This is a Validated Antibody Database (VAD) review about bovine MYH1, based on 35 published articles (read how Labome selects the articles), using MYH1 antibody in all methods. It is aimed to help Labome visitors find the most suited MYH1 antibody. Please note the number of articles fluctuates since newly identified citations are added and citations for discontinued catalog numbers are removed regularly.
Abcam
mouse monoclonal (MY-32)
  • immunocytochemistry; mouse; 1:400; loading ...; fig 1a
Abcam MYH1 antibody (Abcam, ab51263) was used in immunocytochemistry on mouse samples at 1:400 (fig 1a). Dev Cell (2021) ncbi
mouse monoclonal (MY-32)
  • immunohistochemistry; mouse; 1:250; loading ...; fig 6
Abcam MYH1 antibody (Abcam, ab51263) was used in immunohistochemistry on mouse samples at 1:250 (fig 6). Mol Med (2020) ncbi
mouse monoclonal (MY-32)
  • immunocytochemistry; mouse; loading ...; fig 2g
Abcam MYH1 antibody (Abcam, ab51263) was used in immunocytochemistry on mouse samples (fig 2g). BMC Genet (2019) ncbi
MilliporeSigma
mouse monoclonal (MY-32)
  • immunohistochemistry; mouse; 10 ug/ml; loading ...; fig 1h
MilliporeSigma MYH1 antibody (Sigma, M4276) was used in immunohistochemistry on mouse samples at 10 ug/ml (fig 1h). elife (2022) ncbi
mouse monoclonal (MY-32)
  • immunohistochemistry - paraffin section; mouse; 1:400; loading ...; fig 2a
MilliporeSigma MYH1 antibody (Sigma, M4276) was used in immunohistochemistry - paraffin section on mouse samples at 1:400 (fig 2a). Cell Rep (2022) ncbi
mouse monoclonal (MY-32)
  • immunocytochemistry; mouse; 1:200; loading ...; fig s8h
MilliporeSigma MYH1 antibody (Sigma, M4276) was used in immunocytochemistry on mouse samples at 1:200 (fig s8h). Nat Commun (2021) ncbi
mouse monoclonal (MY-32)
  • immunohistochemistry; human; 1:200; loading ...; fig 2c
MilliporeSigma MYH1 antibody (Sigma Aldrich, M4276) was used in immunohistochemistry on human samples at 1:200 (fig 2c). elife (2020) ncbi
mouse monoclonal (MY-32)
  • western blot; rat; 1:4500; loading ...; fig 2o
MilliporeSigma MYH1 antibody (Sigma, M4276) was used in western blot on rat samples at 1:4500 (fig 2o). Ann Clin Transl Neurol (2020) ncbi
mouse monoclonal (MY-32)
  • immunohistochemistry - frozen section; human; 1:200; loading ...; fig 4c
MilliporeSigma MYH1 antibody (Sigma-Aldrich, M4276) was used in immunohistochemistry - frozen section on human samples at 1:200 (fig 4c). Front Physiol (2020) ncbi
mouse monoclonal (MY-32)
  • western blot; mouse; 1:5000; loading ...; fig s18f
MilliporeSigma MYH1 antibody (Sigma Aldrich, MY32) was used in western blot on mouse samples at 1:5000 (fig s18f). Science (2019) ncbi
mouse monoclonal (MY-32)
  • western blot; mouse; 1:1000; loading ...; fig s2b
MilliporeSigma MYH1 antibody (Sigma, MY-32) was used in western blot on mouse samples at 1:1000 (fig s2b). Redox Biol (2019) ncbi
mouse monoclonal (MY-32)
  • immunocytochemistry; mouse; 1:200; loading ...; fig s3d
MilliporeSigma MYH1 antibody (Sigma, M4276) was used in immunocytochemistry on mouse samples at 1:200 (fig s3d). Sci Adv (2018) ncbi
mouse monoclonal (MY-32)
  • immunohistochemistry - paraffin section; mouse; loading ...; fig 1m
MilliporeSigma MYH1 antibody (Sigma, M4276) was used in immunohistochemistry - paraffin section on mouse samples (fig 1m). J Biol Chem (2017) ncbi
mouse monoclonal (MY-32)
  • immunohistochemistry - frozen section; mouse; loading ...; fig 3a
In order to characterize the importance of glycolysis transcriptional regulator Nur77 during muscle growth, MilliporeSigma MYH1 antibody (Sigma, MY32) was used in immunohistochemistry - frozen section on mouse samples (fig 3a). PLoS ONE (2017) ncbi
mouse monoclonal (MY-32)
  • western blot; mouse; 1:1000; fig 1g
MilliporeSigma MYH1 antibody (Sigma-Aldrich, M4276) was used in western blot on mouse samples at 1:1000 (fig 1g). Cell Discov (2016) ncbi
mouse monoclonal (MY-32)
  • immunocytochemistry; human; 1:1000; fig 3
In order to discuss different cell sources from which to generate muscle cells, MilliporeSigma MYH1 antibody (Sigma, M4276) was used in immunocytochemistry on human samples at 1:1000 (fig 3). Skelet Muscle (2016) ncbi
mouse monoclonal (MY-32)
  • western blot; mouse; fig 2
In order to investigate the modulator of skeletal muscle sarcomeric morphometry associated to modulation of protein-protein interactions by O-GlcNAcylation, MilliporeSigma MYH1 antibody (Sigma, my32) was used in western blot on mouse samples (fig 2). Biochim Biophys Acta (2016) ncbi
mouse monoclonal (MY-32)
  • immunocytochemistry; mouse; fig 7
MilliporeSigma MYH1 antibody (Sigma, M4276) was used in immunocytochemistry on mouse samples (fig 7). Nucleic Acids Res (2016) ncbi
mouse monoclonal (MY-32)
  • immunohistochemistry - frozen section; human; 1:2000; loading ...; fig 3a, b
MilliporeSigma MYH1 antibody (Sigma, M4276) was used in immunohistochemistry - frozen section on human samples at 1:2000 (fig 3a, b). Biomed Res Int (2016) ncbi
mouse monoclonal (MY-32)
  • immunohistochemistry - frozen section; mouse; 1:300; fig 4
MilliporeSigma MYH1 antibody (Sigma-Aldrich, M4276) was used in immunohistochemistry - frozen section on mouse samples at 1:300 (fig 4). PLoS ONE (2016) ncbi
mouse monoclonal (MY-32)
  • immunocytochemistry; human; 1:400; fig 1
  • western blot; human; 1:3000; fig 2
  • immunocytochemistry; mouse; 1:400; fig 1
  • western blot; mouse; 1:3000; fig 2
MilliporeSigma MYH1 antibody (Sigma, M4276) was used in immunocytochemistry on human samples at 1:400 (fig 1), in western blot on human samples at 1:3000 (fig 2), in immunocytochemistry on mouse samples at 1:400 (fig 1) and in western blot on mouse samples at 1:3000 (fig 2). Sci Rep (2015) ncbi
mouse monoclonal (MY-32)
  • immunohistochemistry - paraffin section; human; 1:1000; fig 5
MilliporeSigma MYH1 antibody (Sigma, M1570) was used in immunohistochemistry - paraffin section on human samples at 1:1000 (fig 5). Physiol Rep (2015) ncbi
mouse monoclonal (MY-32)
  • immunocytochemistry; mouse; fig 5
In order to study the therapeutic use of the inhibitory core of the prodomain of myostatin, MilliporeSigma MYH1 antibody (Sigma-Aldrich, MY-32) was used in immunocytochemistry on mouse samples (fig 5). PLoS ONE (2015) ncbi
mouse monoclonal (MY-32)
  • western blot; chicken; 1:500
MilliporeSigma MYH1 antibody (Sigma-Aldrich, M4276) was used in western blot on chicken samples at 1:500. Biosci Biotechnol Biochem (2015) ncbi
mouse monoclonal (MY-32)
  • immunohistochemistry; mouse; 1:250; fig 3
In order to determine tissue specific functions of DLL1 or DLL4 using transgenic mice, MilliporeSigma MYH1 antibody (Sigma-Aldrich, My32) was used in immunohistochemistry on mouse samples at 1:250 (fig 3). PLoS Genet (2015) ncbi
mouse monoclonal (MY-32)
  • immunohistochemistry - paraffin section; human; fig 5a
MilliporeSigma MYH1 antibody (SIGMA, M4276) was used in immunohistochemistry - paraffin section on human samples (fig 5a). BMC Genomics (2015) ncbi
mouse monoclonal (MY-32)
  • immunohistochemistry - paraffin section; mouse; 1:800; fig 3
MilliporeSigma MYH1 antibody (Sigma, M4276) was used in immunohistochemistry - paraffin section on mouse samples at 1:800 (fig 3). Am J Physiol Endocrinol Metab (2015) ncbi
mouse monoclonal (MY-32)
  • immunohistochemistry; rat; 1:100
MilliporeSigma MYH1 antibody (Sigma, M4276) was used in immunohistochemistry on rat samples at 1:100. Muscle Nerve (2015) ncbi
mouse monoclonal (MY-32)
  • immunocytochemistry; mouse; 1:250; fig 6e
MilliporeSigma MYH1 antibody (Sigma-Aldrich, M4276) was used in immunocytochemistry on mouse samples at 1:250 (fig 6e). Hum Mol Genet (2015) ncbi
mouse monoclonal (MY-32)
  • immunohistochemistry - frozen section; human; 1:2000; fig 1
MilliporeSigma MYH1 antibody (sigma, M4276) was used in immunohistochemistry - frozen section on human samples at 1:2000 (fig 1). Biomed Res Int (2015) ncbi
mouse monoclonal (MY-32)
  • immunohistochemistry - paraffin section; human
MilliporeSigma MYH1 antibody (Sigma-Aldrich, M4276) was used in immunohistochemistry - paraffin section on human samples . J Surg Res (2015) ncbi
mouse monoclonal (MY-32)
  • immunohistochemistry - frozen section; mouse
MilliporeSigma MYH1 antibody (Sigma, M4276) was used in immunohistochemistry - frozen section on mouse samples . Skelet Muscle (2015) ncbi
mouse monoclonal (MY-32)
  • immunocytochemistry; mouse; 1:2000; fig 3
MilliporeSigma MYH1 antibody (Sigma, M4276) was used in immunocytochemistry on mouse samples at 1:2000 (fig 3). J Cell Biol (2014) ncbi
mouse monoclonal (MY-32)
  • immunocytochemistry; mouse
  • western blot; mouse; 1:4000
MilliporeSigma MYH1 antibody (Sigma-Aldrich, M4276) was used in immunocytochemistry on mouse samples and in western blot on mouse samples at 1:4000. Cell Physiol Biochem (2014) ncbi
mouse monoclonal (MY-32)
  • immunohistochemistry - paraffin section; mouse
In order to study the contribution of chemokine-like receptor-1 in skeletal muscles, MilliporeSigma MYH1 antibody (Sigma, M4276) was used in immunohistochemistry - paraffin section on mouse samples . Am J Physiol Cell Physiol (2012) ncbi
Articles Reviewed
  1. Sefton E, Gallardo M, Tobin C, Collins B, Colasanto M, Merrell A, et al. Fibroblast-derived Hgf controls recruitment and expansion of muscle during morphogenesis of the mammalian diaphragm. elife. 2022;11: pubmed publisher
  2. Schr xf6 tter S, Yuskaitis C, MacArthur M, Mitchell S, Hosios A, Osipovich M, et al. The non-essential TSC complex component TBC1D7 restricts tissue mTORC1 signaling and brain and neuron growth. Cell Rep. 2022;39:110824 pubmed publisher
  3. Eigler T, Zarfati G, Amzallag E, Sinha S, Segev N, Zabary Y, et al. ERK1/2 inhibition promotes robust myotube growth via CaMKII activation resulting in myoblast-to-myotube fusion. Dev Cell. 2021;56:3349-3363.e6 pubmed publisher
  4. Ramirez Martinez A, Zhang Y, Chen K, Kim J, Cenik B, McAnally J, et al. The nuclear envelope protein Net39 is essential for muscle nuclear integrity and chromatin organization. Nat Commun. 2021;12:690 pubmed publisher
  5. Pal A, Leung J, Ang G, Rao V, Pignata L, Lim H, et al. EHMT2 epigenetically suppresses Wnt signaling and is a potential target in embryonal rhabdomyosarcoma. elife. 2020;9: pubmed publisher
  6. Sachdev U, Ferrari R, Cui X, Pius A, Sahu A, Reynolds M, et al. Caspase1/11 signaling affects muscle regeneration and recovery following ischemia, and can be modulated by chloroquine. Mol Med. 2020;26:69 pubmed publisher
  7. Perrin A, Metay C, Villanova M, Carlier R, Pegoraro E, Juntas Morales R, et al. A new congenital multicore titinopathy associated with fast myosin heavy chain deficiency. Ann Clin Transl Neurol. 2020;7:846-854 pubmed publisher
  8. Arc Chagnaud C, Py G, Fovet T, Roumanille R, Demangel R, Pagano A, et al. Evaluation of an Antioxidant and Anti-inflammatory Cocktail Against Human Hypoactivity-Induced Skeletal Muscle Deconditioning. Front Physiol. 2020;11:71 pubmed publisher
  9. Ding S, Nie Y, Zhang X, Liu X, Wang C, Yuan R, et al. The SNPs in myoD gene from normal muscle developing individuals have no effect on muscle mass. BMC Genet. 2019;20:72 pubmed publisher
  10. Chakraborty A, Laukka T, Myllykoski M, Ringel A, Booker M, Tolstorukov M, et al. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science. 2019;363:1217-1222 pubmed publisher
  11. Chang H, Kao C, Chung S, Chen W, Aninda L, Chen Y, et al. Bhlhe40 differentially regulates the function and number of peroxisomes and mitochondria in myogenic cells. Redox Biol. 2019;20:321-333 pubmed publisher
  12. Han W, Anderson S, Mohiuddin M, Barros D, Nakhai S, Shin E, et al. Synthetic matrix enhances transplanted satellite cell engraftment in dystrophic and aged skeletal muscle with comorbid trauma. Sci Adv. 2018;4:eaar4008 pubmed publisher
  13. Zhu X, Yuan X, Wang M, Fang Y, Liu Y, Zhang X, et al. A Wnt/Notch/Pax7 signaling network supports tissue integrity in tongue development. J Biol Chem. 2017;292:9409-9419 pubmed publisher
  14. Cortez Toledo O, Schnair C, Sangngern P, Metzger D, Chao L. Nur77 deletion impairs muscle growth during developmental myogenesis and muscle regeneration in mice. PLoS ONE. 2017;12:e0171268 pubmed publisher
  15. Beyer S, Pontis J, Schirwis E, Battisti V, Rudolf A, Le Grand F, et al. Canonical Wnt signalling regulates nuclear export of Setdb1 during skeletal muscle terminal differentiation. Cell Discov. 2016;2:16037 pubmed
  16. Kim E, Page P, Dellefave Castillo L, McNally E, Wyatt E. Direct reprogramming of urine-derived cells with inducible MyoD for modeling human muscle disease. Skelet Muscle. 2016;6:32 pubmed publisher
  17. Lambert M, Richard E, Duban Deweer S, Krzewinski F, Deracinois B, Dupont E, et al. O-GlcNAcylation is a key modulator of skeletal muscle sarcomeric morphometry associated to modulation of protein-protein interactions. Biochim Biophys Acta. 2016;1860:2017-30 pubmed publisher
  18. Rao V, Ow J, Shankar S, Bharathy N, Manikandan J, Wang Y, et al. G9a promotes proliferation and inhibits cell cycle exit during myogenic differentiation. Nucleic Acids Res. 2016;44:8129-43 pubmed publisher
  19. Jensen L, Jørgensen L, Bech R, Frandsen U, Schrøder H. Skeletal Muscle Remodelling as a Function of Disease Progression in Amyotrophic Lateral Sclerosis. Biomed Res Int. 2016;2016:5930621 pubmed publisher
  20. Watanabe H, Nakano T, Saito R, Akasaka D, Saito K, Ogasawara H, et al. Serotonin Improves High Fat Diet Induced Obesity in Mice. PLoS ONE. 2016;11:e0147143 pubmed publisher
  21. Lee S, Won J, Yang J, Lee J, Kim S, Lee E, et al. AKAP6 inhibition impairs myoblast differentiation and muscle regeneration: Positive loop between AKAP6 and myogenin. Sci Rep. 2015;5:16523 pubmed publisher
  22. Pourteymour S, Lee S, Langleite T, Eckardt K, Hjorth M, Bindesbøll C, et al. Perilipin 4 in human skeletal muscle: localization and effect of physical activity. Physiol Rep. 2015;3: pubmed publisher
  23. Ohsawa Y, Takayama K, Nishimatsu S, Okada T, Fujino M, Fukai Y, et al. The Inhibitory Core of the Myostatin Prodomain: Its Interaction with Both Type I and II Membrane Receptors, and Potential to Treat Muscle Atrophy. PLoS ONE. 2015;10:e0133713 pubmed publisher
  24. Ueda S, Kokaji Y, Simizu S, Honda K, Yoshino K, Kamisoyama H, et al. Chicken heat shock protein HSPB1 increases and interacts with αB-crystallin in aged skeletal muscle. Biosci Biotechnol Biochem. 2015;79:1867-75 pubmed publisher
  25. Preuße K, Tveriakhina L, Schuster Gossler K, Gaspar C, Rosa A, Henrique D, et al. Context-Dependent Functional Divergence of the Notch Ligands DLL1 and DLL4 In Vivo. PLoS Genet. 2015;11:e1005328 pubmed publisher
  26. Lindskog C, Linné J, Fagerberg L, Hallström B, Sundberg C, Lindholm M, et al. The human cardiac and skeletal muscle proteomes defined by transcriptomics and antibody-based profiling. BMC Genomics. 2015;16:475 pubmed publisher
  27. Yamaleyeva L, Pulgar V, Lindsey S, Yamane L, Varagic J, McGee C, et al. Uterine artery dysfunction in pregnant ACE2 knockout mice is associated with placental hypoxia and reduced umbilical blood flow velocity. Am J Physiol Endocrinol Metab. 2015;309:E84-94 pubmed publisher
  28. Oishi Y, Roy R, Ogata T, Ohira Y. Heat-Stress effects on the myosin heavy chain phenotype of rat soleus fibers during the early stages of regeneration. Muscle Nerve. 2015;52:1047-56 pubmed publisher
  29. Sohn J, Lu A, Tang Y, Wang B, Huard J. Activation of non-myogenic mesenchymal stem cells during the disease progression in dystrophic dystrophin/utrophin knockout mice. Hum Mol Genet. 2015;24:3814-29 pubmed publisher
  30. Jensen L, Andersen L, Schrøder H, Frandsen U, Sjøgaard G. Neuronal nitric oxide synthase is dislocated in type I fibers of myalgic muscle but can recover with physical exercise training. Biomed Res Int. 2015;2015:265278 pubmed publisher
  31. Koutakis P, Myers S, Cluff K, Ha D, Haynatzki G, McComb R, et al. Abnormal myofiber morphology and limb dysfunction in claudication. J Surg Res. 2015;196:172-9 pubmed publisher
  32. Anderson C, Hu J, Barnes R, Heidt A, Cornelissen I, Black B. Myocyte enhancer factor 2C function in skeletal muscle is required for normal growth and glucose metabolism in mice. Skelet Muscle. 2015;5:7 pubmed publisher
  33. Zhang D, Wang X, Li Y, Zhao L, Lu M, Yao X, et al. Thyroid hormone regulates muscle fiber type conversion via miR-133a1. J Cell Biol. 2014;207:753-66 pubmed publisher
  34. Brun C, Périé L, Baraige F, Vernus B, Bonnieu A, Blanquet V. Absence of hyperplasia in Gasp-1 overexpressing mice is dependent on myostatin up-regulation. Cell Physiol Biochem. 2014;34:1241-59 pubmed publisher
  35. Issa M, Muruganandan S, Ernst M, Parlee S, Zabel B, Butcher E, et al. Chemokine-like receptor 1 regulates skeletal muscle cell myogenesis. Am J Physiol Cell Physiol. 2012;302:C1621-31 pubmed publisher