM4302) was used in western blot on human samples at 1:20,000 (fig 2). Am J Hum Genet (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig 3
In order to study pVHL-mediated degradation of B-Myb and hypoxia-inducible factor alpha by parallele regulation of von Hippel-Lindau disease, Invitrogen beta actin antibody (Applied Biosystems, AM4302) was used in western blot on human samples (fig 3). Mol Cell Biol (2016) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; human; 1:3000; fig 3
  • western blot; mouse; 1:3000; fig 1
In order to investigate the PTHrP-cAMP-CREB1 axis in osteosarcoma, Invitrogen beta actin antibody (Thermo Scientific, Ab-5) was used in western blot on human samples at 1:3000 (fig 3) and in western blot on mouse samples at 1:3000 (fig 1). elife (2016) ncbi
mouse monoclonal (BA3R)
  • western blot; mouse; 1:5000; fig 4
In order to investigate inhibition of neural stem cell proliferation through Wnt/beta-catenin pathway by its GAP domain via Porf-2, Invitrogen beta actin antibody (Thermofisher scientific, MA5-15739) was used in western blot on mouse samples at 1:5000 (fig 4). Front Cell Neurosci (2016) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; human; fig 1
In order to study attenuation of AKT signaling to promote internal ribosome entry site-dependent translation and expression of c-MYC by the human papillomavirus 16 E7 oncoprotein, Invitrogen beta actin antibody (Thermo Scientific, MS-1295-P1) was used in western blot on human samples (fig 1). J Virol (2016) ncbi
mouse monoclonal (BA3R)
  • western blot; human; fig 4
In order to determine the inhibition of beta-catenin activity in the synovial joint development and osteoarthritis by hedgehog, Invitrogen beta actin antibody (Pierce, MA5-15739) was used in western blot on human samples (fig 4). J Clin Invest (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; fig 6
In order to study the independent occurrence of BAK, BAX, and APAF1 from DRP-1 dependent apoptotic mitochondrial fission to amplify cell death by BID and oxidative stress, Invitrogen beta actin antibody (Thermo Scientific, MA1-91399) was used in western blot on mouse samples (fig 6). Biochim Biophys Acta (2016) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; dogs; fig 8
In order to study how the role of increased caveolin-1 can help with repair to intervertebral disc degeneration, Invitrogen beta actin antibody (Neomarkers, pan Ab-5) was used in western blot on dogs samples (fig 8). Arthritis Res Ther (2016) ncbi
mouse monoclonal (BA3R)
  • western blot; mouse; 1:5000; fig 3c
In order to identify a retinoic acid-synthesizing enzyme, ALDH1A1, that is expressed in fetal ovaries, Invitrogen beta actin antibody (Thermo Scientific, PIEMA5-15739) was used in western blot on mouse samples at 1:5000 (fig 3c). Nat Commun (2016) ncbi
mouse monoclonal (BA3R)
  • western blot; human; fig 1a
In order to determine how estrogen enhances motility and cell viability of breast cancer cells through the Eralpha-deltaNp63-Integrin Beta 4 signaling pathway, Invitrogen beta actin antibody (Thermo Scientific, MA5-15739) was used in western blot on human samples (fig 1a). PLoS ONE (2016) ncbi
mouse monoclonal (BA3R)
  • western blot; human; fig 3
In order to study Val600 in the activation portion of BRAF and its peculiar yin-yang of kinase activation and unfolding, Invitrogen beta actin antibody (Thermo, MA5-15739) was used in western blot on human samples (fig 3). elife (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig 4
In order to determine a therapeutic strategy to target the IRF4 network in multiple myeloma by using the bromodomain inhibition of the transcriptional coactivators CBP/EP300, Invitrogen beta actin antibody (Life technologies, AM4302) was used in western blot on human samples (fig 4). elife (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig 3
In order to determine the mechanism for blocking of miR-17-5p guide strand in triple negative breast cancer cells, Invitrogen beta actin antibody (Thermo Fisher Scientific, AM4302) was used in western blot on human samples (fig 3). PLoS ONE (2015) ncbi
mouse monoclonal (BA3R)
  • western blot; mouse; fig 2
In order to describe a technique to measure cell mechanotype, Invitrogen beta actin antibody (Thermo Scientific, MA5-15739) was used in western blot on mouse samples (fig 2). Sci Rep (2015) ncbi
mouse monoclonal (BA3R)
  • western blot; human; 1:4000; fig s5
In order to study differential modulation of AMPA receptor properties by auxillary subunits of the CKAMP family, Invitrogen beta actin antibody (Thermo Fisher Scientific, MA5-15739) was used in western blot on human samples at 1:4000 (fig s5). elife (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:5000; fig 2
In order to research the role of increased alpha-synuclein due to SNCA gene triplication and its role in Parkinson stem cells, Invitrogen beta actin antibody (Ambion, AM4302) was used in western blot on human samples at 1:5000 (fig 2). Cell Death Dis (2015) ncbi
mouse monoclonal (BA3R)
In order to study how inorganic arsenic contributes to the progression of prostate cancer, Invitrogen beta actin antibody (Thermo Scientific, MA5-15739) was used . Environ Health Perspect (2016) ncbi
mouse monoclonal (BA3R)
  • western blot; red rice ; fig s2
In order to investigate how persistent viruses acquire pathogenicity from insect vectors, Invitrogen beta actin antibody (Pierce, MA5-15739) was used in western blot on red rice samples (fig s2). New Phytol (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:20,000; fig 1
In order to characterize NONO-deficient mice, Invitrogen beta actin antibody (Ambion, AM4302) was used in western blot on human samples at 1:20,000 (fig 1). Nat Neurosci (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig s1
In order to study the use of bispecific T cell engager, Invitrogen beta actin antibody (Thermo Scientific, AC-15) was used in western blot on human samples (fig s1). PLoS ONE (2015) ncbi
mouse monoclonal (BA3R)
  • western blot; human; fig 3
In order to study the cellular origin of human induced pluripotent stem cells and human embryonic stem cells, Invitrogen beta actin antibody (Thermo Scientific, MA5-5739-HRP) was used in western blot on human samples (fig 3). Nat Biotechnol (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:250
In order to assess SRC, LYN, and CKB expression, as well as their promoter methylation, in gastric cancer, Invitrogen beta actin antibody (Life Technologies, Ac-15) was used in western blot on human samples at 1:250. PLoS ONE (2015) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; human; 1:10,000; fig 3
In order to investigate how redox reactions affect treatment of chronic lymphocytic leukemia, Invitrogen beta actin antibody (Pierce Biotechnology, MA5-11869) was used in western blot on human samples at 1:10,000 (fig 3). Mol Med Rep (2015) ncbi
mouse monoclonal (BA3R)
  • western blot; human; 1:1000; fig 3
In order to investigate KCNJ5 mutations in Australian primary aldosteronism samples, Invitrogen beta actin antibody (Pierce Antibodies, MA5?C 15 739) was used in western blot on human samples at 1:1000 (fig 3). Mol Endocrinol (2015) ncbi
mouse monoclonal (BA3R)
  • western blot; mouse; fig 6
In order to elucidate the mechanisms by which increased LMNB1 levels cause autosomal dominant leukodystrophy, Invitrogen beta actin antibody (Pierce, MA515739) was used in western blot on mouse samples (fig 6). J Neurosci (2015) ncbi
mouse monoclonal (BA3R)
  • western blot; rat; 1:1000; fig 3c
In order to assess the effects of acupuncture treatment on the expression of Wnt/beta-catenin signaling pathway-related genes in rats with traumatic brain injury, Invitrogen beta actin antibody (Thermo Scientific, MA5-15739) was used in western blot on rat samples at 1:1000 (fig 3c). Acupunct Med (2016) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; human
In order to study the role of ADAM17 in cellular senescence and senescence secretome, Invitrogen beta actin antibody (Thermo Scientific, MA5-11869) was used in western blot on human samples . Breast Cancer Res (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; zebrafish ; fig 4
In order to elucidate the molecular mechanism of fluoride-induced neurotoxicity using zebrafish, Invitrogen beta actin antibody (Thermo, MA 1-91399) was used in western blot on zebrafish samples (fig 4). Environ Toxicol Pharmacol (2015) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; fruit fly ; 1:4000; fig 9
In order to suggest that CDK8-CycC links nutrient intake to EcR activity and Drosophila development, Invitrogen beta actin antibody (Thermo Scientific, MA5-11869)) was used in western blot on fruit fly samples at 1:4000 (fig 9). PLoS Biol (2015) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; mouse; 1:500; fig 5a
In order to assess the anti-fatigue effects of Myelophil, Invitrogen beta actin antibody (Thermo Fisher, MA5-11869) was used in western blot on mouse samples at 1:500 (fig 5a). Eur J Pharmacol (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 1:3000
In order to elucidate the molecular mechanisms involved in the timing and coordination of auditory prosensory proliferation and differentiation, Invitrogen beta actin antibody (Ambion, AM4302) was used in western blot on mouse samples at 1:3000. Proc Natl Acad Sci U S A (2015) ncbi
mouse monoclonal (BA3R)
  • western blot; human; 1:5000; fig 2e
In order to assess the effects of dehydroepiandrosterone and 7-oxo-dehydroepiandrosterone on human Sertoli cells metabolism and oxidative profile, Invitrogen beta actin antibody (Thermo Scientific, MA5-15739) was used in western blot on human samples at 1:5000 (fig 2e). J Steroid Biochem Mol Biol (2015) ncbi
mouse monoclonal (AC-15)
  • immunocytochemistry; human
In order to study spore dissemination after lung exposure, Invitrogen beta actin antibody (Life Technologies, AM4302) was used in immunocytochemistry on human samples . J Appl Microbiol (2015) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; human
In order to discuss using serum CSE1L as a biomarker for assessing the efficacy of cancer therapy, Invitrogen beta actin antibody (Lab Vision, Ab-5) was used in western blot on human samples . J Transl Med (2015) ncbi
mouse monoclonal (BA3R)
  • western blot; human; 1:20,000; fig 5
In order to study the binding of ICP0 to USP7, Invitrogen beta actin antibody (Pierce, MA5-15739) was used in western blot on human samples at 1:20,000 (fig 5). PLoS Pathog (2015) ncbi
mouse monoclonal (BA3R)
  • western blot; human; 1:5000
In order to develop a 3D model for studying tumors by co-culturing HT-29 tumor spheroids with CCD-18co fibroblasts, Invitrogen beta actin antibody (Thermo Scientific, MA5-15739) was used in western blot on human samples at 1:5000. Exp Cell Res (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; bovine; fig 5
In order to study the inhibitory action of prostaglandin F2alpha in bovine corpora lutea and its mechanism, Invitrogen beta actin antibody (Ambion Life Technologies, AM4302) was used in western blot on bovine samples (fig 5). Biol Reprod (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:8000; fig f3
In order to study induction of pro-inflammatory responses in vitro through sintered indium-tin oxide particles and inflammasome activation, Invitrogen beta actin antibody (Fisher Scientific, MA191399) was used in western blot on human samples at 1:8000 (fig f3). PLoS ONE (2015) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; mouse; 1:500
In order to evaluate the anti-fatigue effects of Gongjin-Dan in a chronic forced exercise mouse model, Invitrogen beta actin antibody (Thermo Fisher, MA5-11869) was used in western blot on mouse samples at 1:500. J Ethnopharmacol (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:10,000; fig 3a
In order to examine an immunoblot-analysis workflow for accuracy and precision, Invitrogen beta actin antibody (Ambion, AM4302) was used in western blot on human samples at 1:10,000 (fig 3a). Sci Signal (2015) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; mouse
In order to evaluate the protective effect of dietary cis9, trans11 conjugated linoleic acid on gliadin-induced enteropathy, Invitrogen beta actin antibody (Thermo Scientific, ACTN05) was used in western blot on mouse samples . Eur J Nutr (2016) ncbi
mouse monoclonal (AC-15)
  • western blot; human; fig 3
In order to study the angiogenic potential of erythropoietin, Invitrogen beta actin antibody (Life Technologies, AM4302) was used in western blot on human samples (fig 3). Gene Ther (2015) ncbi
mouse monoclonal (BA3R)
  • western blot; mouse; 1:5000
In order to assess if impaired voltage-gated K(+) channel function contributes to arterial tone during diabetes, Invitrogen beta actin antibody (Pierce, MA5-15739) was used in western blot on mouse samples at 1:5000. J Biol Chem (2015) ncbi
mouse monoclonal (AC-15)
  • western blot; bovine; 1:5000
In order to identify proteins which are preferentially expressed during lactationn in heifer mammary gland, Invitrogen beta actin antibody (Pierce, MA1-91399) was used in western blot on bovine samples at 1:5000. J Proteomics (2015) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; human; 1:10,000; fig 5
In order to show that sustained Zeb2 expression initiates T-cell leukemia, Invitrogen beta actin antibody (Molecular probes, C4) was used in western blot on human samples at 1:10,000 (fig 5). Nat Commun (2015) ncbi
mouse monoclonal (BA3R)
  • western blot; mouse
In order to investigate the role of FoxO1 during adipocyte differentiation and adipogenesis, Invitrogen beta actin antibody (Pierce, MA5-15739) was used in western blot on mouse samples . Cell Cycle (2014) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; mouse; fig 1,2,3,4,5,6
In order to determine the role of progesterone receptor activation in increasing protein turnover and downregulation of GATA3 transcriptional repression which promotes breast tumor growth, Invitrogen beta actin antibody (neomarkers, ACTN05) was used in western blot on mouse samples (fig 1,2,3,4,5,6). Breast Cancer Res (2014) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; human
In order to examine the effects of miR-23a in cell death, Invitrogen beta actin antibody (NeoMarkers, ACTN05) was used in western blot on human samples . Cell Death Dis (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 1:5000; fig 4c
In order to elucidate the regulation of Notch by Cyclin C, Invitrogen beta actin antibody (Thermo, AC-15) was used in western blot on mouse samples at 1:5000 (fig 4c). Nat Cell Biol (2014) ncbi
mouse monoclonal (BA3R)
  • western blot; human; 1:2000; fig 4
In order to study calretinin-expressing progenitors in the human cerebral cortex and their complexity, Invitrogen beta actin antibody (Thermo Scientific, MA5-15739) was used in western blot on human samples at 1:2000 (fig 4). Front Neuroanat (2014) ncbi
mouse monoclonal (BA3R)
  • western blot; human
In order to study the relation between human cortical formation and impaired sonic hedgehog signaling, Invitrogen beta actin antibody (Thermo Scientific Pierce Antibodies, MA5-15739) was used in western blot on human samples . Cereb Cortex (2016) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; fruit fly ; 1:4000
In order to study the role of Histone lysine demethylase 2 (KDM2) in Drosophila development, Invitrogen beta actin antibody (Thermo Scientific, MA5-11869) was used in western blot on fruit fly samples at 1:4000. Mech Dev (2014) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; dogs; 1:2000
In order to analyze divergent LEF1 expression in ligand-independent canonical Wnt activity in canine mammary tumor cell lines, Invitrogen beta actin antibody (Thermo, MS-1295-P1) was used in western blot on dogs samples at 1:2000. PLoS ONE (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; human
In order to examine the role of mesenchymal stem cells in the development of hepatocellular carcinoma resistance to chemotherapy, Invitrogen beta actin antibody (Invitrogen, AM4302) was used in western blot on human samples . Cell Biosci (2014) ncbi
mouse monoclonal (ACTN05 (C4))
In order to investigate the role of Wdr1 in actin dynamics, Invitrogen beta actin antibody (Thermo Fisher Scientific, MS-1295-P1ABX) was used . Am J Pathol (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; hamsters
In order to investigate the use of peptides as carriers of short interfering RNA, Invitrogen beta actin antibody (Ambion, AM4302) was used in western blot on hamsters samples . PLoS ONE (2014) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; mouse; 1:1000; fig 5
In order to investigate the relationship between vitamin D and parathyroid hormone signaling during skeletal development, Invitrogen beta actin antibody (NeoMarkers, MS-1295-P1) was used in western blot on mouse samples at 1:1000 (fig 5). J Cell Physiol (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; human
In order to study virion component proportions using moloney murine leukemia virus, Invitrogen beta actin antibody (Ambion, AM4302) was used in western blot on human samples . J Virol (2014) ncbi
mouse monoclonal (BA3R)
  • western blot; mouse
In order to study the p21 degradation during parvovirus replication, Invitrogen beta actin antibody (Pierce, MA515739) was used in western blot on mouse samples . PLoS Pathog (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:1000
In order to investigate the TGFBR3-JUND-KRT5 regulatory circuit that is time and matrix-dependent in single breast epithelial cells and basal-like premalignancies, Invitrogen beta actin antibody (Ambion, AM4302) was used in western blot on human samples at 1:1000. Nat Cell Biol (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; bovine; 1:2000
In order to study mechanisms of calcium homeostasis in bovine corpora lutea, Invitrogen beta actin antibody (Ambion, AM4302) was used in western blot on bovine samples at 1:2000. Biol Reprod (2014) ncbi
mouse monoclonal (BA3R)
  • western blot; mouse; 1:1000
In order to assess the importance of RyanR type 3 in Alzheimer disease pathology, Invitrogen beta actin antibody (Thermo, MA5?C15739) was used in western blot on mouse samples at 1:1000. Channels (Austin) (2014) ncbi
mouse monoclonal (BA3R)
  • western blot; human; fig 1b
  • western blot; mouse; fig 1a
In order to elucidate how parvovirus minute virus of mice halts the cell cycle, Invitrogen beta actin antibody (Pierce, MA515739) was used in western blot on human samples (fig 1b) and in western blot on mouse samples (fig 1a). PLoS Pathog (2014) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; mouse; fig 1
In order to investigate the role of caspase-2 in programed cell death during infection with Brucella abortus, Invitrogen beta actin antibody (Thermo Scientific, MS1295P1) was used in western blot on mouse samples (fig 1). Front Cell Infect Microbiol (2013) ncbi
mouse monoclonal (BA3R)
  • western blot; human
In order to study the ERbB signaling network with a view to understanding the basis for context-specific signaling plasticity, Invitrogen beta actin antibody (Thermo Scientific, MA5-15739) was used in western blot on human samples . Sci Signal (2013) ncbi
mouse monoclonal (BA3R)
  • western blot; mouse; 1:5000; loading ...; fig 3c
In order to test if AKAP150 mediates BKCa channel suppression during hyperglycemia and diabetes mellitus, Invitrogen beta actin antibody (Pierce, MA5-15739) was used in western blot on mouse samples at 1:5000 (fig 3c). Circ Res (2014) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; mouse
In order to test if enterically targeted rapamycin prevents neoplasia and extends survival of cancer prone Apc(Min/+) mice, Invitrogen beta actin antibody (Thermo Fisher, ACTN05) was used in western blot on mouse samples . Cancer Prev Res (Phila) (2014) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; fig 6
In order to demonstrate that tumor suppressor neurofibromatosis 2 limits the expansion of neural progenitor cells, Invitrogen beta actin antibody (Ambion, AM4302) was used in western blot on mouse samples (fig 6). Development (2013) ncbi
mouse monoclonal (BA3R)
  • western blot; human; fig 8a
In order to assess in vitro the effects of several S. Typhi strains and the licensed Ty21a typhoid vaccine on intestinal barrier function and immune response, Invitrogen beta actin antibody (Thermo Fisher, 82353) was used in western blot on human samples (fig 8a). Front Immunol (2013) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; 3 ug/ml
In order to study the effect of IL-6 on retinal ganglion cells, Invitrogen beta actin antibody (Ambion, AM4302) was used in western blot on mouse samples at 3 ug/ml. Am J Neurodegener Dis (2012) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:1000; fig 7
In order to study permeability and tight junctions in endothelial cells derived from human cord blood, Invitrogen beta actin antibody (Invitrogen, clone AC-15) was used in western blot on human samples at 1:1000 (fig 7). Am J Physiol Heart Circ Physiol (2012) ncbi
mouse monoclonal (AC-15)
  • western blot; human; 1:5000; fig 2
In order to study the role of Gag proteins in gRNA packaging, Invitrogen beta actin antibody (Ambion, AM4302) was used in western blot on human samples at 1:5000 (fig 2). Virology (2012) ncbi
mouse monoclonal (AC-15)
  • western blot; mouse; fig 1
In order to investigate the regulatory mechanisms of aggresome-like induced structures formation and clearance, Invitrogen beta actin antibody (Ambion, AM4302) was used in western blot on mouse samples (fig 1). J Biol Chem (2012) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; human; fig 3
In order to report that CSE1L regulates the association of alpha-tubulin with beta-tubulin and promotes migration of MCF-7 breast cancer cells, Invitrogen beta actin antibody (Lab Vision, Ab-5) was used in western blot on human samples (fig 3). Exp Cell Res (2010) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; mouse; fig 6
In order to characterize a mouse model of endocrine-resistant breast cancer, Invitrogen beta actin antibody (Neomarkers, ACTN05) was used in western blot on mouse samples (fig 6). PLoS ONE (2010) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; human; fig 8
In order to report on two cases of classic and desmoplastic medulloblastoma and the characterization of two new cell lines, Invitrogen beta actin antibody (Neomarkers, ACTN05) was used in western blot on human samples (fig 8). Neuropathology (2009) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; human; fig 4
In order to ascertain the role of epithelial cadherin in gamete interaction, Invitrogen beta actin antibody (Neomarkers, ACTN05) was used in western blot on human samples (fig 4). Mol Hum Reprod (2008) ncbi
mouse monoclonal (ACTN05 (C4))
  • western blot; human; 1:1000
  • western blot; rat; 1:1000
In order to compare hippocampi from temporal lobe epilepsy patients with those from non-epileptic patients, Invitrogen beta actin antibody (LabVision, ACTN05) was used in western blot on human samples at 1:1000 and in western blot on rat samples at 1:1000. Brain (2007) ncbi
Santa Cruz Biotechnology
mouse monoclonal (B4)
  • western blot; human; 1:2500; loading ...; fig 3a
Santa Cruz Biotechnology beta actin antibody (Santa Cruz Biotechnology, Inc, sc-53142) was used in western blot on human samples at 1:2500 (fig 3a). Mol Med Rep (2018) ncbi
mouse monoclonal (B4)
  • western blot; human; 1:1000; loading ...; fig 3a
Santa Cruz Biotechnology beta actin antibody (Santa Cruz, sc-53142) was used in western blot on human samples at 1:1000 (fig 3a). Mol Med Rep (2017) ncbi
mouse monoclonal (B4)
  • immunohistochemistry - paraffin section; mouse; fig 8
Santa Cruz Biotechnology beta actin antibody (Santa Cruz, sc53142) was used in immunohistochemistry - paraffin section on mouse samples (fig 8). Sci Rep (2016) ncbi
mouse monoclonal (B4)
  • immunohistochemistry - paraffin section; rat; 1:100; fig 2
Santa Cruz Biotechnology beta actin antibody (Santa Cruz Biotechnology, sc-53142) was used in immunohistochemistry - paraffin section on rat samples at 1:100 (fig 2). Mol Med Rep (2016) ncbi
mouse monoclonal (2Q1055)
  • western blot; mouse; 1:500; fig 6
Santa Cruz Biotechnology beta actin antibody (santa Cruz, sc-58673) was used in western blot on mouse samples at 1:500 (fig 6). PLoS Genet (2015) ncbi
mouse monoclonal (2Q1055)
  • western blot; chicken; 1:3000; fig 6a
In order to investigate the role of growth hormone in the Bursa, Santa Cruz Biotechnology beta actin antibody (Santa Cruz Biotechnology, sc-58673) was used in western blot on chicken samples at 1:3000 (fig 6a). Gen Comp Endocrinol (2015) ncbi
mouse monoclonal (B4)
  • western blot; human; fig 6
Santa Cruz Biotechnology beta actin antibody (Santa Cruz, sc-53142) was used in western blot on human samples (fig 6). Oncotarget (2015) ncbi
mouse monoclonal (B4)
  • western blot; human
Santa Cruz Biotechnology beta actin antibody (Santa Cruz, sc-53142) was used in western blot on human samples . Mol Cell Endocrinol (2015) ncbi
mouse monoclonal (2Q1055)
  • western blot; mouse; 1:200; fig s1
In order to study factors needed for interneuron migration during different embryonic stages, Santa Cruz Biotechnology beta actin antibody (Santa Cruz, sc-58673) was used in western blot on mouse samples at 1:200 (fig s1). Development (2014) ncbi
mouse monoclonal (B4)
  • immunocytochemistry; human
  • western blot; human
Santa Cruz Biotechnology beta actin antibody (Santa Cruz, sc-53142) was used in immunocytochemistry on human samples and in western blot on human samples . Cell Cycle (2013) ncbi
GeneTex
mouse monoclonal (ACTN05)
  • western blot; mouse; fig 5
GeneTex beta actin antibody (GeneTex, GTX23280) was used in western blot on mouse samples (fig 5). Sci Rep (2015) ncbi
Synaptic Systems
domestic rabbit polyclonal (/)
  • western blot; mouse; 1:5000; loading ...; fig 1s1c
Synaptic Systems beta actin antibody (Synaptic Systems, 251 003) was used in western blot on mouse samples at 1:5000 (fig 1s1c). elife (2019) ncbi
Articles Reviewed
  1. Miles R, Kerridge C, Hilditch L, Monit C, Jacques D, Towers G. MxB sensitivity of HIV-1 is determined by a highly variable and dynamic capsid surface. elife. 2020;9: pubmed publisher
  2. Lee J, Hong J, Yoon B, Son K, Lee K, Im D, et al. Expression of Cellular Receptors in the Ischemic Hemisphere of Mice with Increased Glucose Uptake. Exp Neurobiol. 2020;29:70-79 pubmed publisher
  3. Zhang M, Wang Z, Li B, Sun F, Chen A, Gong M. Identification of microRNA‑363‑3p as an essential regulator of chondrocyte apoptosis in osteoarthritis by targeting NRF1 through the p53‑signaling pathway. Mol Med Rep. 2020;21:1077-1088 pubmed publisher
  4. Ando Y, Ohuchida K, Otsubo Y, Kibe S, Takesue S, Abe T, et al. Necroptosis in pancreatic cancer promotes cancer cell migration and invasion by release of CXCL5. PLoS ONE. 2020;15:e0228015 pubmed publisher
  5. Cheung E, DeNicola G, Nixon C, Blyth K, Labuschagne C, Tuveson D, et al. Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell. 2020;37:168-182.e4 pubmed publisher
  6. Porreca R, Herrera Moyano E, Skourti E, Law P, Gonzalez Franco R, Montoya A, et al. TRF1 averts chromatin remodelling, recombination and replication dependent-break induced replication at mouse telomeres. elife. 2020;9: pubmed publisher
  7. Foster A, El Chami C, O Neill C, Watson R. Osmolyte transporter expression is reduced in photoaged human skin: Implications for skin hydration in aging. Aging Cell. 2020;19:e13058 pubmed publisher
  8. Wang Y, Chiang I, Ohara T, Fujii S, Cheng J, Muegge B, et al. Long-Term Culture Captures Injury-Repair Cycles of Colonic Stem Cells. Cell. 2019;179:1144-1159.e15 pubmed publisher
  9. Yang X, Yang J, Lei P, Wen T. LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis. Aging (Albany NY). 2019;11:8777-8791 pubmed publisher
  10. Delgobo M, Mendes D, Kozlova E, Rocha E, Rodrigues Luiz G, Mascarin L, et al. An evolutionary recent IFN/IL-6/CEBP axis is linked to monocyte expansion and tuberculosis severity in humans. elife. 2019;8: pubmed publisher
  11. Yagensky O, Kohansal Nodehi M, Gunaseelan S, Rabe T, Zafar S, Zerr I, et al. Increased expression of heme-binding protein 1 early in Alzheimer's disease is linked to neurotoxicity. elife. 2019;8: pubmed publisher
  12. Chen P, Chen Y, Wu W, Chen L, Yang X, Zhang S. Identification and validation of four hub genes involved in the plaque deterioration of atherosclerosis. Aging (Albany NY). 2019;11:6469-6489 pubmed publisher
  13. Shen J, Xing W, Liu R, Zhang Y, Xie C, Gong F. MiR-32-5p influences high glucose-induced cardiac fibroblast proliferation and phenotypic alteration by inhibiting DUSP1. BMC Mol Biol. 2019;20:21 pubmed publisher
  14. Treeck O, Diepolder E, Skrzypczak M, Schüler Toprak S, Ortmann O. Knockdown of estrogen receptor β increases proliferation and affects the transcriptome of endometrial adenocarcinoma cells. BMC Cancer. 2019;19:745 pubmed publisher
  15. Mao N, Gao D, Hu W, Hieronymus H, Wang S, Lee Y, et al. Aberrant Expression of ERG Promotes Resistance to Combined PI3K and AR Pathway Inhibition through Maintenance of AR Target Genes. Mol Cancer Ther. 2019;18:1577-1586 pubmed publisher
  16. Liu Y, Liu L, Jia Y, Sun Y, Ma F. Role of microRNA-15a-5p in the atherosclerotic inflammatory response and arterial injury improvement of diabetic by targeting FASN. Biosci Rep. 2019;: pubmed publisher
  17. Wu K, Zou J, Lin C, Jie Z. MicroRNA-140-5p inhibits cell proliferation, migration and promotes cell apoptosis in gastric cancer through the negative regulation of THY1-mediated Notch signaling. Biosci Rep. 2019;: pubmed publisher
  18. Zhao B, Du F, Xu P, Shu C, Sankaran B, Bell S, et al. A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1. Nature. 2019;: pubmed publisher
  19. Kang Y, Torrente L, Falzone A, Elkins C, Liu M, Asara J, et al. Cysteine dioxygenase 1 is a metabolic liability for non-small cell lung cancer. elife. 2019;8: pubmed publisher
  20. Li S, Lavagnino Z, Lemaçon D, Kong L, Ustione A, Ng X, et al. Ca2+-Stimulated AMPK-Dependent Phosphorylation of Exo1 Protects Stressed Replication Forks from Aberrant Resection. Mol Cell. 2019;74:1123-1137.e6 pubmed publisher
  21. Koster K, Francesconi W, Berton F, Alahmadi S, Srinivas R, Yoshii A. Developmental NMDA receptor dysregulation in the infantile neuronal ceroid lipofuscinosis mouse model. elife. 2019;8: pubmed publisher
  22. Li W, Yu X, Zhu C, Wang Z, Zhao Z, Li Y, et al. Notum attenuates HBV-related liver fibrosis through inhibiting Wnt 5a mediated non-canonical pathways. Biol Res. 2019;52:10 pubmed publisher
  23. Aranda S, Alcaine Colet A, Blanco E, Borras E, Caillot C, Sabidó E, et al. Chromatin capture links the metabolic enzyme AHCY to stem cell proliferation. Sci Adv. 2019;5:eaav2448 pubmed publisher
  24. Tata C, Sewani Rusike C, Oyedeji O, Gwebu E, Mahlakata F, Nkeh Chungag B. Antihypertensive effects of the hydro-ethanol extract of Senecio serratuloides DC in rats. BMC Complement Altern Med. 2019;19:52 pubmed publisher
  25. Zhang G, Liu Y, Xu L, Sha C, Zhang H, Xu W. Resveratrol alleviates lipopolysaccharide-induced inflammation in PC-12 cells and in rat model. BMC Biotechnol. 2019;19:10 pubmed publisher
  26. Iwata Yoshikawa N, Okamura T, Shimizu Y, Kotani O, Sato H, Sekimukai H, et al. Acute Respiratory Infection in Human Dipeptidyl Peptidase 4-Transgenic Mice Infected with Middle East Respiratory Syndrome Coronavirus. J Virol. 2019;93: pubmed publisher
  27. Hu Y, Guo F, Xu Y, Li P, Lu Z, McVey D, et al. Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. J Clin Invest. 2019;129:1115-1128 pubmed publisher
  28. Zeiner P, Preusse C, Golebiewska A, Zinke J, Iriondo A, Muller A, et al. Distribution and prognostic impact of microglia/macrophage subpopulations in gliomas. Brain Pathol. 2019;29:513-529 pubmed publisher
  29. Leoz M, Kukanja P, Luo Z, Huang F, Cary D, Peterlin B, et al. HEXIM1-Tat chimera inhibits HIV-1 replication. PLoS Pathog. 2018;14:e1007402 pubmed publisher
  30. Deissler H, Lang G, Lang G. Fate of the Fc fusion protein aflibercept in retinal endothelial cells: competition of recycling and degradation. Graefes Arch Clin Exp Ophthalmol. 2019;257:83-94 pubmed publisher
  31. Chakrabarti R, Celià Terrassa T, Kumar S, Hang X, Wei Y, Choudhury A, et al. Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal niche. Science. 2018;360: pubmed publisher
  32. Lino Cardenas C, Kessinger C, Cheng Y, MacDonald C, Macgillivray T, Ghoshhajra B, et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun. 2018;9:1009 pubmed publisher
  33. Roy G, Martin T, Barnes A, Wang J, Jimenez R, Rice M, et al. A novel bicistronic gene design couples stable cell line selection with a fucose switch in a designer CHO host to produce native and afucosylated glycoform antibodies. MAbs. 2018;10:416-430 pubmed publisher
  34. Fiaturi N, Russo J, Nielsen H, Castellot J. CCN5 in alveolar epithelial proliferation and differentiation during neonatal lung oxygen injury. J Cell Commun Signal. 2018;12:217-229 pubmed publisher
  35. Li T, Zhao J. Knockdown of elF3a inhibits TGF??1?induced extracellular matrix protein expression in keloid fibroblasts. Mol Med Rep. 2018;17:4057-4061 pubmed publisher
  36. Aguado L, Schmid S, May J, Sabin L, Panis M, Blanco Melo D, et al. RNase III nucleases from diverse kingdoms serve as antiviral effectors. Nature. 2017;547:114-117 pubmed publisher
  37. Gatliff J, East D, Singh A, Alvarez M, Frison M, Matic I, et al. A role for TSPO in mitochondrial Ca2+ homeostasis and redox stress signaling. Cell Death Dis. 2017;8:e2896 pubmed publisher
  38. Coleman J, Lin B, Schwob J. Dissecting LSD1-Dependent Neuronal Maturation in the Olfactory Epithelium. J Comp Neurol. 2017;525:3391-3413 pubmed publisher
  39. Cabezas R, Vega Vela N, González Sanmiguel J, Gonzalez J, Esquinas P, Echeverria V, et al. PDGF-BB Preserves Mitochondrial Morphology, Attenuates ROS Production, and Upregulates Neuroglobin in an Astrocytic Model Under Rotenone Insult. Mol Neurobiol. 2018;55:3085-3095 pubmed publisher
  40. Lamonica J, Kwon D, Goffin D, Fenik P, Johnson B, Cui Y, et al. Elevating expression of MeCP2 T158M rescues DNA binding and Rett syndrome-like phenotypes. J Clin Invest. 2017;127:1889-1904 pubmed publisher
  41. Chen S, Wang Y, Zhang W, Dong M, Zhang J. Sclareolide enhances gemcitabine?induced cell death through mediating the NICD and Gli1 pathways in gemcitabine?resistant human pancreatic cancer. Mol Med Rep. 2017;15:1461-1470 pubmed publisher
  42. de Oliveira R, Vicente Miranda H, Francelle L, Pinho R, Szego E, Martinho R, et al. The mechanism of sirtuin 2-mediated exacerbation of alpha-synuclein toxicity in models of Parkinson disease. PLoS Biol. 2017;15:e2000374 pubmed publisher
  43. Li W, Li H, Zhang L, Hu M, Li F, Deng J, et al. Long non-coding RNA LINC00672 contributes to p53 protein-mediated gene suppression and promotes endometrial cancer chemosensitivity. J Biol Chem. 2017;292:5801-5813 pubmed publisher
  44. Oliver D, Ji H, Liu P, Gasparian A, Gardiner E, Lee S, et al. Identification of novel cancer therapeutic targets using a designed and pooled shRNA library screen. Sci Rep. 2017;7:43023 pubmed publisher
  45. Muranen T, Iwanicki M, Curry N, Hwang J, DuBois C, Coloff J, et al. Starved epithelial cells uptake extracellular matrix for survival. Nat Commun. 2017;8:13989 pubmed publisher
  46. Alcoba D, Schneider J, Arruda L, Martiny P, Capp E, von Eye Corleta H, et al. Brilliant cresyl blue staining does not present cytotoxic effects on human luteinized follicular cells, according to gene/protein expression, as well as to cytotoxicity tests. Reprod Biol. 2017;17:60-68 pubmed publisher
  47. Rychtarčíková Z, Lettlova S, Tomkova V, Korenkova V, Langerova L, Simonova E, et al. Tumor-initiating cells of breast and prostate origin show alterations in the expression of genes related to iron metabolism. Oncotarget. 2017;8:6376-6398 pubmed publisher
  48. Mayrhofer M, Gourain V, Reischl M, Affaticati P, Jenett A, Joly J, et al. A novel brain tumour model in zebrafish reveals the role of YAP activation in MAPK- and PI3K-induced malignant growth. Dis Model Mech. 2017;10:15-28 pubmed publisher
  49. Chen Z, Tang C, Zhu Y, Xie M, He D, Pan Q, et al. TrpC5 regulates differentiation through the Ca2+/Wnt5a signalling pathway in colorectal cancer. Clin Sci (Lond). 2017;131:227-237 pubmed publisher
  50. Yadav S, Tiwari V, Singh M, Yadav R, Roy S, Devi U, et al. Comparative efficacy of alpha-linolenic acid and gamma-linolenic acid to attenuate valproic acid-induced autism-like features. J Physiol Biochem. 2017;73:187-198 pubmed publisher
  51. Rebo J, Mehdipour M, Gathwala R, Causey K, Liu Y, Conboy M, et al. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat Commun. 2016;7:13363 pubmed publisher
  52. Chruvattil R, Banerjee S, Nath S, Machhi J, Kharkwal G, Yadav M, et al. Dexamethasone Alters the Appetite Regulation via Induction of Hypothalamic Insulin Resistance in Rat Brain. Mol Neurobiol. 2017;54:7483-7496 pubmed publisher
  53. Bu P, Le Y, Zhang Y, Cheng X. Hormonal and Chemical Regulation of the Glut9 Transporter in Mice. J Pharmacol Exp Ther. 2017;360:206-214 pubmed publisher
  54. Gil V, Bhagat G, Howell L, Zhang J, Kim C, Stengel S, et al. Deregulated expression of HDAC9 in B cells promotes development of lymphoproliferative disease and lymphoma in mice. Dis Model Mech. 2016;9:1483-1495 pubmed
  55. Cruz L, Streck N, Ferguson K, Desai T, Desai D, Amin S, et al. Potent Inhibition of Human Cytomegalovirus by Modulation of Cellular SNARE Syntaxin 5. J Virol. 2017;91: pubmed publisher
  56. Liu L, Tao Z, Zheng L, Brooke J, Smith C, Liu D, et al. FoxO1 interacts with transcription factor EB and differentially regulates mitochondrial uncoupling proteins via autophagy in adipocytes. Cell Death Discov. 2016;2:16066 pubmed
  57. Nguyen A, Nyberg K, Scott M, Welsh A, Nguyen A, Wu N, et al. Stiffness of pancreatic cancer cells is associated with increased invasive potential. Integr Biol (Camb). 2016;8:1232-1245 pubmed
  58. Echevarria F, Rickman A, Sappington R. Interleukin-6: A Constitutive Modulator of Glycoprotein 130, Neuroinflammatory and Cell Survival Signaling in Retina. J Clin Cell Immunol. 2016;7: pubmed
  59. Zou P, Liu L, Zheng L, Payne K, Manjili M, Idowu M, et al. Coordinated Upregulation of Mitochondrial Biogenesis and Autophagy in Breast Cancer Cells: The Role of Dynamin Related Protein-1 and Implication for Breast Cancer Treatment. Oxid Med Cell Longev. 2016;2016:4085727 pubmed
  60. Ross Adams H, Ball S, Lawrenson K, Halim S, Russell R, Wells C, et al. HNF1B variants associate with promoter methylation and regulate gene networks activated in prostate and ovarian cancer. Oncotarget. 2016;7:74734-74746 pubmed publisher
  61. Liu Z, Tian R, Li Y, Zhang L, Shao H, Yang C, et al. SDF-1?-induced dual pairs of E-selectin/ligand mediate endothelial progenitor cell homing to critical ischemia. Sci Rep. 2016;6:34416 pubmed publisher
  62. Little A, Sham D, Hristova M, Danyal K, Heppner D, Bauer R, et al. DUOX1 silencing in lung cancer promotes EMT, cancer stem cell characteristics and invasive properties. Oncogenesis. 2016;5:e261 pubmed publisher
  63. Castillo E, Zheng H, Van Cabanlong C, Dong F, Luo Y, Yang Y, et al. Lumican negatively controls the pathogenicity of murine encephalitic TH17 cells. Eur J Immunol. 2016;46:2852-2861 pubmed publisher
  64. Matos M, Lapyckyj L, Rosso M, Besso M, Mencucci M, Briggiler C, et al. Identification of a Novel Human E-Cadherin Splice Variant and Assessment of Its Effects Upon EMT-Related Events. J Cell Physiol. 2017;232:1368-1386 pubmed publisher
  65. Doan K, Kinyua A, Yang D, Ko C, Moh S, Shong K, et al. FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase. Nat Commun. 2016;7:12733 pubmed publisher
  66. Rani A, Roy S, Singh M, Devi U, Yadav R, Gautam S, et al. ?-Chymotrypsin regulates free fatty acids and UCHL-1 to ameliorate N-methyl nitrosourea induced mammary gland carcinoma in albino wistar rats. Inflammopharmacology. 2016;24:277-286 pubmed
  67. Vanhoutte D, Schips T, Kwong J, Davis J, Tjondrokoesoemo A, Brody M, et al. Thrombospondin expression in myofibers stabilizes muscle membranes. elife. 2016;5: pubmed publisher
  68. Christensen B, Nellemann B, Jørgensen J, Pedersen S, Jessen N. Erythropoietin does not activate erythropoietin receptor signaling or lipolytic pathways in human subcutaneous white adipose tissue in vivo. Lipids Health Dis. 2016;15:160 pubmed publisher
  69. Sousa A, Rei M, Freitas R, Ricardo S, Caffrey T, David L, et al. Effect of MUC1/?-catenin interaction on the tumorigenic capacity of pancreatic CD133+ cells. Oncol Lett. 2016;12:1811-1817 pubmed
  70. Caporali P, Bruno F, Palladino G, Dragotto J, Petrosini L, Mangia F, et al. Developmental delay in motor skill acquisition in Niemann-Pick C1 mice reveals abnormal cerebellar morphogenesis. Acta Neuropathol Commun. 2016;4:94 pubmed publisher
  71. Liu Z, Ding J, Yang Q, Song H, Chen X, Xu Y, et al. Early developmental bisphenol-A exposure sex-independently impairs spatial memory by remodeling hippocampal dendritic architecture and synaptic transmission in rats. Sci Rep. 2016;6:32492 pubmed publisher
  72. Vickers T, Crooke S. Development of a Quantitative BRET Affinity Assay for Nucleic Acid-Protein Interactions. PLoS ONE. 2016;11:e0161930 pubmed publisher
  73. Ettle B, Kuhbandner K, Jörg S, Hoffmann A, Winkler J, Linker R. α-Synuclein deficiency promotes neuroinflammation by increasing Th1 cell-mediated immune responses. J Neuroinflammation. 2016;13:201 pubmed publisher
  74. Getz A, Visser F, Bell E, Xu F, Flynn N, Zaidi W, et al. Two proteolytic fragments of menin coordinate the nuclear transcription and postsynaptic clustering of neurotransmitter receptors during synaptogenesis between Lymnaea neurons. Sci Rep. 2016;6:31779 pubmed publisher
  75. Hastie E, Cataldi M, Moerdyk Schauwecker M, Felt S, Steuerwald N, Grdzelishvili V. Novel biomarkers of resistance of pancreatic cancer cells to oncolytic vesicular stomatitis virus. Oncotarget. 2016;7:61601-61618 pubmed publisher
  76. Rasmussen M, Lyskjær I, Jersie Christensen R, Tarpgaard L, Primdal Bengtson B, Nielsen M, et al. miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells. Nat Commun. 2016;7:12436 pubmed publisher
  77. Meneses M, Bernardino R, Sa R, Silva J, Barros A, Sousa M, et al. Pioglitazone increases the glycolytic efficiency of human Sertoli cells with possible implications for spermatogenesis. Int J Biochem Cell Biol. 2016;79:52-60 pubmed publisher
  78. Manghera M, Ferguson Parry J, Lin R, Douville R. NF-?B and IRF1 Induce Endogenous Retrovirus K Expression via Interferon-Stimulated Response Elements in Its 5' Long Terminal Repeat. J Virol. 2016;90:9338-49 pubmed publisher
  79. Yao Y, Deng Q, Song W, Zhang H, Li Y, Yang Y, et al. MIF Plays a Key Role in Regulating Tissue-Specific Chondro-Osteogenic Differentiation Fate of Human Cartilage Endplate Stem Cells under Hypoxia. Stem Cell Reports. 2016;7:249-62 pubmed publisher
  80. Kaliberov S, Kaliberova L, Yan H, Kapoor V, Hallahan D. Retargeted adenoviruses for radiation-guided gene delivery. Cancer Gene Ther. 2016;23:303-14 pubmed publisher
  81. Tiwari V, Singh M, Rawat J, Devi U, Yadav R, Roy S, et al. Redefining the role of peripheral LPS as a neuroinflammatory agent and evaluating the role of hydrogen sulphide through metformin intervention. Inflammopharmacology. 2016;24:253-264 pubmed
  82. Westbroek W, Nguyen M, Siebert M, Lindstrom T, Burnett R, Aflaki E, et al. A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease. Dis Model Mech. 2016;9:769-78 pubmed publisher
  83. Zhao Y, Song J, Ma X, Zhang B, Li D, Pang H. Rosiglitazone ameliorates diffuse axonal injury by reducing loss of tau and up-regulating caveolin-1 expression. Neural Regen Res. 2016;11:944-50 pubmed publisher
  84. Manral C, Roy S, Singh M, Gautam S, Yadav R, Rawat J, et al. Effect of ?-sitosterol against methyl nitrosourea-induced mammary gland carcinoma in albino rats. BMC Complement Altern Med. 2016;16:260 pubmed publisher
  85. Iacovides D, Rizki G, Lapathitis G, Strati K. Direct conversion of mouse embryonic fibroblasts into functional keratinocytes through transient expression of pluripotency-related genes. Stem Cell Res Ther. 2016;7:98 pubmed publisher
  86. Das S, Rehman I, Ghosh A, Sengupta S, Majumdar P, Jana B, et al. Poly(ADP-ribose) polymers regulate DNA topoisomerase I (Top1) nuclear dynamics and camptothecin sensitivity in living cells. Nucleic Acids Res. 2016;44:8363-75 pubmed publisher
  87. Chen S, Lin J, Yao X, Peng B, Xu Y, Liu M, et al. Nrdp1-mediated degradation of BRUCE decreases cell viability and induces apoptosis in human 786-O renal cell carcinoma cells. Exp Ther Med. 2016;12:597-602 pubmed
  88. Liu L, Jiang Y, Steinle J. Compound 49b Restores Retinal Thickness and Reduces Degenerate Capillaries in the Rat Retina following Ischemia/Reperfusion. PLoS ONE. 2016;11:e0159532 pubmed publisher
  89. Jiang S, Chen G, Feng L, Jiang Z, Yu M, Bao J, et al. Disruption of kif3a results in defective osteoblastic differentiation in dental mesenchymal stem/precursor cells via the Wnt signaling pathway. Mol Med Rep. 2016;14:1891-900 pubmed publisher
  90. Zhao X, Lokanga R, Allette K, Gazy I, Wu D, Usdin K. A MutS?-Dependent Contribution of MutS? to Repeat Expansions in Fragile X Premutation Mice?. PLoS Genet. 2016;12:e1006190 pubmed publisher
  91. Kuwahara T, Inoue K, D Agati V, Fujimoto T, Eguchi T, Saha S, et al. LRRK2 and RAB7L1 coordinately regulate axonal morphology and lysosome integrity in diverse cellular contexts. Sci Rep. 2016;6:29945 pubmed publisher
  92. Martins A, Sá R, Monteiro M, Barros A, Sousa M, Carvalho R, et al. Ghrelin acts as energy status sensor of male reproduction by modulating Sertoli cells glycolytic metabolism and mitochondrial bioenergetics. Mol Cell Endocrinol. 2016;434:199-209 pubmed publisher
  93. Unsal E, Degirmenci B, Harmanda B, Erman B, Ozlu N. A small molecule identified through an in silico screen inhibits Aurora B-INCENP interaction. Chem Biol Drug Des. 2016;88:783-794 pubmed publisher
  94. Itinteang T, Dunne J, Chibnall A, Brasch H, Davis P, Tan S. Cancer stem cells in moderately differentiated oral tongue squamous cell carcinoma express components of the renin-angiotensin system. J Clin Pathol. 2016;69:942-5 pubmed publisher
  95. Ni T, Liu Y, Peng Y, Li M, Fang Y, Yao M. Substance P induces inflammatory responses involving NF-?B in genetically diabetic mice skin fibroblasts co-cultured with macrophages. Am J Transl Res. 2016;8:2179-88 pubmed
  96. Richman T, Spahr H, Ermer J, Davies S, Viola H, Bates K, et al. Loss of the RNA-binding protein TACO1 causes late-onset mitochondrial dysfunction in mice. Nat Commun. 2016;7:11884 pubmed publisher
  97. Park W, Kim H, Kang D, Ryu J, Choi K, Lee G, et al. Comparative expression patterns and diagnostic efficacies of SR splicing factors and HNRNPA1 in gastric and colorectal cancer. BMC Cancer. 2016;16:358 pubmed publisher
  98. Deveza L, Choi J, Lee J, HUANG N, Cooke J, Yang F. Polymer-DNA Nanoparticle-Induced CXCR4 Overexpression Improves Stem Cell Engraftment and Tissue Regeneration in a Mouse Hindlimb Ischemia Model. Theranostics. 2016;6:1176-89 pubmed publisher
  99. Liu L, Zheng L, Zou P, Brooke J, Smith C, Long Y, et al. FoxO1 antagonist suppresses autophagy and lipid droplet growth in adipocytes. Cell Cycle. 2016;15:2033-41 pubmed publisher
  100. Gray M, Lee S, McDowell A, Erskine M, Loh Q, Grice O, et al. Dual targeting of EGFR and ERBB2 pathways produces a synergistic effect on cancer cell proliferation and migration in vitro. Vet Comp Oncol. 2017;15:890-909 pubmed publisher
  101. Choi S, Park S, Yoo H, Pi J, Kang C. Charged Amino Acid-rich Leucine Zipper-1 (Crlz-1) as a Target of Wnt Signaling Pathway Controls Pre-B Cell Proliferation by Affecting Runx/CBF?-targeted VpreB and ?5 Genes. J Biol Chem. 2016;291:15008-19 pubmed publisher
  102. Roy A, Femel J, Huijbers E, Spillmann D, Larsson E, Ringvall M, et al. Targeting Serglycin Prevents Metastasis in Murine Mammary Carcinoma. PLoS ONE. 2016;11:e0156151 pubmed publisher
  103. Romanello M, Schiavone D, Frey A, Sale J. Histone H3.3 promotes IgV gene diversification by enhancing formation of AID-accessible single-stranded DNA. EMBO J. 2016;35:1452-64 pubmed publisher
  104. Ni T, Kuperwasser C. Premature polyadenylation of MAGI3 produces a dominantly-acting oncogene in human breast cancer. elife. 2016;5: pubmed publisher
  105. Hartung A, Swensen J, Uriz I, Lapin M, Kristjansdottir K, Petersen U, et al. The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer. PLoS Genet. 2016;12:e1006039 pubmed publisher
  106. Zschemisch N, Brüsch I, Hambusch A, Bleich A. Transcription Factor SP2 Enhanced the Expression of Cd14 in Colitis-Susceptible C3H/HeJBir. PLoS ONE. 2016;11:e0155821 pubmed publisher
  107. Frasch M, Szynkaruk M, Prout A, Nygard K, Cao M, Veldhuizen R, et al. Decreased neuroinflammation correlates to higher vagus nerve activity fluctuations in near-term ovine fetuses: a case for the afferent cholinergic anti-inflammatory pathway?. J Neuroinflammation. 2016;13:103 pubmed publisher
  108. Xu P, Mallon S, Roizman B. PML plays both inimical and beneficial roles in HSV-1 replication. Proc Natl Acad Sci U S A. 2016;113:E3022-8 pubmed publisher
  109. Le T, Vuong L, Kim A, Hsu Y, Choi K. 14-3-3 proteins regulate Tctp-Rheb interaction for organ growth in Drosophila. Nat Commun. 2016;7:11501 pubmed publisher
  110. Dai Y, Hung L, Chen R, Lai C, Chang K. ON 01910.Na inhibits growth of diffuse large B-cell lymphoma by cytoplasmic sequestration of sumoylated C-MYB/TRAF6 complex. Transl Res. 2016;175:129-143.e13 pubmed publisher
  111. Yuen J, Pluthero F, Douda D, Riedl M, Cherry A, Ulanova M, et al. NETosing Neutrophils Activate Complement Both on Their Own NETs and Bacteria via Alternative and Non-alternative Pathways. Front Immunol. 2016;7:137 pubmed publisher
  112. Passalacqua K, Charbonneau M, Donato N, Showalter H, Sun D, Wen B, et al. Anti-infective Activity of 2-Cyano-3-Acrylamide Inhibitors with Improved Drug-Like Properties against Two Intracellular Pathogens. Antimicrob Agents Chemother. 2016;60:4183-96 pubmed publisher
  113. You J, Sobreira N, Gable D, Jurgens J, Grange D, Belnap N, et al. A Syndromic Intellectual Disability Disorder Caused by Variants in TELO2, a Gene Encoding a Component of the TTT Complex. Am J Hum Genet. 2016;98:909-918 pubmed publisher
  114. Okumura F, Uematsu K, Byrne S, Hirano M, Joo Okumura A, Nishikimi A, et al. Parallel Regulation of von Hippel-Lindau Disease by pVHL-Mediated Degradation of B-Myb and Hypoxia-Inducible Factor ?. Mol Cell Biol. 2016;36:1803-17 pubmed publisher
  115. Yin S, Jian F, Chen Y, Chien S, Hsieh M, Hsiao P, et al. Induction of IL-25 secretion from tumour-associated fibroblasts suppresses mammary tumour metastasis. Nat Commun. 2016;7:11311 pubmed publisher
  116. Dinger K, Kasper P, Hucklenbruch Rother E, Vohlen C, Jobst E, Janoschek R, et al. Early-onset obesity dysregulates pulmonary adipocytokine/insulin signaling and induces asthma-like disease in mice. Sci Rep. 2016;6:24168 pubmed publisher
  117. Mard S, Veisi A, Ahangarpour A, Gharib Naseri M. Mucosal acidification increases hydrogen sulfide release through up-regulating gene and protein expressions of cystathionine gamma-lyase in the rat gastric mucosa. Iran J Basic Med Sci. 2016;19:172-7 pubmed
  118. Walia M, Ho P, Taylor S, Ng A, Gupte A, Chalk A, et al. Activation of PTHrP-cAMP-CREB1 signaling following p53 loss is essential for osteosarcoma initiation and maintenance. elife. 2016;5: pubmed publisher
  119. Flodby P, Kim Y, Beard L, Gao D, Ji Y, Kage H, et al. Knockout Mice Reveal a Major Role for Alveolar Epithelial Type I Cells in Alveolar Fluid Clearance. Am J Respir Cell Mol Biol. 2016;55:395-406 pubmed publisher
  120. Huang G, Yang X, Chen K, Xing J, Guo L, Zhu L, et al. Porf-2 Inhibits Neural Stem Cell Proliferation Through Wnt/?-Catenin Pathway by Its GAP Domain. Front Cell Neurosci. 2016;10:85 pubmed publisher
  121. Liu J, Sun X, Zhu H, Qin Q, Yang X, Sun X. Long noncoding RNA POU6F2-AS2 is associated with oesophageal squamous cell carcinoma. J Biochem. 2016;160:195-204 pubmed
  122. Strickland S, Vande Pol S. The Human Papillomavirus 16 E7 Oncoprotein Attenuates AKT Signaling To Promote Internal Ribosome Entry Site-Dependent Translation and Expression of c-MYC. J Virol. 2016;90:5611-5621 pubmed publisher
  123. Rockel J, Yu C, Whetstone H, Craft A, Reilly K, Ma H, et al. Hedgehog inhibits ?-catenin activity in synovial joint development and osteoarthritis. J Clin Invest. 2016;126:1649-63 pubmed publisher
  124. Wang X, Zhang X, Zhou T, Li N, Jang C, Xiao Z, et al. Elevated Neuronal Excitability Due to Modulation of the Voltage-Gated Sodium Channel Nav1.6 by Aβ1-42. Front Neurosci. 2016;10:94 pubmed publisher
  125. Chou C, Fan C, Lin P, Liao P, Tung J, Hsieh C, et al. Sciellin mediates mesenchymal-to-epithelial transition in colorectal cancer hepatic metastasis. Oncotarget. 2016;7:25742-54 pubmed publisher
  126. Yousuf M, Tan C, Torres Altoro M, Lu F, Plautz E, Zhang S, et al. Involvement of aberrant cyclin-dependent kinase 5/p25 activity in experimental traumatic brain injury. J Neurochem. 2016;138:317-27 pubmed publisher
  127. Oettinghaus B, D Alonzo D, Barbieri E, Restelli L, Savoia C, Licci M, et al. DRP1-dependent apoptotic mitochondrial fission occurs independently of BAX, BAK and APAF1 to amplify cell death by BID and oxidative stress. Biochim Biophys Acta. 2016;1857:1267-1276 pubmed publisher
  128. Zhao N, Sun H, Sun B, Zhu D, Zhao X, Wang Y, et al. miR-27a-3p suppresses tumor metastasis and VM by down-regulating VE-cadherin expression and inhibiting EMT: an essential role for Twist-1 in HCC. Sci Rep. 2016;6:23091 pubmed publisher
  129. Chaudhuri D, Artiga D, Abiria S, Clapham D. Mitochondrial calcium uniporter regulator 1 (MCUR1) regulates the calcium threshold for the mitochondrial permeability transition. Proc Natl Acad Sci U S A. 2016;113:E1872-80 pubmed publisher
  130. Prause M, Mayer C, Brorsson C, Frederiksen K, Billestrup N, Størling J, et al. JNK1 Deficient Insulin-Producing Cells Are Protected against Interleukin-1β-Induced Apoptosis Associated with Abrogated Myc Expression. J Diabetes Res. 2016;2016:1312705 pubmed publisher
  131. Wang X, Chen L, Liu J, Yan T, Wu G, Xia Y, et al. In vivo treatment of rat arterial adventitia with interleukin‑1β induces intimal proliferation via the JAK2/STAT3 signaling pathway. Mol Med Rep. 2016;13:3451-8 pubmed publisher
  132. Bach F, Zhang Y, Miranda Bedate A, Verdonschot L, Bergknut N, Creemers L, et al. Increased caveolin-1 in intervertebral disc degeneration facilitates repair. Arthritis Res Ther. 2016;18:59 pubmed publisher
  133. Zhang Y, Stefanovic B. Akt mediated phosphorylation of LARP6; critical step in biosynthesis of type I collagen. Sci Rep. 2016;6:22597 pubmed publisher
  134. Lea R, Amezaga M, Loup B, Mandon Pépin B, Stefansdottir A, Filis P, et al. The fetal ovary exhibits temporal sensitivity to a 'real-life' mixture of environmental chemicals. Sci Rep. 2016;6:22279 pubmed publisher
  135. Lasek A, McPherson B, Trueman N, Burkard M. The Functional Significance of Posttranslational Modifications on Polo-Like Kinase 1 Revealed by Chemical Genetic Complementation. PLoS ONE. 2016;11:e0150225 pubmed publisher
  136. Xu Q, Zhang Y, Wei Q, Huang Y, Hu J, Ling K. Phosphatidylinositol phosphate kinase PIPKIγ and phosphatase INPP5E coordinate initiation of ciliogenesis. Nat Commun. 2016;7:10777 pubmed publisher
  137. Sommeregger W, Mayrhofer P, Steinfellner W, Reinhart D, Henry M, Clynes M, et al. Proteomic differences in recombinant CHO cells producing two similar antibody fragments. Biotechnol Bioeng. 2016;113:1902-12 pubmed publisher
  138. Bowles J, Feng C, Miles K, Ineson J, Spiller C, Koopman P. ALDH1A1 provides a source of meiosis-inducing retinoic acid in mouse fetal ovaries. Nat Commun. 2016;7:10845 pubmed publisher
  139. Gehlot P, Shukla V, Gupta S, Makidon P. Detection of ALDH1 activity in rabbit hepatic VX2 tumors and isolation of ALDH1 positive cancer stem cells. J Transl Med. 2016;14:49 pubmed publisher
  140. Singhal G, Fisher F, Chee M, Tan T, El Ouaamari A, Adams A, et al. Fibroblast Growth Factor 21 (FGF21) Protects against High Fat Diet Induced Inflammation and Islet Hyperplasia in Pancreas. PLoS ONE. 2016;11:e0148252 pubmed publisher
  141. Krause C, Popp O, Thirunarayanan N, Dittmar G, Lipp M, Müller G. MicroRNA-34a promotes genomic instability by a broad suppression of genome maintenance mechanisms downstream of the oncogene KSHV-vGPCR. Oncotarget. 2016;7:10414-32 pubmed publisher
  142. Tong L, Zhou J, Rong L, Seeley E, Pan J, Zhu X, et al. Fibroblast Growth Factor-10 (FGF-10) Mobilizes Lung-resident Mesenchymal Stem Cells and Protects Against Acute Lung Injury. Sci Rep. 2016;6:21642 pubmed publisher
  143. Chen S, Blank M, Iyer A, Huang B, Wang L, Grummt I, et al. SIRT7-dependent deacetylation of the U3-55k protein controls pre-rRNA processing. Nat Commun. 2016;7:10734 pubmed publisher
  144. Guo Y, Sun J, Ye J, Ma W, Yan H, Wang G. Saussurea tridactyla Sch. Bip.-derived polysaccharides and flavones reduce oxidative damage in ultraviolet B-irradiated HaCaT cells via a p38MAPK-independent mechanism. Drug Des Devel Ther. 2016;10:389-403 pubmed publisher
  145. Ho J, Chang F, Huang F, Liu J, Liu Y, Chen S, et al. Estrogen Enhances the Cell Viability and Motility of Breast Cancer Cells through the ERα-ΔNp63-Integrin β4 Signaling Pathway. PLoS ONE. 2016;11:e0148301 pubmed publisher
  146. Franz A, Pirson P, Pilger D, Halder S, Achuthankutty D, Kashkar H, et al. Chromatin-associated degradation is defined by UBXN-3/FAF1 to safeguard DNA replication fork progression. Nat Commun. 2016;7:10612 pubmed publisher
  147. Sun H, Luo L, Lal B, Ma X, Chen L, Hann C, et al. A monoclonal antibody against KCNK9 K(+) channel extracellular domain inhibits tumour growth and metastasis. Nat Commun. 2016;7:10339 pubmed publisher
  148. Tai D, Ragavendran A, Manavalan P, Stortchevoi A, Seabra C, Erdin S, et al. Engineering microdeletions and microduplications by targeting segmental duplications with CRISPR. Nat Neurosci. 2016;19:517-22 pubmed publisher
  149. Gentry E, Henderson B, Arrant A, Gearing M, Feng Y, Riddle N, et al. Rho Kinase Inhibition as a Therapeutic for Progressive Supranuclear Palsy and Corticobasal Degeneration. J Neurosci. 2016;36:1316-23 pubmed publisher
  150. Tadokoro T, Gao X, Hong C, Hotten D, Hogan B. BMP signaling and cellular dynamics during regeneration of airway epithelium from basal progenitors. Development. 2016;143:764-73 pubmed publisher
  151. Binolfi A, Limatola A, Verzini S, Kosten J, Theillet F, Rose H, et al. Intracellular repair of oxidation-damaged α-synuclein fails to target C-terminal modification sites. Nat Commun. 2016;7:10251 pubmed publisher
  152. McCann T, Guo Y, McDonald W, Tansey W. Antagonistic roles for the ubiquitin ligase Asr1 and the ubiquitin-specific protease Ubp3 in subtelomeric gene silencing. Proc Natl Acad Sci U S A. 2016;113:1309-14 pubmed publisher
  153. Lood C, Blanco L, Purmalek M, Carmona Rivera C, De Ravin S, Smith C, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med. 2016;22:146-53 pubmed publisher
  154. Watari K, Shibata T, Nabeshima H, Shinoda A, Fukunaga Y, Kawahara A, et al. Impaired differentiation of macrophage lineage cells attenuates bone remodeling and inflammatory angiogenesis in Ndrg1 deficient mice. Sci Rep. 2016;6:19470 pubmed publisher
  155. Park S, Jeong S. SRSF3 represses the expression of PDCD4 protein by coordinated regulation of alternative splicing, export and translation. Biochem Biophys Res Commun. 2016;470:431-438 pubmed publisher
  156. Yeh P, Huang H, Yang C, Yang W, Yang C. Astaxanthin Inhibits Expression of Retinal Oxidative Stress and Inflammatory Mediators in Streptozotocin-Induced Diabetic Rats. PLoS ONE. 2016;11:e0146438 pubmed publisher
  157. Cacabelos D, Ramírez Núñez O, Granado Serrano A, Torres P, Ayala V, Moiseeva V, et al. Early and gender-specific differences in spinal cord mitochondrial function and oxidative stress markers in a mouse model of ALS. Acta Neuropathol Commun. 2016;4:3 pubmed publisher
  158. Kiel C, Benisty H, Lloréns Rico V, Serrano L. The yin-yang of kinase activation and unfolding explains the peculiarity of Val600 in the activation segment of BRAF. elife. 2016;5:e12814 pubmed publisher
  159. Conery A, Centore R, Neiss A, Keller P, Joshi S, Spillane K, et al. Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma. elife. 2016;5: pubmed publisher
  160. Tang S, Chen H, Cheng Y, Nasir M, Kemper N, Bao E. The interactive association between heat shock factor 1 and heat shock proteins in primary myocardial cells subjected to heat stress. Int J Mol Med. 2016;37:56-62 pubmed publisher
  161. Jing W, Zhang X, Sun W, Hou X, Yao Z, Zhu Y. CRISPR/CAS9-Mediated Genome Editing of miRNA-155 Inhibits Proinflammatory Cytokine Production by RAW264.7 Cells. Biomed Res Int. 2015;2015:326042 pubmed publisher
  162. Zhou J, Yang L, Zhong T, Mueller M, Men Y, Zhang N, et al. H19 lncRNA alters DNA methylation genome wide by regulating S-adenosylhomocysteine hydrolase. Nat Commun. 2015;6:10221 pubmed publisher
  163. Smith K, Zhou B, Avdulov S, Benyumov A, Peterson M, Liu Y, et al. Transforming Growth Factor-β1 Induced Epithelial Mesenchymal Transition is blocked by a chemical antagonist of translation factor eIF4E. Sci Rep. 2015;5:18233 pubmed publisher
  164. Yin K, Lei Y, Wen X, Lacruz R, Soleimani M, Kurtz I, et al. SLC26A Gene Family Participate in pH Regulation during Enamel Maturation. PLoS ONE. 2015;10:e0144703 pubmed publisher
  165. Marland J, Hasel P, Bonnycastle K, Cousin M. Mitochondrial Calcium Uptake Modulates Synaptic Vesicle Endocytosis in Central Nerve Terminals. J Biol Chem. 2016;291:2080-6 pubmed publisher
  166. Jin Y, Andrade J, Wickstrom E. Non-Specific Blocking of miR-17-5p Guide Strand in Triple Negative Breast Cancer Cells by Amplifying Passenger Strand Activity. PLoS ONE. 2015;10:e0142574 pubmed publisher
  167. Suica V, Uyy E, Boteanu R, Ivan L, Antohe F. Alteration of actin dependent signaling pathways associated with membrane microdomains in hyperlipidemia. Proteome Sci. 2015;13:30 pubmed publisher
  168. Qi D, Kaur Gill N, Santiskulvong C, Sifuentes J, Dorigo O, Rao J, et al. Screening cell mechanotype by parallel microfiltration. Sci Rep. 2015;5:17595 pubmed publisher
  169. Farrow P, Khodosevich K, Sapir Y, Schulmann A, Aslam M, Stern Bach Y, et al. Auxiliary subunits of the CKAMP family differentially modulate AMPA receptor properties. elife. 2015;4:e09693 pubmed publisher
  170. Fleury H, Communal L, Carmona E, Portelance L, Arcand S, Rahimi K, et al. Novel high-grade serous epithelial ovarian cancer cell lines that reflect the molecular diversity of both the sporadic and hereditary disease. Genes Cancer. 2015;6:378-398 pubmed
  171. Bo Q, Sun X, Liu J, Sui X, Li G. Antitumor action of the peroxisome proliferator-activated receptor-γ agonist rosiglitazone in hepatocellular carcinoma. Oncol Lett. 2015;10:1979-1984 pubmed
  172. Oliveira L, Falomir Lockhart L, Botelho M, Lin K, Wales P, Koch J, et al. Elevated α-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells. Cell Death Dis. 2015;6:e1994 pubmed publisher
  173. Wanzel M, Vischedyk J, Gittler M, Gremke N, Seiz J, Hefter M, et al. CRISPR-Cas9-based target validation for p53-reactivating model compounds. Nat Chem Biol. 2016;12:22-8 pubmed publisher
  174. Shearer J, Wold E, Umbaugh C, Lichti C, Nilsson C, Figueiredo M. Inorganic Arsenic-Related Changes in the Stromal Tumor Microenvironment in a Prostate Cancer Cell-Conditioned Media Model. Environ Health Perspect. 2016;124:1009-15 pubmed publisher
  175. Hagberg Thulin M, Nilsson M, Thulin P, Céraline J, Ohlsson C, Damber J, et al. Osteoblasts promote castration-resistant prostate cancer by altering intratumoral steroidogenesis. Mol Cell Endocrinol. 2016;422:182-191 pubmed publisher
  176. Zhao W, Yang P, Kang L, Cui F. Different pathogenicities of Rice stripe virus from the insect vector and from viruliferous plants. New Phytol. 2016;210:196-207 pubmed publisher
  177. García Rubio M, Pérez Calero C, Barroso S, Tumini E, Herrera Moyano E, Rosado I, et al. The Fanconi Anemia Pathway Protects Genome Integrity from R-loops. PLoS Genet. 2015;11:e1005674 pubmed publisher
  178. Xu S, Nam S, Kim J, Das R, Choi S, Nguyen T, et al. Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress. Cell Death Dis. 2015;6:e1976 pubmed publisher
  179. Chen S, Chang B, Chang S, Tong T, Ham S, Sherry B, et al. BTK inhibition results in impaired CXCR4 chemokine receptor surface expression, signaling and function in chronic lymphocytic leukemia. Leukemia. 2016;30:833-43 pubmed publisher
  180. Elder M, Webster S, Williams D, Gaston J, Goodall J. TSLP production by dendritic cells is modulated by IL-1β and components of the endoplasmic reticulum stress response. Eur J Immunol. 2016;46:455-63 pubmed publisher
  181. Mircsof D, Langouët M, Rio M, Moutton S, Siquier Pernet K, Bole Feysot C, et al. Mutations in NONO lead to syndromic intellectual disability and inhibitory synaptic defects. Nat Neurosci. 2015;18:1731-6 pubmed publisher
  182. David V, Martin A, Isakova T, Spaulding C, Qi L, Ramirez V, et al. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int. 2016;89:135-46 pubmed publisher
  183. Nikonova A, Deneka A, Eckman L, Kopp M, Hensley H, Egleston B, et al. Opposing Effects of Inhibitors of Aurora-A and EGFR in Autosomal-Dominant Polycystic Kidney Disease. Front Oncol. 2015;5:228 pubmed publisher
  184. Deisting W, Raum T, Kufer P, Baeuerle P, Münz M. Impact of Diverse Immune Evasion Mechanisms of Cancer Cells on T Cells Engaged by EpCAM/CD3-Bispecific Antibody Construct AMG 110. PLoS ONE. 2015;10:e0141669 pubmed publisher
  185. Zampieri A, Champagne J, Auzemery B, Fuentes I, Maurel B, Bienvenu F. Hyper sensitive protein detection by Tandem-HTRF reveals Cyclin D1 dynamics in adult mouse. Sci Rep. 2015;5:15739 pubmed publisher
  186. Ryu T, Spatola B, Delabaere L, Bowlin K, Hopp H, Kunitake R, et al. Heterochromatic breaks move to the nuclear periphery to continue recombinational repair. Nat Cell Biol. 2015;17:1401-11 pubmed publisher
  187. Choi J, Lee S, Mallard W, Clement K, Tagliazucchi G, Lim H, et al. A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nat Biotechnol. 2015;33:1173-81 pubmed publisher
  188. Tajerian M, Leu D, Yang P, Huang T, Kingery W, Clark J. Differential Efficacy of Ketamine in the Acute versus Chronic Stages of Complex Regional Pain Syndrome in Mice. Anesthesiology. 2015;123:1435-47 pubmed publisher
  189. DeNicola G, Chen P, Mullarky E, Sudderth J, Hu Z, Wu D, et al. NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat Genet. 2015;47:1475-81 pubmed publisher
  190. Chang W, Chen M, Cheng I. Antroquinonol Lowers Brain Amyloid-β Levels and Improves Spatial Learning and Memory in a Transgenic Mouse Model of Alzheimer's Disease. Sci Rep. 2015;5:15067 pubmed publisher
  191. Mello A, Leal M, Rey J, Pinto G, Lamarão L, Montenegro R, et al. Deregulated Expression of SRC, LYN and CKB Kinases by DNA Methylation and Its Potential Role in Gastric Cancer Invasiveness and Metastasis. PLoS ONE. 2015;10:e0140492 pubmed publisher
  192. Zhang W, Pelicano H, Yin R, Zeng J, Wen T, Ding L, et al. Effective elimination of chronic lymphocytic leukemia cells in the stromal microenvironment by a novel drug combination strategy using redox-mediated mechanisms. Mol Med Rep. 2015;12:7374-88 pubmed publisher
  193. Liu X, Chandramouly G, Rass E, Guan Y, Wang G, Hobbs R, et al. LRF maintains genome integrity by regulating the non-homologous end joining pathway of DNA repair. Nat Commun. 2015;6:8325 pubmed publisher
  194. Shin W, Jeon M, Leem E, Won S, Jeong K, Park S, et al. Induction of microglial toll-like receptor 4 by prothrombin kringle-2: a potential pathogenic mechanism in Parkinson's disease. Sci Rep. 2015;5:14764 pubmed publisher
  195. Dai B, Chen A, Corkum C, Peroutka R, Landon A, Houng S, et al. Hepatitis C virus upregulates B-cell receptor signaling: a novel mechanism for HCV-associated B-cell lymphoproliferative disorders. Oncogene. 2016;35:2979-90 pubmed publisher
  196. Gely Pernot A, Raverdeau M, Teletin M, Vernet N, Féret B, Klopfenstein M, et al. Retinoic Acid Receptors Control Spermatogonia Cell-Fate and Induce Expression of the SALL4A Transcription Factor. PLoS Genet. 2015;11:e1005501 pubmed publisher
  197. Matsuda S, Adachi J, Ihara M, Tanuma N, Shima H, Kakizuka A, et al. Nuclear pyruvate kinase M2 complex serves as a transcriptional coactivator of arylhydrocarbon receptor. Nucleic Acids Res. 2016;44:636-47 pubmed publisher
  198. Bauskar A, Mack W, Mauris J, Argüeso P, Heur M, Nagel B, et al. Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye. PLoS ONE. 2015;10:e0138958 pubmed publisher
  199. Telias M, Mayshar Y, Amit A, Ben Yosef D. Molecular mechanisms regulating impaired neurogenesis of fragile X syndrome human embryonic stem cells. Stem Cells Dev. 2015;24:2353-65 pubmed publisher
  200. Watt S, Dayal J, Wright S, Riddle M, Pourreyron C, McMillan J, et al. Lysyl Hydroxylase 3 Localizes to Epidermal Basement Membrane and Is Reduced in Patients with Recessive Dystrophic Epidermolysis Bullosa. PLoS ONE. 2015;10:e0137639 pubmed publisher
  201. Darr J, Klochendler A, Isaac S, Geiger T, Geiger T, Eden A. Phosphoproteomic analysis reveals Smarcb1 dependent EGFR signaling in Malignant Rhabdoid tumor cells. Mol Cancer. 2015;14:167 pubmed publisher
  202. Lund R, Leth Larsen R, Caterino T, Terp M, Nissen J, Lænkholm A, et al. NADH-Cytochrome b5 Reductase 3 Promotes Colonization and Metastasis Formation and Is a Prognostic Marker of Disease-Free and Overall Survival in Estrogen Receptor-Negative Breast Cancer. Mol Cell Proteomics. 2015;14:2988-99 pubmed publisher
  203. Hardege I, Xu S, Gordon R, Thompson A, Figg N, Stowasser M, et al. Novel Insertion Mutation in KCNJ5 Channel Produces Constitutive Aldosterone Release From H295R Cells. Mol Endocrinol. 2015;29:1522-30 pubmed publisher
  204. Jang C, Lahens N, Hogenesch J, Sehgal A. Ribosome profiling reveals an important role for translational control in circadian gene expression. Genome Res. 2015;25:1836-47 pubmed publisher
  205. Henstridge C, Jackson R, Kim J, Herrmann A, Wright A, Harris S, et al. Post-mortem brain analyses of the Lothian Birth Cohort 1936: extending lifetime cognitive and brain phenotyping to the level of the synapse. Acta Neuropathol Commun. 2015;3:53 pubmed publisher
  206. Mard S, Veisi A, Ahangarpour A, Gharib Naseri M. Gastric acid induces mucosal H2S release in rats by upregulating mRNA and protein expression of cystathionine gamma lyase. J Physiol Sci. 2015;65:545-54 pubmed publisher
  207. Rolyan H, Tyurina Y, Hernandez M, Amoscato A, Sparvero L, Nmezi B, et al. Defects of Lipid Synthesis Are Linked to the Age-Dependent Demyelination Caused by Lamin B1 Overexpression. J Neurosci. 2015;35:12002-17 pubmed publisher
  208. Simpson M, Venkatesh I, Callif B, Thiel L, Coley D, Winsor K, et al. The tumor suppressor HHEX inhibits axon growth when prematurely expressed in developing central nervous system neurons. Mol Cell Neurosci. 2015;68:272-83 pubmed publisher
  209. Garwood C, Ratcliffe L, Morgan S, Simpson J, Owens H, Vazquez Villaseñor I, et al. Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors. Mol Brain. 2015;8:51 pubmed publisher
  210. Zhang Y, Dai Q, Chen W, Jiang S, Chen S, Zhang Y, et al. Effects of acupuncture on cortical expression of Wnt3a, β-catenin and Sox2 in a rat model of traumatic brain injury. Acupunct Med. 2016;34:48-54 pubmed publisher
  211. Cañeque T, Gomes F, Mai T, Maestri G, Malacria M, Rodriguez R. Synthesis of marmycin A and investigation into its cellular activity. Nat Chem. 2015;7:744-51 pubmed publisher
  212. Kim S, Lee K, Choi J, Ringstad N, Dynlacht B. Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle. Nat Commun. 2015;6:8087 pubmed publisher
  213. Liu H, Li Y, Wang Y, Wang X, An X, Wang S, et al. The distinct role of NR2B subunit in the enhancement of visual plasticity in adulthood. Mol Brain. 2015;8:49 pubmed publisher
  214. Morancho B, Martínez Barriocanal Ã, Villanueva J, Arribas J. Role of ADAM17 in the non-cell autonomous effects of oncogene-induced senescence. Breast Cancer Res. 2015;17:106 pubmed publisher
  215. Chalertpet K, Pakdeechaidan W, Patel V, Mutirangura A, Yanatatsaneejit P. Human papillomavirus type 16 E7 oncoprotein mediates CCNA1 promoter methylation. Cancer Sci. 2015;106:1333-40 pubmed publisher
  216. Mukhopadhyay D, Priya P, Chattopadhyay A. Sodium fluoride affects zebrafish behaviour and alters mRNA expressions of biomarker genes in the brain: Role of Nrf2/Keap1. Environ Toxicol Pharmacol. 2015;40:352-9 pubmed publisher
  217. Kim J, Sato M, Choi J, Kim H, Yeh B, Larsen J, et al. Nuclear Receptor Expression and Function in Human Lung Cancer Pathogenesis. PLoS ONE. 2015;10:e0134842 pubmed publisher
  218. Johansson I, Monsen V, Pettersen K, Mildenberger J, Misund K, Kaarniranta K, et al. The marine n-3 PUFA DHA evokes cytoprotection against oxidative stress and protein misfolding by inducing autophagy and NFE2L2 in human retinal pigment epithelial cells. Autophagy. 2015;11:1636-51 pubmed publisher
  219. Luna Acosta J, Alba Betancourt C, Martínez Moreno C, Ramírez C, Carranza M, Luna M, et al. Direct antiapoptotic effects of growth hormone are mediated by PI3K/Akt pathway in the chicken bursa of Fabricius. Gen Comp Endocrinol. 2015;224:148-59 pubmed publisher
  220. Xie X, Hsu F, Gao X, Xu W, Ni J, Xing Y, et al. CDK8-Cyclin C Mediates Nutritional Regulation of Developmental Transitions through the Ecdysone Receptor in Drosophila. PLoS Biol. 2015;13:e1002207 pubmed publisher
  221. Cao Q, Yamamoto J, Isobe T, Tateno S, Murase Y, Chen Y, et al. Characterization of the Human Transcription Elongation Factor Rtf1: Evidence for Nonoverlapping Functions of Rtf1 and the Paf1 Complex. Mol Cell Biol. 2015;35:3459-70 pubmed publisher
  222. Yang H, Yamazaki T, Pietrocola F, Zhou H, Zitvogel L, Ma Y, et al. STAT3 Inhibition Enhances the Therapeutic Efficacy of Immunogenic Chemotherapy by Stimulating Type 1 Interferon Production by Cancer Cells. Cancer Res. 2015;75:3812-22 pubmed publisher
  223. Sarma P, Bag I, Ramaiah M, Kamal A, Bhadra U, Pal Bhadra M. Bisindole-PBD regulates breast cancer cell proliferation via SIRT-p53 axis. Cancer Biol Ther. 2015;16:1486-501 pubmed publisher
  224. Chen S, Okada M, Nakato R, Izumi K, Bando M, Shirahige K. The Deubiquitinating Enzyme USP7 Regulates Androgen Receptor Activity by Modulating Its Binding to Chromatin. J Biol Chem. 2015;290:21713-23 pubmed publisher
  225. Regan J, Kannan P, Kemp M, Kramer B, Newnham J, Jobe A, et al. Damage-Associated Molecular Pattern and Fetal Membrane Vascular Injury and Collagen Disorganization in Lipopolysaccharide-Induced Intra-amniotic Inflammation in Fetal Sheep. Reprod Sci. 2016;23:69-80 pubmed publisher
  226. Chan M, Atasoylu O, Hodson E, Tumber A, Leung I, Chowdhury R, et al. Potent and Selective Triazole-Based Inhibitors of the Hypoxia-Inducible Factor Prolyl-Hydroxylases with Activity in the Murine Brain. PLoS ONE. 2015;10:e0132004 pubmed publisher
  227. Yang X, Zheng K, Lin K, Zheng G, Zou H, Wang J, et al. Energy Metabolism Disorder as a Contributing Factor of Rheumatoid Arthritis: A Comparative Proteomic and Metabolomic Study. PLoS ONE. 2015;10:e0132695 pubmed publisher
  228. Lee J, Kim H, Han J, Kim Y, Son C. Anti-fatigue effect of Myelophil in a chronic forced exercise mouse model. Eur J Pharmacol. 2015;764:100-8 pubmed publisher
  229. Golden E, Benito Gonzalez A, Doetzlhofer A. The RNA-binding protein LIN28B regulates developmental timing in the mammalian cochlea. Proc Natl Acad Sci U S A. 2015;112:E3864-73 pubmed publisher
  230. Dias T, Alves M, Almeida S, Silva J, Barros A, Sousa M, et al. Dehydroepiandrosterone and 7-oxo-dehydroepiandrosterone in male reproductive health: Implications of differential regulation of human Sertoli cells metabolic profile. J Steroid Biochem Mol Biol. 2015;154:1-11 pubmed publisher
  231. Van Maldegem F, Maslen S, Johnson C, Chandra A, Ganesh K, Skehel M, et al. CTNNBL1 facilitates the association of CWC15 with CDC5L and is required to maintain the abundance of the Prp19 spliceosomal complex. Nucleic Acids Res. 2015;43:7058-69 pubmed publisher
  232. Sedic M, Skibinski A, Brown N, Gallardo M, Mulligan P, Martinez P, et al. Haploinsufficiency for BRCA1 leads to cell-type-specific genomic instability and premature senescence. Nat Commun. 2015;6:7505 pubmed publisher
  233. Cook T, Hoekstra J, Eaton D, Zhang J. Mortalin is Expressed by Astrocytes and Decreased in the Midbrain of Parkinson's Disease Patients. Brain Pathol. 2016;26:75-81 pubmed publisher
  234. Loveless T, Topacio B, Vashisht A, Galaang S, Ulrich K, Young B, et al. DNA Damage Regulates Translation through β-TRCP Targeting of CReP. PLoS Genet. 2015;11:e1005292 pubmed publisher
  235. de Jager M, Drukarch B, Hofstee M, Brevé J, Jongenelen C, Bol J, et al. Tissue transglutaminase-catalysed cross-linking induces Apolipoprotein E multimers inhibiting Apolipoprotein E's protective effects towards amyloid-beta-induced toxicity. J Neurochem. 2015;134:1116-28 pubmed publisher
  236. Durham T, Toth J, Klimkowski V, Cao J, Siesky A, Alexander Chacko J, et al. Dual Exosite-binding Inhibitors of Insulin-degrading Enzyme Challenge Its Role as the Primary Mediator of Insulin Clearance in Vivo. J Biol Chem. 2015;290:20044-59 pubmed publisher
  237. Alexander M, Hu R, Runtsch M, Kagele D, Mosbruger T, Tolmachova T, et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun. 2015;6:7321 pubmed publisher
  238. Powell J, Hutchison J, Hess B, Straub T. Bacillus anthracis spores germinate extracellularly at air-liquid interface in an in vitro lung model under serum-free conditions. J Appl Microbiol. 2015;119:711-23 pubmed publisher
  239. Lee W, Shen S, Shih Y, Chou C, Tseng J, Chin S, et al. Early decline in serum phospho-CSE1L levels in vemurafenib/sunitinib-treated melanoma and sorafenib/lapatinib-treated colorectal tumor xenografts. J Transl Med. 2015;13:191 pubmed publisher
  240. Lin C, Zhang Z, Wang T, Chen C, James Kang Y. Copper uptake by DMT1: a compensatory mechanism for CTR1 deficiency in human umbilical vein endothelial cells. Metallomics. 2015;7:1285-9 pubmed publisher
  241. Pfoh R, Lacdao I, Georges A, Capar A, Zheng H, Frappier L, et al. Crystal Structure of USP7 Ubiquitin-like Domains with an ICP0 Peptide Reveals a Novel Mechanism Used by Viral and Cellular Proteins to Target USP7. PLoS Pathog. 2015;11:e1004950 pubmed publisher
  242. Turner E, Brown R, Laudermilch E, Tsai P, Schlieker C. The Torsin Activator LULL1 Is Required for Efficient Growth of Herpes Simplex Virus 1. J Virol. 2015;89:8444-52 pubmed publisher
  243. Zucha M, Wu A, Lee W, Wang L, Lin W, Yuan C, et al. Bruton's tyrosine kinase (Btk) inhibitor ibrutinib suppresses stem-like traits in ovarian cancer. Oncotarget. 2015;6:13255-68 pubmed
  244. Chin C, Chin H, Chin C, Lai E, Ng S. Engineering selection stringency on expression vector for the production of recombinant human alpha1-antitrypsin using Chinese Hamster ovary cells. BMC Biotechnol. 2015;15:44 pubmed publisher
  245. Pryadkina M, Lostal W, Bourg N, Charton K, Roudaut C, Hirsch M, et al. A comparison of AAV strategies distinguishes overlapping vectors for efficient systemic delivery of the 6.2 kb Dysferlin coding sequence. Mol Ther Methods Clin Dev. 2015;2:15009 pubmed publisher
  246. Lee K, Guevarra M, Nguyen A, Chua M, Wang Y, Jacobs C. The primary cilium functions as a mechanical and calcium signaling nexus. Cilia. 2015;4:7 pubmed publisher
  247. Hwang D, Kohl S, Fan X, Vivante A, Chan S, Dworschak G, et al. Mutations of the SLIT2-ROBO2 pathway genes SLIT2 and SRGAP1 confer risk for congenital anomalies of the kidney and urinary tract. Hum Genet. 2015;134:905-16 pubmed publisher
  248. Ramljak S, Schmitz M, Zafar S, Wrede A, Schenkel S, Asif A, et al. Cellular prion protein directly interacts with and enhances lactate dehydrogenase expression under hypoxic conditions. Exp Neurol. 2015;271:155-67 pubmed publisher
  249. Kim S, Lee E, Kuh H. Co-culture of 3D tumor spheroids with fibroblasts as a model for epithelial-mesenchymal transition in vitro. Exp Cell Res. 2015;335:187-96 pubmed publisher
  250. Korotkevych N, Labyntsev A, Kolybo D, Komisarenko S. The Soluble Heparin-Binding EGF-Like Growth Factor Stimulates EGF Receptor Trafficking to the Nucleus. PLoS ONE. 2015;10:e0127887 pubmed publisher
  251. Krais A, Speksnijder E, Melis J, Indra R, Moserova M, Godschalk R, et al. The impact of p53 on DNA damage and metabolic activation of the environmental carcinogen benzo[a]pyrene: effects in Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice. Arch Toxicol. 2016;90:839-51 pubmed publisher
  252. Bai Y, Xuan B, Liu H, Zhong J, Yu D, Qian Z. Tuberous Sclerosis Complex Protein 2-Independent Activation of mTORC1 by Human Cytomegalovirus pUL38. J Virol. 2015;89:7625-35 pubmed publisher
  253. Bowdridge E, Goravanahally M, Inskeep E, Flores J. Activation of Adenosine Monophosphate-Activated Protein Kinase Is an Additional Mechanism That Participates in Mediating Inhibitory Actions of Prostaglandin F2Alpha in Mature, but Not Developing, Bovine Corpora Lutea. Biol Reprod. 2015;93:7 pubmed publisher
  254. Saini P, Li Y, Dobbelstein M. Wee1 is required to sustain ATR/Chk1 signaling upon replicative stress. Oncotarget. 2015;6:13072-87 pubmed
  255. Mortusewicz O, Evers B, Helleday T. PC4 promotes genome stability and DNA repair through binding of ssDNA at DNA damage sites. Oncogene. 2016;35:761-70 pubmed publisher
  256. Piskareva O, Harvey H, Nolan J, Conlon R, Alcock L, Buckley P, et al. The development of cisplatin resistance in neuroblastoma is accompanied by epithelial to mesenchymal transition in vitro. Cancer Lett. 2015;364:142-55 pubmed publisher
  257. Peiris Pagès M, Sotgia F, Lisanti M. Chemotherapy induces the cancer-associated fibroblast phenotype, activating paracrine Hedgehog-GLI signalling in breast cancer cells. Oncotarget. 2015;6:10728-45 pubmed
  258. Pasqualon T, Pruessmeyer J, Weidenfeld S, Babendreyer A, Groth E, Schumacher J, et al. A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation. Cell Mol Life Sci. 2015;72:3783-801 pubmed publisher
  259. Kim S, Lahmy R, Riha C, Yang C, Jakubison B, van Niekerk J, et al. The basic helix-loop-helix transcription factor E47 reprograms human pancreatic cancer cells to a quiescent acinar state with reduced tumorigenic potential. Pancreas. 2015;44:718-27 pubmed publisher
  260. Li J, Jørgensen S, Maggadottir S, Bakay M, Warnatz K, Glessner J, et al. Association of CLEC16A with human common variable immunodeficiency disorder and role in murine B cells. Nat Commun. 2015;6:6804 pubmed publisher
  261. Badding M, Schwegler Berry D, Park J, Fix N, Cummings K, Leonard S. Sintered indium-tin oxide particles induce pro-inflammatory responses in vitro, in part through inflammasome activation. PLoS ONE. 2015;10:e0124368 pubmed publisher
  262. Tyagi K, Pedrioli P. Protein degradation and dynamic tRNA thiolation fine-tune translation at elevated temperatures. Nucleic Acids Res. 2015;43:4701-12 pubmed publisher
  263. Chien P, Lin C, Hsiao L, Yang C. c-Src/Pyk2/EGFR/PI3K/Akt/CREB-activated pathway contributes to human cardiomyocyte hypertrophy: Role of COX-2 induction. Mol Cell Endocrinol. 2015;409:59-72 pubmed publisher
  264. Hong S, Lee J, Lee J, Lee H, Kim H, Lee S, et al. The traditional drug Gongjin-Dan ameliorates chronic fatigue in a forced-stress mouse exercise model. J Ethnopharmacol. 2015;168:268-78 pubmed publisher
  265. Nakayama T, Al Maawali A, El Quessny M, Rajab A, Khalil S, Stoler J, et al. Mutations in PYCR2, Encoding Pyrroline-5-Carboxylate Reductase 2, Cause Microcephaly and Hypomyelination. Am J Hum Genet. 2015;96:709-19 pubmed publisher
  266. Bojovic O, Panja D, Bittins M, Bramham C, Tjølsen A. Time course of immediate early gene protein expression in the spinal cord following conditioning stimulation of the sciatic nerve in rats. PLoS ONE. 2015;10:e0123604 pubmed publisher
  267. Janes K. An analysis of critical factors for quantitative immunoblotting. Sci Signal. 2015;8:rs2 pubmed publisher
  268. Chakraborty A, Diefenbacher M, Mylona A, Kassel O, Behrens A. The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling. Nat Commun. 2015;6:6782 pubmed publisher
  269. Bergamo P, Palmieri G, Cocca E, Ferrandino I, Gogliettino M, Monaco A, et al. Adaptive response activated by dietary cis9, trans11 conjugated linoleic acid prevents distinct signs of gliadin-induced enteropathy in mice. Eur J Nutr. 2016;55:729-740 pubmed publisher
  270. Liao J, Karnik R, Gu H, Ziller M, Clement K, Tsankov A, et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat Genet. 2015;47:469-78 pubmed publisher
  271. Lee J, Garbe J, Vrba L, Miyano M, Futscher B, Stampfer M, et al. Age and the means of bypassing stasis influence the intrinsic subtype of immortalized human mammary epithelial cells. Front Cell Dev Biol. 2015;3:13 pubmed publisher
  272. Hollevoet K, Mason Osann E, Müller F, Pastan I. Methylation-associated partial down-regulation of mesothelin causes resistance to anti-mesothelin immunotoxins in a pancreatic cancer cell line. PLoS ONE. 2015;10:e0122462 pubmed publisher
  273. Markkanen E, Fischer R, Ledentcova M, Kessler B, Dianov G. Cells deficient in base-excision repair reveal cancer hallmarks originating from adjustments to genetic instability. Nucleic Acids Res. 2015;43:3667-79 pubmed publisher
  274. Steglich B, Strålfors A, Khorosjutina O, Persson J, Smialowska A, Javerzat J, et al. The Fun30 chromatin remodeler Fft3 controls nuclear organization and chromatin structure of insulators and subtelomeres in fission yeast. PLoS Genet. 2015;11:e1005101 pubmed publisher
  275. Balboula A, Stein P, Schultz R, Schindler K. RBBP4 regulates histone deacetylation and bipolar spindle assembly during oocyte maturation in the mouse. Biol Reprod. 2015;92:105 pubmed publisher
  276. Khoronenkova S, Dianov G. ATM prevents DSB formation by coordinating SSB repair and cell cycle progression. Proc Natl Acad Sci U S A. 2015;112:3997-4002 pubmed publisher
  277. Zub K, Sousa M, Sarno A, Sharma A, Demirovic A, Rao S, et al. Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells. PLoS ONE. 2015;10:e0119857 pubmed publisher
  278. de Lucas Cerrillo A, Bond W, Rex T. Safety and angiogenic effects of systemic gene delivery of a modified erythropoietin. Gene Ther. 2015;22:365-73 pubmed publisher
  279. Wnorowski A, Sadowska M, Paul R, Singh N, Boguszewska Czubara A, Jimenez L, et al. Activation of β2-adrenergic receptor by (R,R')-4'-methoxy-1-naphthylfenoterol inhibits proliferation and motility of melanoma cells. Cell Signal. 2015;27:997-1007 pubmed publisher
  280. Alghamdi R, O Reilly P, Lu C, Gomes J, Lagace T, Basak A. LDL-R promoting activity of peptides derived from human PCSK9 catalytic domain (153-421): design, synthesis and biochemical evaluation. Eur J Med Chem. 2015;92:890-907 pubmed publisher
  281. Nieves Cintrón M, Nystoriak M, Prada M, Johnson K, Fayer W, Dell Acqua M, et al. Selective down-regulation of KV2.1 function contributes to enhanced arterial tone during diabetes. J Biol Chem. 2015;290:7918-29 pubmed publisher
  282. Stegeman S, Moya L, Selth L, Spurdle A, Clements J, Batra J. A genetic variant of MDM4 influences regulation by multiple microRNAs in prostate cancer. Endocr Relat Cancer. 2015;22:265-76 pubmed publisher
  283. Jena M, Janjanam J, Naru J, Kumar S, Kumar S, Singh S, et al. DIGE based proteome analysis of mammary gland tissue in water buffalo (Bubalus bubalis): lactating vis-a-vis heifer. J Proteomics. 2015;119:100-11 pubmed publisher
  284. Mbefo M, Fares M, Paleologou K, Oueslati A, Yin G, Tenreiro S, et al. Parkinson disease mutant E46K enhances α-synuclein phosphorylation in mammalian cell lines, in yeast, and in vivo. J Biol Chem. 2015;290:9412-27 pubmed publisher
  285. Hedgepeth S, Garcia M, Wagner L, Rodriguez A, Chintapalli S, Snyder R, et al. The BRCA1 tumor suppressor binds to inositol 1,4,5-trisphosphate receptors to stimulate apoptotic calcium release. J Biol Chem. 2015;290:7304-13 pubmed publisher
  286. Chucair Elliott A, Zheng M, Carr D. Degeneration and regeneration of corneal nerves in response to HSV-1 infection. Invest Ophthalmol Vis Sci. 2015;56:1097-107 pubmed publisher
  287. Goossens S, Radaelli E, Blanchet O, Durinck K, Van der Meulen J, Peirs S, et al. ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling. Nat Commun. 2015;6:5794 pubmed publisher
  288. Gao Z, Zhang J, Henagan T, Lee J, Ye X, Wang H, et al. P65 inactivation in adipocytes and macrophages attenuates adipose inflammatory response in lean but not in obese mice. Am J Physiol Endocrinol Metab. 2015;308:E496-505 pubmed publisher
  289. Kim H, Huang L, Critser P, Yang Z, Chan R, Wang L, et al. Notch ligand Delta-like 1 promotes in vivo vasculogenesis in human cord blood-derived endothelial colony forming cells. Cytotherapy. 2015;17:579-92 pubmed publisher
  290. Cebulla J, Huuse E, Pettersen K, van der Veen A, Kim E, Andersen S, et al. MRI reveals the in vivo cellular and vascular response to BEZ235 in ovarian cancer xenografts with different PI3-kinase pathway activity. Br J Cancer. 2015;112:504-13 pubmed publisher
  291. Zou P, Liu L, Zheng L, Liu L, Stoneman R, Cho A, et al. Targeting FoxO1 with AS1842856 suppresses adipogenesis. Cell Cycle. 2014;13:3759-67 pubmed publisher
  292. Lee J, Peng Y, Lin W, Parrish J. Coordinate control of terminal dendrite patterning and dynamics by the membrane protein Raw. Development. 2015;142:162-73 pubmed publisher
  293. Ozmen A, Unek G, Kipmen Korgun D, Cetinkaya B, Avcil Z, Korgun E. Glucocorticoid exposure altered angiogenic factor expression via Akt/mTOR pathway in rat placenta. Ann Anat. 2015;198:34-40 pubmed publisher
  294. Izzo F, Mercogliano F, Venturutti L, Tkach M, Inurrigarro G, Schillaci R, et al. Progesterone receptor activation downregulates GATA3 by transcriptional repression and increased protein turnover promoting breast tumor growth. Breast Cancer Res. 2014;16:491 pubmed publisher
  295. Grell A, Thigarajah R, Edvinsson L, Samraj A. Regulatory mechanism of endothelin receptor B in the cerebral arteries after focal cerebral ischemia. PLoS ONE. 2014;9:e113624 pubmed publisher
  296. Jones D, Liu F, Vaidyanathan R, Eckhardt L, Trudeau M, Robertson G. hERG 1b is critical for human cardiac repolarization. Proc Natl Acad Sci U S A. 2014;111:18073-7 pubmed publisher
  297. Liu D, Yovchev M, Zhang J, Alfieri A, Tchaikovskaya T, Laconi E, et al. Identification and characterization of mesenchymal-epithelial progenitor-like cells in normal and injured rat liver. Am J Pathol. 2015;185:110-28 pubmed publisher
  298. Olayanju A, Copple I, Bryan H, Edge G, Sison R, Wong M, et al. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2. Free Radic Biol Med. 2015;78:202-12 pubmed publisher
  299. Roufayel R, Johnston D, Mosser D. The elimination of miR-23a in heat-stressed cells promotes NOXA-induced cell death and is prevented by HSP70. Cell Death Dis. 2014;5:e1546 pubmed publisher
  300. Frederick D, Davis J, Dávila A, Agarwal B, Michan S, Puchowicz M, et al. Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism. J Biol Chem. 2015;290:1546-58 pubmed publisher
  301. Holloway A, Simmonds M, Azad A, Fox J, Storey A. Resistance to UV-induced apoptosis by β-HPV5 E6 involves targeting of activated BAK for proteolysis by recruitment of the HERC1 ubiquitin ligase. Int J Cancer. 2015;136:2831-43 pubmed publisher
  302. Wohak L, Krais A, Kucab J, Stertmann J, Øvrebø S, Seidel A, et al. Carcinogenic polycyclic aromatic hydrocarbons induce CYP1A1 in human cells via a p53-dependent mechanism. Arch Toxicol. 2016;90:291-304 pubmed publisher
  303. Berghold V, Gauster M, Hemmings D, Moser G, Kremshofer J, Siwetz M, et al. Phospholipid scramblase 1 (PLSCR1) in villous trophoblast of the human placenta. Histochem Cell Biol. 2015;143:381-96 pubmed publisher
  304. Li N, Fassl A, Chick J, Inuzuka H, Li X, Mansour M, et al. Cyclin C is a haploinsufficient tumour suppressor. Nat Cell Biol. 2014;16:1080-91 pubmed publisher
  305. Jeppsson K, Carlborg K, Nakato R, Berta D, Lilienthal I, Kanno T, et al. The chromosomal association of the Smc5/6 complex depends on cohesion and predicts the level of sister chromatid entanglement. PLoS Genet. 2014;10:e1004680 pubmed publisher
  306. Blaabjerg L, Christensen G, Matsumoto M, van der Meulen T, Huising M, Billestrup N, et al. CRFR1 activation protects against cytokine-induced β-cell death. J Mol Endocrinol. 2014;53:417-27 pubmed publisher
  307. Forny Germano L, Lyra e Silva N, Batista A, Brito Moreira J, Gralle M, Boehnke S, et al. Alzheimer's disease-like pathology induced by amyloid-β oligomers in nonhuman primates. J Neurosci. 2014;34:13629-43 pubmed publisher
  308. Xu W, Yang X, Li D, Zheng K, Qiu P, Zhang W, et al. Up-regulation of fatty acid oxidation in the ligament as a contributing factor of ankylosing spondylitis: A comparative proteomic study. J Proteomics. 2015;113:57-72 pubmed publisher
  309. Hong L, Wu Y, Feng J, Yu S, Li C, Wu Y, et al. Overexpression of the cell adhesion molecule claudin-9 is associated with invasion in pituitary oncocytomas. Hum Pathol. 2014;45:2423-9 pubmed publisher
  310. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed publisher
  311. Fan Y, Meley D, Pizer B, Sée V. Mir-34a mimics are potential therapeutic agents for p53-mutated and chemo-resistant brain tumour cells. PLoS ONE. 2014;9:e108514 pubmed publisher
  312. Kumari D, Bhattacharya A, Nadel J, Moulton K, Zeak N, Glicksman A, et al. Identification of fragile X syndrome specific molecular markers in human fibroblasts: a useful model to test the efficacy of therapeutic drugs. Hum Mutat. 2014;35:1485-94 pubmed publisher
  313. Kerr M, Scott H, Groselj B, Stratford M, Karaszi K, Sharma N, et al. Deoxycytidine kinase expression underpins response to gemcitabine in bladder cancer. Clin Cancer Res. 2014;20:5435-45 pubmed publisher
  314. Lucken Ardjomande Häsler S, Vallis Y, Jolin H, McKenzie A, McMahon H. GRAF1a is a brain-specific protein that promotes lipid droplet clustering and growth, and is enriched at lipid droplet junctions. J Cell Sci. 2014;127:4602-19 pubmed publisher
  315. Radonjić N, Ortega J, Memi F, Dionne K, Jakovcevski I, Zecevic N. The complexity of the calretinin-expressing progenitors in the human cerebral cortex. Front Neuroanat. 2014;8:82 pubmed publisher
  316. Knake C, Stamp L, Bahn A. Molecular mechanism of an adverse drug-drug interaction of allopurinol and furosemide in gout treatment. Biochem Biophys Res Commun. 2014;452:157-62 pubmed publisher
  317. Radonjić N, Memi F, Ortega J, Glidden N, Zhan H, Zecevic N. The Role of Sonic Hedgehog in the Specification of Human Cortical Progenitors In Vitro. Cereb Cortex. 2016;26:131-43 pubmed publisher
  318. Fleming A, Beggs S, CHURCH M, Tsukihashi Y, Pennings S. The yeast Cyc8-Tup1 complex cooperates with Hda1p and Rpd3p histone deacetylases to robustly repress transcription of the subtelomeric FLO1 gene. Biochim Biophys Acta. 2014;1839:1242-55 pubmed publisher
  319. Tajerian M, Leu D, Zou Y, Sahbaie P, Li W, Khan H, et al. Brain neuroplastic changes accompany anxiety and memory deficits in a model of complex regional pain syndrome. Anesthesiology. 2014;121:852-65 pubmed publisher
  320. Domitrovic R, Cvijanovic O, Susnić V, Katalinić N. Renoprotective mechanisms of chlorogenic acid in cisplatin-induced kidney injury. Toxicology. 2014;324:98-107 pubmed publisher
  321. Zheng Y, Hsu F, Xu W, Xie X, Ren X, Gao X, et al. A developmental genetic analysis of the lysine demethylase KDM2 mutations in Drosophila melanogaster. Mech Dev. 2014;133:36-53 pubmed publisher
  322. Connors E, Shaik A, Migliore M, Kentner A. Environmental enrichment mitigates the sex-specific effects of gestational inflammation on social engagement and the hypothalamic pituitary adrenal axis-feedback system. Brain Behav Immun. 2014;42:178-90 pubmed publisher
  323. Charan R, Johnson B, Zaganelli S, Nardozzi J, LaVoie M. Inhibition of apoptotic Bax translocation to the mitochondria is a central function of parkin. Cell Death Dis. 2014;5:e1313 pubmed publisher
  324. Brewer K, Baran C, Whitfield B, Jensen A, Clemens S. Dopamine D3 receptor dysfunction prevents anti-nociceptive effects of morphine in the spinal cord. Front Neural Circuits. 2014;8:62 pubmed publisher
  325. Pardee T, Stadelman K, Jennings Gee J, Caudell D, Gmeiner W. The poison oligonucleotide F10 is highly effective against acute lymphoblastic leukemia while sparing normal hematopoietic cells. Oncotarget. 2014;5:4170-9 pubmed
  326. Inada C, Niu Y, Matsumoto K, Le X, Fujiwara H. Possible involvement of VEGF signaling system in rescuing effect of endogenous acetylcholine on NMDA-induced long-lasting hippocampal cell damage in organotypic hippocampal slice cultures. Neurochem Int. 2014;75:39-47 pubmed publisher
  327. Macdonald E, Urbé S, Clague M. USP8 controls the trafficking and sorting of lysosomal enzymes. Traffic. 2014;15:879-88 pubmed publisher
  328. Gracanin A, Timmermans Sprang E, van Wolferen M, Rao N, Grizelj J, Vince S, et al. Ligand-independent canonical Wnt activity in canine mammary tumor cell lines associated with aberrant LEF1 expression. PLoS ONE. 2014;9:e98698 pubmed publisher
  329. Han Z, Jing Y, Xia Y, Zhang S, Hou J, Meng Y, et al. Mesenchymal stem cells contribute to the chemoresistance of hepatocellular carcinoma cells in inflammatory environment by inducing autophagy. Cell Biosci. 2014;4:22 pubmed publisher
  330. Yuan B, Wan P, Chu D, Nie J, Cao Y, Luo W, et al. A cardiomyocyte-specific Wdr1 knockout demonstrates essential functional roles for actin disassembly during myocardial growth and maintenance in mice. Am J Pathol. 2014;184:1967-80 pubmed publisher
  331. Jafari M, Xu W, Pan R, Sweeting C, Karunaratne D, Chen P. Serum stability and physicochemical characterization of a novel amphipathic peptide C6M1 for siRNA delivery. PLoS ONE. 2014;9:e97797 pubmed publisher
  332. Tape C, Norrie I, Worboys J, Lim L, Lauffenburger D, Jørgensen C. Cell-specific labeling enzymes for analysis of cell-cell communication in continuous co-culture. Mol Cell Proteomics. 2014;13:1866-76 pubmed publisher
  333. Chu D, Malinowska E, Gawronska Kozak B, Kozak L. Expression of adipocyte biomarkers in a primary cell culture models reflects preweaning adipobiology. J Biol Chem. 2014;289:18478-88 pubmed publisher
  334. Chucair Elliott A, Conrady C, Zheng M, Kroll C, Lane T, Carr D. Microglia-induced IL-6 protects against neuronal loss following HSV-1 infection of neural progenitor cells. Glia. 2014;62:1418-34 pubmed publisher
  335. Bach F, Rutten K, Hendriks K, Riemers F, Cornelissen P, de Bruin A, et al. The paracrine feedback loop between vitamin D? (1,25(OH)?D?) and PTHrP in prehypertrophic chondrocytes. J Cell Physiol. 2014;229:1999-2014 pubmed publisher
  336. Siwetz M, Blaschitz A, Kremshofer J, Bilic J, Desoye G, Huppertz B, et al. Metalloprotease dependent release of placenta derived fractalkine. Mediators Inflamm. 2014;2014:839290 pubmed publisher
  337. Cazanave S, Wang X, Zhou H, Rahmani M, Grant S, Durrant D, et al. Degradation of Keap1 activates BH3-only proteins Bim and PUMA during hepatocyte lipoapoptosis. Cell Death Differ. 2014;21:1303-12 pubmed publisher
  338. Adomas A, Grimm S, Malone C, Takaku M, Sims J, Wade P. Breast tumor specific mutation in GATA3 affects physiological mechanisms regulating transcription factor turnover. BMC Cancer. 2014;14:278 pubmed publisher
  339. Lefevre M, Felmlee D, Parnot M, Baumert T, Schuster C. Syndecan 4 is involved in mediating HCV entry through interaction with lipoviral particle-associated apolipoprotein E. PLoS ONE. 2014;9:e95550 pubmed publisher
  340. Johnson S, Collins J, D Souza V, Telesnitsky A. Determinants of Moloney murine leukemia virus Gag-Pol and genomic RNA proportions. J Virol. 2014;88:7267-75 pubmed publisher
  341. Wei X, Ke B, Zhao Z, Ye X, Gao Z, Ye J. Regulation of insulin degrading enzyme activity by obesity-associated factors and pioglitazone in liver of diet-induced obese mice. PLoS ONE. 2014;9:e95399 pubmed publisher
  342. Bhansali M, Shemshedini L. COP9 subunits 4 and 5 target soluble guanylyl cyclase ?1 and p53 in prostate cancer cells. Mol Endocrinol. 2014;28:834-45 pubmed publisher
  343. Bejarano E, Yuste A, Patel B, Stout R, Spray D, Cuervo A. Connexins modulate autophagosome biogenesis. Nat Cell Biol. 2014;16:401-14 pubmed publisher
  344. Adeyemi R, Fuller M, Pintel D. Efficient parvovirus replication requires CRL4Cdt2-targeted depletion of p21 to prevent its inhibitory interaction with PCNA. PLoS Pathog. 2014;10:e1004055 pubmed publisher
  345. Yamamura T, Matsumoto N, Matsue Y, Okudera M, Nishikawa Y, Abiko Y, et al. Sodium butyrate, a histone deacetylase inhibitor, regulates Lymphangiogenic factors in oral cancer cell line HSC-3. Anticancer Res. 2014;34:1701-8 pubmed
  346. Wang C, Bajikar S, Jamal L, Atkins K, Janes K. A time- and matrix-dependent TGFBR3-JUND-KRT5 regulatory circuit in single breast epithelial cells and basal-like premalignancies. Nat Cell Biol. 2014;16:345-56 pubmed publisher
  347. Levendoski E, Sivasankar M. Vocal fold ion transport and mucin expression following acrolein exposure. J Membr Biol. 2014;247:441-50 pubmed publisher
  348. Glorieux C, Auquier J, Dejeans N, Sid B, Demoulin J, Bertrand L, et al. Catalase expression in MCF-7 breast cancer cells is mainly controlled by PI3K/Akt/mTor signaling pathway. Biochem Pharmacol. 2014;89:217-23 pubmed publisher
  349. Gaillard H, Aguilera A. Cleavage factor I links transcription termination to DNA damage response and genome integrity maintenance in Saccharomyces cerevisiae. PLoS Genet. 2014;10:e1004203 pubmed publisher
  350. Jankovic A, Korac A, Srdić Galić B, Buzadzic B, Otasevic V, Stancic A, et al. Differences in the redox status of human visceral and subcutaneous adipose tissues--relationships to obesity and metabolic risk. Metabolism. 2014;63:661-71 pubmed publisher
  351. Kim J, Kim H, Park J, Park D, Cho Y, Sohn C, et al. Epidermal growth factor upregulates Skp2/Cks1 and p27(kip1) in human extrahepatic cholangiocarcinoma cells. World J Gastroenterol. 2014;20:755-73 pubmed publisher
  352. Tashima Y, Stanley P. Antibodies that detect O-linked ?-D-N-acetylglucosamine on the extracellular domain of cell surface glycoproteins. J Biol Chem. 2014;289:11132-42 pubmed publisher
  353. Ippolito J, Piwnica Worms D. A fluorescence-coupled assay for gamma aminobutyric acid (GABA) reveals metabolic stress-induced modulation of GABA content in neuroendocrine cancer. PLoS ONE. 2014;9:e88667 pubmed publisher
  354. Wright M, Bowdridge E, McDermott E, Richardson S, Scheidler J, Syed Q, et al. Mechanisms of intracellular calcium homeostasis in developing and mature bovine corpora lutea. Biol Reprod. 2014;90:55 pubmed publisher
  355. Liu J, Supnet C, Sun S, Zhang H, Good L, Popugaeva E, et al. The role of ryanodine receptor type 3 in a mouse model of Alzheimer disease. Channels (Austin). 2014;8:230-42 pubmed
  356. Fiaturi N, Ritzkat A, Dammann C, Castellot J, Nielsen H. Dissociated presenilin-1 and TACE processing of ErbB4 in lung alveolar type II cell differentiation. Biochim Biophys Acta. 2014;1843:797-805 pubmed publisher
  357. Zhou J, Wu J, Li B, Liu D, Yu J, Yan X, et al. PU.1 is essential for MLL leukemia partially via crosstalk with the MEIS/HOX pathway. Leukemia. 2014;28:1436-48 pubmed publisher
  358. Dannoura A, Giraldo A, Pereira I, Gibbins J, Dash P, Bicknell K, et al. Ibuprofen inhibits migration and proliferation of human coronary artery smooth muscle cells by inducing a differentiated phenotype: role of peroxisome proliferator-activated receptor ?. J Pharm Pharmacol. 2014;66:779-92 pubmed publisher
  359. Turner M, Cronin J, Healey G, Sheldon I. Epithelial and stromal cells of bovine endometrium have roles in innate immunity and initiate inflammatory responses to bacterial lipopeptides in vitro via Toll-like receptors TLR2, TLR1, and TLR6. Endocrinology. 2014;155:1453-65 pubmed publisher
  360. Song K, Chung J, Choi M, Jin H, Yin G, Kwon M, et al. Effectiveness of intracavernous delivery of adenovirus encoding Smad7 gene on erectile function in a mouse model of cavernous nerve injury. J Sex Med. 2014;11:51-63 pubmed publisher
  361. Tsuneki M, Madri J. CD44 regulation of endothelial cell proliferation and apoptosis via modulation of CD31 and VE-cadherin expression. J Biol Chem. 2014;289:5357-70 pubmed publisher
  362. Adeyemi R, Pintel D. Parvovirus-induced depletion of cyclin B1 prevents mitotic entry of infected cells. PLoS Pathog. 2014;10:e1003891 pubmed publisher
  363. Ustunel I, Acar N, Gemici B, Ozbey O, Edizer I, Soylu H, et al. The effects of water immersion and restraint stress on the expressions of apelin, apelin receptor (APJR) and apoptosis rate in the rat heart. Acta Histochem. 2014;116:675-81 pubmed publisher
  364. Steinecke A, Gampe C, Zimmer G, Rudolph J, Bolz J. EphA/ephrin A reverse signaling promotes the migration of cortical interneurons from the medial ganglionic eminence. Development. 2014;141:460-71 pubmed publisher
  365. Evers M, Tran H, Zalachoras I, Meijer O, den Dunnen J, van Ommen G, et al. Preventing formation of toxic N-terminal huntingtin fragments through antisense oligonucleotide-mediated protein modification. Nucleic Acid Ther. 2014;24:4-12 pubmed publisher
  366. Gao R, Das B, Chatterjee R, Abaan O, Agama K, Matuo R, et al. Epigenetic and genetic inactivation of tyrosyl-DNA-phosphodiesterase 1 (TDP1) in human lung cancer cells from the NCI-60 panel. DNA Repair (Amst). 2014;13:1-9 pubmed publisher
  367. Bronner D, O Riordan M, He Y. Caspase-2 mediates a Brucella abortus RB51-induced hybrid cell death having features of apoptosis and pyroptosis. Front Cell Infect Microbiol. 2013;3:83 pubmed publisher
  368. Kiel C, Verschueren E, Yang J, Serrano L. Integration of protein abundance and structure data reveals competition in the ErbB signaling network. Sci Signal. 2013;6:ra109 pubmed publisher
  369. Yang Q, Yu C, Yang Z, Wei Q, Mu K, Zhang Y, et al. Deregulated NLRP3 and NLRP1 inflammasomes and their correlations with disease activity in systemic lupus erythematosus. J Rheumatol. 2014;41:444-52 pubmed publisher
  370. Larson A, Lee C, Lezcano C, Zhan Q, Huang J, Fischer A, et al. Melanoma spheroid formation involves laminin-associated vasculogenic mimicry. Am J Pathol. 2014;184:71-8 pubmed publisher
  371. Nystoriak M, Nieves Cintrón M, Nygren P, Hinke S, Nichols C, Chen C, et al. AKAP150 contributes to enhanced vascular tone by facilitating large-conductance Ca2+-activated K+ channel remodeling in hyperglycemia and diabetes mellitus. Circ Res. 2014;114:607-15 pubmed publisher
  372. Hollevoet K, Antignani A, FitzGerald D, Pastan I. Combining the antimesothelin immunotoxin SS1P with the BH3-mimetic ABT-737 induces cell death in SS1P-resistant pancreatic cancer cells. J Immunother. 2014;37:8-15 pubmed publisher
  373. Park R, Chen J, Kim J, Jeong S, Ohn T. Splicing factor SRSF3 represses the translation of programmed cell death 4 mRNA by associating with the 5'-UTR region. Cell Death Differ. 2014;21:481-90 pubmed publisher
  374. Hasty P, Livi C, Dodds S, Jones D, Strong R, Javors M, et al. eRapa restores a normal life span in a FAP mouse model. Cancer Prev Res (Phila). 2014;7:169-78 pubmed publisher
  375. Newman A, Selkoe D, Dettmer U. A new method for quantitative immunoblotting of endogenous ?-synuclein. PLoS ONE. 2013;8:e81314 pubmed publisher
  376. Wei Q, Mu K, Li T, Zhang Y, Yang Z, Jia X, et al. Deregulation of the NLRP3 inflammasome in hepatic parenchymal cells during liver cancer progression. Lab Invest. 2014;94:52-62 pubmed publisher
  377. Thrasivoulou C, Millar M, Ahmed A. Activation of intracellular calcium by multiple Wnt ligands and translocation of ?-catenin into the nucleus: a convergent model of Wnt/Ca2+ and Wnt/?-catenin pathways. J Biol Chem. 2013;288:35651-9 pubmed publisher
  378. Epis M, Giles K, Candy P, Webster R, Leedman P. miR-331-3p regulates expression of neuropilin-2 in glioblastoma. J Neurooncol. 2014;116:67-75 pubmed publisher
  379. Kuo H, Deluca T, Miller W, Mrksich M. Profiling deacetylase activities in cell lysates with peptide arrays and SAMDI mass spectrometry. Anal Chem. 2013;85:10635-10642 pubmed publisher
  380. Nkyimbeng T, Ruppert C, Shiomi T, Dahal B, Lang G, Seeger W, et al. Pivotal role of matrix metalloproteinase 13 in extracellular matrix turnover in idiopathic pulmonary fibrosis. PLoS ONE. 2013;8:e73279 pubmed publisher
  381. Tucker B, Mullins R, Streb L, Anfinson K, Eyestone M, Kaalberg E, et al. Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa. elife. 2013;2:e00824 pubmed publisher
  382. Sáinz Jaspeado M, Huertas Martínez J, Lagares Tena L, Martín Liberal J, Mateo Lozano S, de Alava E, et al. EphA2-induced angiogenesis in ewing sarcoma cells works through bFGF production and is dependent on caveolin-1. PLoS ONE. 2013;8:e71449 pubmed publisher
  383. Andersen S, Baar C, Fladvad T, Laugsand E, Skorpen F. The N-terminally truncated µ3 and µ3-like opioid receptors are transcribed from a novel promoter upstream of exon 2 in the human OPRM1 gene. PLoS ONE. 2013;8:e71024 pubmed publisher
  384. Wong Y, Jakt L, Nishikawa S. Prolonged treatment with DNMT inhibitors induces distinct effects in promoters and gene-bodies. PLoS ONE. 2013;8:e71099 pubmed publisher
  385. Maunakea A, Chepelev I, Cui K, Zhao K. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res. 2013;23:1256-69 pubmed publisher
  386. Esmaeili M, Bathen T, Engebraten O, Mælandsmo G, Gribbestad I, Moestue S. Quantitative (31)P HR-MAS MR spectroscopy for detection of response to PI3K/mTOR inhibition in breast cancer xenografts. Magn Reson Med. 2014;71:1973-81 pubmed publisher
  387. Lavado A, He Y, Pare J, Neale G, Olson E, Giovannini M, et al. Tumor suppressor Nf2 limits expansion of the neural progenitor pool by inhibiting Yap/Taz transcriptional coactivators. Development. 2013;140:3323-34 pubmed publisher
  388. Muruganandan S, Dranse H, Rourke J, McMullen N, Sinal C. Chemerin neutralization blocks hematopoietic stem cell osteoclastogenesis. Stem Cells. 2013;31:2172-82 pubmed publisher
  389. Hartsink Segers S, Exalto C, Allen M, Williamson D, Clifford S, Horstmann M, et al. Inhibiting Polo-like kinase 1 causes growth reduction and apoptosis in pediatric acute lymphoblastic leukemia cells. Haematologica. 2013;98:1539-46 pubmed publisher
  390. Shen H, Liao K, Zhang W, Wu H, Shen B, Xu Z. Differential expression of peroxiredoxin 6, annexin A5 and ubiquitin carboxyl-terminal hydrolase isozyme L1 in testis of rat fetuses after maternal exposure to di-n-butyl phthalate. Reprod Toxicol. 2013;39:76-84 pubmed publisher
  391. Narayanan A, Iordanskiy S, Das R, Van Duyne R, Santos S, Jaworski E, et al. Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. J Biol Chem. 2013;288:20014-33 pubmed publisher
  392. Olsen J, Oyan A, Rostad K, Hellem M, Liu J, Li L, et al. p63 attenuates epithelial to mesenchymal potential in an experimental prostate cell model. PLoS ONE. 2013;8:e62547 pubmed publisher
  393. Brooks E, Little D, Arumugam R, Sun B, Curtis S, Demaster A, et al. Pathogenesis of growth failure and partial reversal with gene therapy in murine and canine Glycogen Storage Disease type Ia. Mol Genet Metab. 2013;109:161-70 pubmed publisher
  394. Oshikawa M, Okada K, Nakajima K, Ajioka I. Cortical excitatory neurons become protected from cell division during neurogenesis in an Rb family-dependent manner. Development. 2013;140:2310-20 pubmed publisher
  395. Sappino A, Buser R, Seguin Q, Fernet M, Lesne L, Gumy Pause F, et al. The CEACAM1 tumor suppressor is an ATM and p53-regulated gene required for the induction of cellular senescence by DNA damage. Oncogenesis. 2012;1:e7 pubmed publisher
  396. Murata Y, Constantine Paton M. Postsynaptic density scaffold SAP102 regulates cortical synapse development through EphB and PAK signaling pathway. J Neurosci. 2013;33:5040-52 pubmed publisher
  397. Smith A, Gibbons H, Oldfield R, Bergin P, Mee E, Faull R, et al. The transcription factor PU.1 is critical for viability and function of human brain microglia. Glia. 2013;61:929-42 pubmed publisher
  398. Kimura S. The Nap family proteins, CG5017/Hanabi and Nap1, are essential for Drosophila spermiogenesis. FEBS Lett. 2013;587:922-9 pubmed publisher
  399. Heo S, Choi J, Kim Y, Jung C, Lee J, Jin H, et al. Comparative proteomic analysis in children with idiopathic short stature (ISS) before and after short-term recombinant human growth hormone (rhGH) therapy. Proteomics. 2013;13:1211-9 pubmed publisher
  400. Fiorentino M, Lammers K, Levine M, Sztein M, Fasano A. In vitro Intestinal Mucosal Epithelial Responses to Wild-Type Salmonella Typhi and Attenuated Typhoid Vaccines. Front Immunol. 2013;4:17 pubmed publisher
  401. Lu B, Palacino J. A novel human embryonic stem cell-derived Huntington's disease neuronal model exhibits mutant huntingtin (mHTT) aggregates and soluble mHTT-dependent neurodegeneration. FASEB J. 2013;27:1820-9 pubmed publisher
  402. Khoronenkova S, Dianov G. USP7S-dependent inactivation of Mule regulates DNA damage signalling and repair. Nucleic Acids Res. 2013;41:1750-6 pubmed publisher
  403. Sánchez Alvarez R, Martinez Outschoorn U, Lin Z, Lamb R, Hulit J, Howell A, et al. Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: implications for breast cancer prevention. Cell Cycle. 2013;12:289-301 pubmed publisher
  404. Pereira G, Meng F, Kockara N, Yang B, Wight P. Targeted deletion of the antisilencer/enhancer (ASE) element from intron 1 of the myelin proteolipid protein gene (Plp1) in mouse reveals that the element is dispensable for Plp1 expression in brain during development and remyelination. J Neurochem. 2013;124:454-65 pubmed publisher
  405. Sakasai R, Sakai A, Iimori M, Kiyonari S, Matsuoka K, Kakeji Y, et al. CtIP- and ATR-dependent FANCJ phosphorylation in response to DNA strand breaks mediated by DNA replication. Genes Cells. 2012;17:962-70 pubmed publisher
  406. Chandler R, Brennan J, Schisler J, Serber D, Patterson C, Magnuson T. ARID1a-DNA interactions are required for promoter occupancy by SWI/SNF. Mol Cell Biol. 2013;33:265-80 pubmed publisher
  407. Zhang S, Liu X, Bawa Khalfe T, Lu L, Lyu Y, Liu L, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18:1639-42 pubmed publisher
  408. Sims S, Holmgren L, Cathcart H, Sappington R. Spatial regulation of interleukin-6 signaling in response to neurodegenerative stressors in the retina. Am J Neurodegener Dis. 2012;1:168-79 pubmed
  409. Cheung T, Ganatra M, Peters E, Truskey G. Effect of cellular senescence on the albumin permeability of blood-derived endothelial cells. Am J Physiol Heart Circ Physiol. 2012;303:H1374-83 pubmed publisher
  410. Hartsink Segers S, Zwaan C, Exalto C, Luijendijk M, Calvert V, Petricoin E, et al. Aurora kinases in childhood acute leukemia: the promise of aurora B as therapeutic target. Leukemia. 2013;27:560-8 pubmed publisher
  411. Johnson S, Garcia E, Summers M, Telesnitsky A. Moloney murine leukemia virus genomic RNA packaged in the absence of a full complement of wild type nucleocapsid protein. Virology. 2012;430:100-9 pubmed publisher
  412. Liu X, Ko S, Xu Y, Fattah E, Xiang Q, Jagannath C, et al. Transient aggregation of ubiquitinated proteins is a cytosolic unfolded protein response to inflammation and endoplasmic reticulum stress. J Biol Chem. 2012;287:19687-98 pubmed publisher
  413. Akhrymuk I, Kulemzin S, Frolova E. Evasion of the innate immune response: the Old World alphavirus nsP2 protein induces rapid degradation of Rpb1, a catalytic subunit of RNA polymerase II. J Virol. 2012;86:7180-91 pubmed publisher
  414. Lee J, Lai C, Yang W, Lee T. Increased expression of hypoxia-inducible factor-1? and metallothionein in varicocele and varicose veins. Phlebology. 2012;27:409-15 pubmed publisher
  415. Gu B, Watanabe K, Dai X. Pygo2 regulates histone gene expression and H3 K56 acetylation in human mammary epithelial cells. Cell Cycle. 2012;11:79-87 pubmed publisher
  416. Zürner M, Mittelstaedt T, Tom Dieck S, Becker A, Schoch S. Analyses of the spatiotemporal expression and subcellular localization of liprin-? proteins. J Comp Neurol. 2011;519:3019-39 pubmed publisher
  417. Tai C, Shen S, Lee W, Liao C, Deng W, Chiou H, et al. Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells. Exp Cell Res. 2010;316:2969-81 pubmed publisher
  418. Polo M, Arnoni M, Riggio M, Wargon V, Lanari C, Novaro V. Responsiveness to PI3K and MEK inhibitors in breast cancer. Use of a 3D culture system to study pathways related to hormone independence in mice. PLoS ONE. 2010;5:e10786 pubmed publisher
  419. Gauster M, Siwetz M, Huppertz B. Fusion of villous trophoblast can be visualized by localizing active caspase 8. Placenta. 2009;30:547-50 pubmed publisher
  420. Holthouse D, Dallas P, Ford J, Fabian V, Murch A, Watson M, et al. Classic and desmoplastic medulloblastoma: complete case reports and characterizations of two new cell lines. Neuropathology. 2009;29:398-409 pubmed publisher
  421. Marín Briggiler C, Veiga M, Matos M, Echeverría M, Furlong L, Vazquez Levin M. Expression of epithelial cadherin in the human male reproductive tract and gametes and evidence of its participation in fertilization. Mol Hum Reprod. 2008;14:561-71 pubmed publisher
  422. Nair M, Nagamori I, Sun P, Mishra D, Rhéaume C, Li B, et al. Nuclear regulator Pygo2 controls spermiogenesis and histone H3 acetylation. Dev Biol. 2008;320:446-55 pubmed publisher
  423. Rigau V, Morin M, Rousset M, de Bock F, Lebrun A, Coubes P, et al. Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. Brain. 2007;130:1942-56 pubmed
  424. Christian M, Kiskinis E, Debevec D, Leonardsson G, White R, Parker M. RIP140-targeted repression of gene expression in adipocytes. Mol Cell Biol. 2005;25:9383-91 pubmed