This is a Validated Antibody Database (VAD) review about chicken H3F3B, based on 18 published articles (read how Labome selects the articles), using H3F3B antibody in all methods. It is aimed to help Labome visitors find the most suited H3F3B antibody. Please note the number of articles fluctuates since newly identified citations are added and citations for discontinued catalog numbers are removed regularly.
H3F3B synonym: H3-IX; H3-X; H3.3B

Abcam
rat monoclonal (HTA28)
  • immunohistochemistry - paraffin section; mouse; 1:200; loading ...; fig 3a
Abcam H3F3B antibody (Abcam, ab10543) was used in immunohistochemistry - paraffin section on mouse samples at 1:200 (fig 3a). Front Mol Biosci (2020) ncbi
rat monoclonal (HTA28)
  • immunohistochemistry; Drosophila melanogaster; 1:1000; loading ...; fig 1a
Abcam H3F3B antibody (Abcam, ab10543) was used in immunohistochemistry on Drosophila melanogaster samples at 1:1000 (fig 1a). elife (2019) ncbi
rat monoclonal (HTA28)
  • immunohistochemistry; Xenopus laevis; 1:100; loading ...; fig s3b
Abcam H3F3B antibody (Abcam, ab10543) was used in immunohistochemistry on Xenopus laevis samples at 1:100 (fig s3b). Science (2019) ncbi
rat monoclonal (HTA28)
  • immunohistochemistry; mouse; loading ...; fig s3e
Abcam H3F3B antibody (Abcam, AB10543) was used in immunohistochemistry on mouse samples (fig s3e). Cell (2017) ncbi
rat monoclonal (HTA28)
  • immunohistochemistry - paraffin section; zebrafish ; 1:500; loading ...; fig 2 s1B
In order to assess the epithelial rearrangements responsible for the development of the hemispherical retinal neuroepithelium, Abcam H3F3B antibody (Abcam, ab10543) was used in immunohistochemistry - paraffin section on zebrafish samples at 1:500 (fig 2 s1B). elife (2017) ncbi
rat monoclonal (HTA28)
  • immunocytochemistry; human; fig 2b
Abcam H3F3B antibody (Abcam, Ab10543) was used in immunocytochemistry on human samples (fig 2b). Cell Stem Cell (2017) ncbi
rat monoclonal (HTA28)
  • immunocytochemistry; human; 1:1000; loading ...; fig 7a
In order to study the role of Repo-Man in interphase, Abcam H3F3B antibody (Abcam, ab10543) was used in immunocytochemistry on human samples at 1:1000 (fig 7a). Nat Commun (2017) ncbi
rat monoclonal (HTA28)
  • immunohistochemistry - frozen section; mouse; fig 2
In order to elucidate the requirement for atypical protein kinase c-dependent polarized cell division in myocardial trabeculation, Abcam H3F3B antibody (Abcam, ab10543) was used in immunohistochemistry - frozen section on mouse samples (fig 2). Cell Rep (2016) ncbi
rat monoclonal (HTA28)
  • immunohistochemistry; mouse; 1:1000; fig 3
In order to analyze regulation of radial glial scaffold development by FstI1, Abcam H3F3B antibody (Abcam, ab10543) was used in immunohistochemistry on mouse samples at 1:1000 (fig 3). Mol Brain (2015) ncbi
rat monoclonal (HTA28)
  • immunohistochemistry - frozen section; mouse; 1:200
In order to investigate the relationships among abnormal spindle orientations, ectopic progenitors, and severe heterotopia in mouse and human, Abcam H3F3B antibody (Abcam, AB10543) was used in immunohistochemistry - frozen section on mouse samples at 1:200. Nat Neurosci (2014) ncbi
rat monoclonal (HTA28)
  • immunohistochemistry; mouse
Abcam H3F3B antibody (Abcam, ab10543) was used in immunohistochemistry on mouse samples . Neural Dev (2013) ncbi
rat monoclonal (HTA28)
  • immunohistochemistry - frozen section; mouse; 1:200
Abcam H3F3B antibody (Abcam, ab10543) was used in immunohistochemistry - frozen section on mouse samples at 1:200. Development (2013) ncbi
MilliporeSigma
domestic rabbit polyclonal
  • western blot; human; 1:1000; loading ...; fig 3b
MilliporeSigma H3F3B antibody (sigma, H0134) was used in western blot on human samples at 1:1000 (fig 3b). J Mol Med (Berl) (2016) ncbi
domestic rabbit polyclonal
  • chromatin immunoprecipitation; human; fig 3f
In order to investigate the co-regulation of Brg1 and Smarcal1 and their transcriptional regulation of Atp-dependent chromatin remodeling factors, MilliporeSigma H3F3B antibody (Sigma-Aldrich, D5567) was used in chromatin immunoprecipitation on human samples (fig 3f). Sci Rep (2016) ncbi
mouse monoclonal (AH3-120)
  • chromatin immunoprecipitation; human; fig s6f
In order to investigate the co-regulation of Brg1 and Smarcal1 and their transcriptional regulation of Atp-dependent chromatin remodeling factors, MilliporeSigma H3F3B antibody (Sigma-Aldrich, H0913) was used in chromatin immunoprecipitation on human samples (fig s6f). Sci Rep (2016) ncbi
mouse monoclonal (APH3-64)
  • other; human; loading ...; fig st1
In order to use size exclusion chromatography-microsphere-based affinity proteomics to study clinical samples obtained from pediatric acute leukemia patients, MilliporeSigma H3F3B antibody (SIGMA, APH3-64) was used in other on human samples (fig st1). Mol Cell Proteomics (2016) ncbi
mouse monoclonal (AH3-120)
  • western blot; human; 1:500
MilliporeSigma H3F3B antibody (Sigma Aldrich, H0913) was used in western blot on human samples at 1:500. Biotechnol Bioeng (2015) ncbi
mouse monoclonal (AH3-120)
  • immunocytochemistry; human; 1:200
MilliporeSigma H3F3B antibody (Sigma, H0913) was used in immunocytochemistry on human samples at 1:200. Cryobiology (2014) ncbi
mouse monoclonal (AH3-120)
  • immunohistochemistry - paraffin section; human; fig 2
  • chromatin immunoprecipitation; human; 2-5 ug/ChIP; fig 2
In order to investigate the role of repressor element 1-silencing transcription factor in neurodegeneration during ageing, MilliporeSigma H3F3B antibody (Sigma, H0913) was used in immunohistochemistry - paraffin section on human samples (fig 2) and in chromatin immunoprecipitation on human samples at 2-5 ug/ChIP (fig 2). Nature (2014) ncbi
Articles Reviewed
  1. Zhang Y, Beketaev I, Segura A, Yu W, Xi Y, Chang J, et al. Contribution of Increased Expression of Yin Yang 2 to Development of Cardiomyopathy. Front Mol Biosci. 2020;7:35 pubmed publisher
  2. Curt J, Salmani B, Thor S. Anterior CNS expansion driven by brain transcription factors. elife. 2019;8: pubmed publisher
  3. Aztekin C, Hiscock T, Marioni J, Gurdon J, Simons B, Jullien J. Identification of a regeneration-organizing cell in the Xenopus tail. Science. 2019;364:653-658 pubmed publisher
  4. del Toro D, Ruff T, Cederfjäll E, Villalba A, Seyit Bremer G, Borrell V, et al. Regulation of Cerebral Cortex Folding by Controlling Neuronal Migration via FLRT Adhesion Molecules. Cell. 2017;169:621-635.e16 pubmed publisher
  5. Sidhaye J, Norden C. Concerted action of neuroepithelial basal shrinkage and active epithelial migration ensures efficient optic cup morphogenesis. elife. 2017;6: pubmed publisher
  6. Bershteyn M, Nowakowski T, Pollen A, Di Lullo E, Nene A, Wynshaw Boris A, et al. Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell. 2017;20:435-449.e4 pubmed publisher
  7. de Castro I, Budzak J, Di Giacinto M, Ligammari L, Gokhan E, Spanos C, et al. Repo-Man/PP1 regulates heterochromatin formation in interphase. Nat Commun. 2017;8:14048 pubmed publisher
  8. Huang Y, Chen S, Liu R, Chen Y, Lin C, Huang C, et al. CLEC5A is critical for dengue virus-induced osteoclast activation and bone homeostasis. J Mol Med (Berl). 2016;94:1025-37 pubmed publisher
  9. Passer D, van de Vrugt A, Atmanli A, Domian I. Atypical Protein Kinase C-Dependent Polarized Cell Division Is Required for Myocardial Trabeculation. Cell Rep. 2016;14:1662-1672 pubmed publisher
  10. Haokip D, Goel I, Arya V, Sharma T, Kumari R, Priya R, et al. Transcriptional Regulation of Atp-Dependent Chromatin Remodeling Factors: Smarcal1 and Brg1 Mutually Co-Regulate Each Other. Sci Rep. 2016;6:20532 pubmed publisher
  11. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed publisher
  12. Liu R, Yang Y, Shen J, Chen H, Zhang Q, Ba R, et al. Fstl1 is involved in the regulation of radial glial scaffold development. Mol Brain. 2015;8:53 pubmed publisher
  13. Fischer S, Paul A, Wagner A, Mathias S, Geiss M, Schandock F, et al. miR-2861 as novel HDAC5 inhibitor in CHO cells enhances productivity while maintaining product quality. Biotechnol Bioeng. 2015;112:2142-53 pubmed publisher
  14. Bakhtari A, Rahmani H, Bonakdar E, Jafarpour F, Asgari V, Hosseini S, et al. The interfering effects of superovulation and vitrification upon some important epigenetic biomarkers in mouse blastocyst. Cryobiology. 2014;69:419-27 pubmed publisher
  15. Kielar M, Tuy F, Bizzotto S, Lebrand C, de Juan Romero C, Poirier K, et al. Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat Neurosci. 2014;17:923-33 pubmed publisher
  16. Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, et al. REST and stress resistance in ageing and Alzheimer's disease. Nature. 2014;507:448-54 pubmed publisher
  17. Saurat N, Andersson T, Vasistha N, Molnár Z, Livesey F. Dicer is required for neural stem cell multipotency and lineage progression during cerebral cortex development. Neural Dev. 2013;8:14 pubmed publisher
  18. Oshikawa M, Okada K, Nakajima K, Ajioka I. Cortical excitatory neurons become protected from cell division during neurogenesis in an Rb family-dependent manner. Development. 2013;140:2310-20 pubmed publisher