This is a Validated Antibody Database (VAD) review about Rhesus mon.. MAMU-DRB5, based on 73 published articles (read how Labome selects the articles), using MAMU-DRB5 antibody in all methods. It is aimed to help Labome visitors find the most suited MAMU-DRB5 antibody. Please note the number of articles fluctuates since newly identified citations are added and citations for discontinued catalog numbers are removed regularly.
MAMU-DRB5 synonym: Mamu-DRB1; drb; MHC class II antigen, Mamu-DRB5

BioLegend
mouse monoclonal (L243)
  • mass cytometry; human; loading ...; fig 2b
BioLegend MAMU-DRB5 antibody (Biolegend, 307602) was used in mass cytometry on human samples (fig 2b). Cell (2019) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; 2 ug/ml; loading ...; fig s13
BioLegend MAMU-DRB5 antibody (BioLegend, 307623) was used in flow cytometry on human samples at 2 ug/ml (fig s13). Science (2019) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig 3a
BioLegend MAMU-DRB5 antibody (BioLegend, 307624) was used in flow cytometry on human samples (fig 3a). J Clin Invest (2019) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig 1a
BioLegend MAMU-DRB5 antibody (BioLegend, L243) was used in flow cytometry on human samples (fig 1a). Front Immunol (2018) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; 1:200; loading ...; fig 1b
BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used in flow cytometry on human samples at 1:200 (fig 1b). Front Immunol (2018) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig s3k
BioLegend MAMU-DRB5 antibody (Biolegend, 307618) was used in flow cytometry on human samples (fig s3k). Cell Rep (2018) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; fig 4a
BioLegend MAMU-DRB5 antibody (BioLegend, 307618) was used in flow cytometry on human samples (fig 4a). J Exp Med (2018) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig s1c
BioLegend MAMU-DRB5 antibody (BioLegend, L243) was used in flow cytometry on human samples (fig s1c). J Immunol (2018) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig 1a
BioLegend MAMU-DRB5 antibody (Biolegend, 307602) was used in flow cytometry on human samples (fig 1a). Cell (2018) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig s2d
BioLegend MAMU-DRB5 antibody (BioLegend, 307624) was used in flow cytometry on human samples (fig s2d). Nat Immunol (2018) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig 1a
BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used in flow cytometry on human samples (fig 1a). J Immunol (2018) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig s3b
BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used in flow cytometry on human samples (fig s3b). J Exp Med (2018) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig 1a
BioLegend MAMU-DRB5 antibody (Biolegend, 307616) was used in flow cytometry on human samples (fig 1a). J Clin Invest (2018) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig 1a
BioLegend MAMU-DRB5 antibody (Biolegend, 307616) was used in flow cytometry on human samples (fig 1a). Nucleic Acids Res (2018) ncbi
mouse monoclonal (L243)
  • blocking or activating experiments; human; loading ...; fig s2b
BioLegend MAMU-DRB5 antibody (BioLegend, L243) was used in blocking or activating experiments on human samples (fig s2b). Nat Med (2018) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig s1
BioLegend MAMU-DRB5 antibody (BioLegend, L243) was used in flow cytometry on human samples (fig s1). J Biol Chem (2018) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig 4a
BioLegend MAMU-DRB5 antibody (BioLegend, H243) was used in flow cytometry on human samples (fig 4a). Int J Infect Dis (2018) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig 1b
BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used in flow cytometry on human samples (fig 1b). JCI Insight (2018) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig 3b
BioLegend MAMU-DRB5 antibody (BioLegend, L243) was used in flow cytometry on human samples (fig 3b). Oncol Lett (2018) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; fig 1a
BioLegend MAMU-DRB5 antibody (BioLegend, L243) was used in flow cytometry on human samples (fig 1a). J Exp Med (2018) ncbi
mouse monoclonal (L243)
  • mass cytometry; human; loading ...; fig 2a
In order to investigate the immune composition of tumor microenvironment in hepatocellular carcinoma, BioLegend MAMU-DRB5 antibody (BioLegend, L243) was used in mass cytometry on human samples (fig 2a). Proc Natl Acad Sci U S A (2017) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; 1:50; loading ...
In order to define the transcriptional network specifies conferring microglia identity, BioLegend MAMU-DRB5 antibody (BioLegend, 307616) was used in flow cytometry on human samples at 1:50. Science (2017) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; tbl s3
In order to conduct a phenotypical investigation of clear cell renal cell carcinoma, BioLegend MAMU-DRB5 antibody (biolegend, L243) was used in flow cytometry on human samples (tbl s3). Cell (2017) ncbi
mouse monoclonal (L243)
  • mass cytometry; human; loading ...; fig 1h
  • flow cytometry; human
In order to map the lineage of human dendritic cells, BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used in mass cytometry on human samples (fig 1h) and in flow cytometry on human samples . Science (2017) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig s6a
In order to investigate the involvement of the TRIF pathway against the infection of Zika, Chikungunya, and Dengue viruses, BioLegend MAMU-DRB5 antibody (BioLegend, L243) was used in flow cytometry on human samples (fig s6a). MBio (2017) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig st12
In order to identify new types of human blood dendritic cells, monocytes, and progenitors through single-cell RNA-seq, BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used in flow cytometry on human samples (fig st12). Science (2017) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig 2e
BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used in flow cytometry on human samples (fig 2e). Oncoimmunology (2017) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; 1:200; loading ...; fig s1d
BioLegend MAMU-DRB5 antibody (BioLegend, L243) was used in flow cytometry on human samples at 1:200 (fig s1d). Nat Commun (2017) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig 2b
In order to analyze B-cell responses to meningococcal polysaccharide and conjugate vaccines against Neisseria meningitidis, BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used in flow cytometry on human samples (fig 2b). Genome Med (2017) ncbi
mouse monoclonal (L243)
  • flow cytometry; mouse; loading ...; fig 2d
In order to study the impact of modulating IFN-I signaling during suppressive combined antiretroviral therapy, BioLegend MAMU-DRB5 antibody (BioLegend, L243) was used in flow cytometry on mouse samples (fig 2d). J Clin Invest (2017) ncbi
mouse monoclonal (L243)
  • flow cytometry; Rhesus monkey; loading ...; fig 7a
In order to study the efficacy of nanoparticle adjuvants for inducing protective immunity against simian immunodeficiency virus, BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used in flow cytometry on Rhesus monkey samples (fig 7a). J Virol (2017) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; tbl 1
In order to demonstrate that freezing already-stained samples suspended in 10% DMSO in FBS is practical and efficient way to preserve already-stained samples for mass cytometry assessment, BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used in flow cytometry on human samples (tbl 1). Cytometry A (2017) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig 3b
BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used in flow cytometry on human samples (fig 3b). Oncotarget (2016) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...
In order to identify RLTPR in patients and determine the effects of these mutations on CD4 positive T cells, BioLegend MAMU-DRB5 antibody (BioLegend, L243) was used in flow cytometry on human samples . J Exp Med (2016) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig 2a
BioLegend MAMU-DRB5 antibody (BioLegend, 307606) was used in flow cytometry on human samples (fig 2a). Oncogene (2017) ncbi
mouse monoclonal (L243)
  • flow cytometry; mouse; loading ...; fig 1c
In order to test if Mincle signaling drives intrahepatic inflammation and liver injury in Con A hepatitis, BioLegend MAMU-DRB5 antibody (BioLegend, L243) was used in flow cytometry on mouse samples (fig 1c). J Immunol (2016) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; tbl 2
In order to identify peanut proteins that can predict peanut allergy., BioLegend MAMU-DRB5 antibody (Biolegend, 307624) was used in flow cytometry on human samples (tbl 2). J Allergy Clin Immunol (2017) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig 2b
In order to elucidate the mechanisms by which DRibbles induce T-cell activation, BioLegend MAMU-DRB5 antibody (Biolegend, 307628) was used in flow cytometry on human samples (fig 2b). Cell Death Dis (2016) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...
BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used in flow cytometry on human samples . J Allergy Clin Immunol (2016) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig 1b
In order to ask if CD2 is involved in the response of adaptive natural killer cells to HCMV, BioLegend MAMU-DRB5 antibody (BioLegend, L243) was used in flow cytometry on human samples (fig 1b). Eur J Immunol (2016) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; fig 6a
BioLegend MAMU-DRB5 antibody (BioLegend, L243) was used in flow cytometry on human samples (fig 6a). J Biol Chem (2016) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig 2b
BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used in flow cytometry on human samples (fig 2b). PLoS ONE (2016) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig 7a
BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used in flow cytometry on human samples (fig 7a). J Biol Chem (2016) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig s3
BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used in flow cytometry on human samples (fig s3). Nature (2016) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig 3
In order to study the pharmacologic inhibition of PI3K and MEK pathways in mixed cultures of human mononuclear cells., BioLegend MAMU-DRB5 antibody (BioLegend, L243) was used in flow cytometry on human samples (fig 3). Am J Transplant (2016) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; fig s1c
  • immunocytochemistry; human
In order to discuss the impact of filaggrin mutations on the development of atopic dermatitis, BioLegend MAMU-DRB5 antibody (BioLegend, L243) was used in flow cytometry on human samples (fig s1c) and in immunocytochemistry on human samples . J Allergy Clin Immunol (2016) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; 1:200; loading ...; fig s1a
In order to find that central nervous system infiltration of peripheral monocytes correlates with improved motor neuron survival in a genetic amyotrophic lateral sclerosis mouse model, BioLegend MAMU-DRB5 antibody (Biolegend, 307616) was used in flow cytometry on human samples at 1:200 (fig s1a). Acta Neuropathol (2016) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; fig s6a
In order to test if AML patients treated decitabine have induced expression of cancer testis antigens, BioLegend MAMU-DRB5 antibody (BioLegend, L243) was used in flow cytometry on human samples (fig s6a). Oncotarget (2016) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; 1:20; fig 2
BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used in flow cytometry on human samples at 1:20 (fig 2). Nat Commun (2016) ncbi
mouse monoclonal (L243)
  • other; human; loading ...; fig st1
  • flow cytometry; human; loading ...; fig st3
In order to use size exclusion chromatography-microsphere-based affinity proteomics to study clinical samples obtained from pediatric acute leukemia patients, BioLegend MAMU-DRB5 antibody (BioLegend, L243) was used in other on human samples (fig st1) and in flow cytometry on human samples (fig st3). Mol Cell Proteomics (2016) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig 1a
In order to study the role of human head and neck squamous cell carcinoma-associated semaphorin 4d in myeloid-derived suppressor cells, BioLegend MAMU-DRB5 antibody (BioLegend, 307610) was used in flow cytometry on human samples (fig 1a). J Immunol (2016) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig s1b
In order to study age-related changes in human immunity during a primary virus infection experimentally induced by immunization with live-attenuated yellow fever vaccine, BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used in flow cytometry on human samples (fig s1b). J Immunol (2015) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; fig 1
BioLegend MAMU-DRB5 antibody (Biolegend, 307628) was used in flow cytometry on human samples (fig 1). PLoS ONE (2015) ncbi
mouse monoclonal (L243)
  • flow cytometry; human
BioLegend MAMU-DRB5 antibody (BioLegend, L243) was used in flow cytometry on human samples . Clin Cancer Res (2016) ncbi
mouse monoclonal (L243)
  • flow cytometry; human
In order to identify the cell surface markers in synovial mesenchymal stem cells, BioLegend MAMU-DRB5 antibody (Biolegend, 307604) was used in flow cytometry on human samples . Cytometry A (2015) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; fig 2a
In order to investigate the effect of thymosin on HL-60 cell maturation, BioLegend MAMU-DRB5 antibody (Biolegend, 307602) was used in flow cytometry on human samples (fig 2a). Mol Med Rep (2015) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; tbl 1
In order to compare the use of CD229, CD54, and CD319 expression for the identification of normal and aberrant plasma cells, BioLegend MAMU-DRB5 antibody (BioLegend, L243) was used in flow cytometry on human samples (tbl 1). Cytometry B Clin Cytom (2016) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; fig 3
In order to investigate the dynamics and characteristics of natural killer cell types in the human ocular mucosal surface in situ during infection with group D human adenoviruses, BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used in flow cytometry on human samples (fig 3). Mucosal Immunol (2016) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; tbl s1
BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used in flow cytometry on human samples (tbl s1). PLoS ONE (2015) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig 9a
In order to explore a macrophage TLR9-BTK-calcineurin-NFAT signaling pathway involved in impair fungal immunity, BioLegend MAMU-DRB5 antibody (Biolegend, 307617) was used in flow cytometry on human samples (fig 9a). EMBO Mol Med (2015) ncbi
mouse monoclonal (L243)
  • blocking or activating experiments; human; 15 ug/ml; fig 4
BioLegend MAMU-DRB5 antibody (BioLegend, L432) was used in blocking or activating experiments on human samples at 15 ug/ml (fig 4). Vaccine (2015) ncbi
mouse monoclonal (L243)
  • flow cytometry; human
In order to discuss how inflammation contributes to pulmonary arterial hypertension, BioLegend MAMU-DRB5 antibody (BioLegend, clone L243) was used in flow cytometry on human samples . Chest (2015) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig 5
In order to study the immune effects of tadalafil in patients with head and neck squamous cell carcinoma., BioLegend MAMU-DRB5 antibody (BioLegend, L243) was used in flow cytometry on human samples (fig 5). Clin Cancer Res (2015) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; fig 3
BioLegend MAMU-DRB5 antibody (BioLegend, L243) was used in flow cytometry on human samples (fig 3). Nephrol Dial Transplant (2015) ncbi
mouse monoclonal (L243)
  • flow cytometry; human
BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used in flow cytometry on human samples . Eur J Immunol (2015) ncbi
mouse monoclonal (L243)
  • flow cytometry; human
In order to identify the role of GammaDelta T cells in acute HIV infection, BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used in flow cytometry on human samples . PLoS ONE (2014) ncbi
mouse monoclonal (L243)
  • flow cytometry; human
BioLegend MAMU-DRB5 antibody (BioLegend, L243) was used in flow cytometry on human samples . J Leukoc Biol (2014) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; fig 1
In order to study the role of plasmacytoid dendritic cells in human immunodeficiency virus type 1 infection and pathogenesis, BioLegend MAMU-DRB5 antibody (Biolegend, 307604) was used in flow cytometry on human samples (fig 1). PLoS Pathog (2014) ncbi
mouse monoclonal (L243)
  • flow cytometry; human
In order to determine the presence, frequency, association to other immune parameters, and functional properties of circulating CD14(+) cells lacking HLA-DR expression in patients with untreated chronic lymphocytic leukemia, BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used in flow cytometry on human samples . Blood (2014) ncbi
mouse monoclonal (L243)
  • flow cytometry; human
BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used in flow cytometry on human samples . Front Immunol (2014) ncbi
mouse monoclonal (L243)
  • flow cytometry; human; loading ...; fig 6b
BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used in flow cytometry on human samples (fig 6b). J Immunol (2014) ncbi
mouse monoclonal (L243)
In order to investigate the progression of innate responses to mycobacteria in infants, BioLegend MAMU-DRB5 antibody (Biolegend, L243) was used . J Immunol (2014) ncbi
mouse monoclonal (L243)
  • blocking or activating experiments; human; loading ...; fig 5A
In order to investigate human T lymphotropic virus type 1 bZIP factor-specific CD4 T cell responses, BioLegend MAMU-DRB5 antibody (BioLegend, L243) was used in blocking or activating experiments on human samples (fig 5A). J Immunol (2014) ncbi
Articles Reviewed
  1. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed publisher
  2. Sweere J, Van Belleghem J, Ishak H, Bach M, Popescu M, Sunkari V, et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science. 2019;363: pubmed publisher
  3. Crippa S, Rossella V, Aprile A, Silvestri L, Rivis S, Scaramuzza S, et al. Bone marrow stromal cells from β-thalassemia patients have impaired hematopoietic supportive capacity. J Clin Invest. 2019;129:1566-1580 pubmed publisher
  4. Richardson J, Armbruster N, Günter M, Henes J, Autenrieth S. Staphylococcus aureus PSM Peptides Modulate Human Monocyte-Derived Dendritic Cells to Prime Regulatory T Cells. Front Immunol. 2018;9:2603 pubmed publisher
  5. Jones G, Bain C, Fenton T, Kelly A, Brown S, Ivens A, et al. Dynamics of Colon Monocyte and Macrophage Activation During Colitis. Front Immunol. 2018;9:2764 pubmed publisher
  6. Ding L, Kim H, Wang Q, Kearns M, Jiang T, Ohlson C, et al. PARP Inhibition Elicits STING-Dependent Antitumor Immunity in Brca1-Deficient Ovarian Cancer. Cell Rep. 2018;25:2972-2980.e5 pubmed publisher
  7. Kelly A, Günaltay S, McEntee C, Shuttleworth E, Smedley C, Houston S, et al. Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation. J Exp Med. 2018;215:2725-2736 pubmed publisher
  8. Otsuka Y, Watanabe E, Shinya E, Okura S, Saeki H, Geijtenbeek T, et al. Differentiation of Langerhans Cells from Monocytes and Their Specific Function in Inducing IL-22-Specific Th Cells. J Immunol. 2018;201:3006-3016 pubmed publisher
  9. Olin A, Henckel E, Chen Y, Lakshmikanth T, Pou C, Mikes J, et al. Stereotypic Immune System Development in Newborn Children. Cell. 2018;174:1277-1292.e14 pubmed publisher
  10. Kong X, Martinez Barricarte R, Kennedy J, Mele F, Lazarov T, Deenick E, et al. Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency. Nat Immunol. 2018;19:973-985 pubmed publisher
  11. Walwyn Brown K, Guldevall K, Saeed M, Pende D, Önfelt B, MacDonald A, et al. Human NK Cells Lyse Th2-Polarizing Dendritic Cells via NKp30 and DNAM-1. J Immunol. 2018;201:2028-2041 pubmed publisher
  12. Arnold I, Artola Borán M, Tallón de Lara P, Kyburz A, Taube C, OTTEMANN K, et al. Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation. J Exp Med. 2018;215:2055-2072 pubmed publisher
  13. Alissafi T, Hatzioannou A, Mintzas K, Barouni R, Banos A, Sormendi S, et al. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. J Clin Invest. 2018;128:3840-3852 pubmed publisher
  14. Dumbovic G, Biayna J, Banús J, Samuelsson J, Roth A, Diederichs S, et al. A novel long non-coding RNA from NBL2 pericentromeric macrosatellite forms a perinucleolar aggregate structure in colon cancer. Nucleic Acids Res. 2018;46:5504-5524 pubmed publisher
  15. Zacharakis N, Chinnasamy H, Black M, Xu H, Lu Y, Zheng Z, et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med. 2018;24:724-730 pubmed publisher
  16. Melo Gonzalez F, Fenton T, Forss C, Smedley C, Goenka A, MacDonald A, et al. Intestinal mucin activates human dendritic cells and IL-8 production in a glycan-specific manner. J Biol Chem. 2018;293:8543-8553 pubmed publisher
  17. Li M, Zhang W, Liu J, Li M, Zhang Y, Xiong Y, et al. Dynamic changes in the immunological characteristics of T lymphocytes in surviving patients with severe fever with thrombocytopenia syndrome (SFTS). Int J Infect Dis. 2018;70:72-80 pubmed publisher
  18. Liu R, Merola J, Manes T, Qin L, Tietjen G, Lopez Giraldez F, et al. Interferon-γ converts human microvascular pericytes into negative regulators of alloimmunity through induction of indoleamine 2,3-dioxygenase 1. JCI Insight. 2018;3: pubmed publisher
  19. Fujisaka Y, Iwata T, Tamai K, Nakamura M, Mochizuki M, Shibuya R, et al. Long non-coding RNA HOTAIR up-regulates chemokine (C-C motif) ligand 2 and promotes proliferation of macrophages and myeloid-derived suppressor cells in hepatocellular carcinoma cell lines. Oncol Lett. 2018;15:509-514 pubmed publisher
  20. Bujko A, Atlasy N, Landsverk O, Richter L, Yaqub S, Horneland R, et al. Transcriptional and functional profiling defines human small intestinal macrophage subsets. J Exp Med. 2018;215:441-458 pubmed publisher
  21. Chew V, Lai L, Pan L, Lim C, Li J, Ong R, et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci U S A. 2017;114:E5900-E5909 pubmed publisher
  22. Gosselin D, Skola D, Coufal N, Holtman I, Schlachetzki J, Sajti E, et al. An environment-dependent transcriptional network specifies human microglia identity. Science. 2017;356: pubmed publisher
  23. Chevrier S, Levine J, Zanotelli V, Silina K, Schulz D, Bacac M, et al. An Immune Atlas of Clear Cell Renal Cell Carcinoma. Cell. 2017;169:736-749.e18 pubmed publisher
  24. See P, Dutertre C, Chen J, Günther P, McGovern N, Irac S, et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science. 2017;356: pubmed publisher
  25. Pryke K, Abraham J, Sali T, Gall B, Archer I, Liu A, et al. A Novel Agonist of the TRIF Pathway Induces a Cellular State Refractory to Replication of Zika, Chikungunya, and Dengue Viruses. MBio. 2017;8: pubmed publisher
  26. Villani A, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356: pubmed publisher
  27. Zhang J, Xu X, Shi M, Chen Y, Yu D, Zhao C, et al. CD13hi Neutrophil-like myeloid-derived suppressor cells exert immune suppression through Arginase 1 expression in pancreatic ductal adenocarcinoma. Oncoimmunology. 2017;6:e1258504 pubmed publisher
  28. Smith N, Pietrancosta N, Davidson S, Dutrieux J, Chauveau L, Cutolo P, et al. Natural amines inhibit activation of human plasmacytoid dendritic cells through CXCR4 engagement. Nat Commun. 2017;8:14253 pubmed publisher
  29. O CONNOR D, Clutterbuck E, Thompson A, Snape M, Ramasamy M, Kelly D, et al. High-dimensional assessment of B-cell responses to quadrivalent meningococcal conjugate and plain polysaccharide vaccine. Genome Med. 2017;9:11 pubmed publisher
  30. Cheng L, Ma J, Li J, Li D, Li G, Li F, et al. Blocking type I interferon signaling enhances T cell recovery and reduces HIV-1 reservoirs. J Clin Invest. 2017;127:269-279 pubmed publisher
  31. Kasturi S, Kozlowski P, Nakaya H, Burger M, Russo P, Pham M, et al. Adjuvanting a Simian Immunodeficiency Virus Vaccine with Toll-Like Receptor Ligands Encapsulated in Nanoparticles Induces Persistent Antibody Responses and Enhanced Protection in TRIM5α Restrictive Macaques. J Virol. 2017;91: pubmed publisher
  32. Sumatoh H, Teng K, Cheng Y, Newell E. Optimization of mass cytometry sample cryopreservation after staining. Cytometry A. 2017;91:48-61 pubmed publisher
  33. Misra S, Selvam A, Wallenberg M, Ambati A, Matolcsy A, Magalhaes I, et al. Selenite promotes all-trans retinoic acid-induced maturation of acute promyelocytic leukemia cells. Oncotarget. 2016;7:74686-74700 pubmed publisher
  34. Wang Y, Ma C, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, et al. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med. 2016;213:2413-2435 pubmed
  35. Deng Y, Cheng J, Fu B, Liu W, Chen G, Zhang Q, et al. Hepatic carcinoma-associated fibroblasts enhance immune suppression by facilitating the generation of myeloid-derived suppressor cells. Oncogene. 2017;36:1090-1101 pubmed publisher
  36. Greco S, Torres Hernandez A, Kalabin A, Whiteman C, Rokosh R, Ravirala S, et al. Mincle Signaling Promotes Con A Hepatitis. J Immunol. 2016;197:2816-27 pubmed publisher
  37. van Erp F, Knol E, Pontoppidan B, Meijer Y, van der Ent C, Knulst A. The IgE and basophil responses to Ara h 2 and Ara h 6 are good predictors of peanut allergy in children. J Allergy Clin Immunol. 2017;139:358-360.e8 pubmed publisher
  38. Xing Y, Cao R, Hu H. TLR and NLRP3 inflammasome-dependent innate immune responses to tumor-derived autophagosomes (DRibbles). Cell Death Dis. 2016;7:e2322 pubmed publisher
  39. Cerny D, Thi Le D, The T, Zuest R, Kg S, Velumani S, et al. Complete human CD1a deficiency on Langerhans cells due to a rare point mutation in the coding sequence. J Allergy Clin Immunol. 2016;138:1709-1712.e11 pubmed publisher
  40. Rölle A, Halenius A, Ewen E, Cerwenka A, Hengel H, Momburg F. CD2-CD58 interactions are pivotal for the activation and function of adaptive natural killer cells in human cytomegalovirus infection. Eur J Immunol. 2016;46:2420-2425 pubmed publisher
  41. Wittmann A, Lamprinaki D, Bowles K, Katzenellenbogen E, Knirel Y, Whitfield C, et al. Dectin-2 Recognizes Mannosylated O-antigens of Human Opportunistic Pathogens and Augments Lipopolysaccharide Activation of Myeloid Cells. J Biol Chem. 2016;291:17629-38 pubmed publisher
  42. Gadd V, Patel P, Jose S, Horsfall L, Powell E, Irvine K. Altered Peripheral Blood Monocyte Phenotype and Function in Chronic Liver Disease: Implications for Hepatic Recruitment and Systemic Inflammation. PLoS ONE. 2016;11:e0157771 pubmed publisher
  43. Zanetti S, Ziblat A, Torres N, Zwirner N, Bouzat C. Expression and Functional Role of ?7 Nicotinic Receptor in Human Cytokine-stimulated Natural Killer (NK) Cells. J Biol Chem. 2016;291:16541-52 pubmed publisher
  44. Ruibal P, Oestereich L, Lüdtke A, Becker Ziaja B, Wozniak D, Kerber R, et al. Unique human immune signature of Ebola virus disease in Guinea. Nature. 2016;533:100-4 pubmed publisher
  45. Zwang N, Zhang R, Germana S, Fan M, Hastings W, Cao A, et al. Selective Sparing of Human Tregs by Pharmacologic Inhibitors of the Phosphatidylinositol 3-Kinase and MEK Pathways. Am J Transplant. 2016;16:2624-38 pubmed publisher
  46. Leitch C, Natafji E, Yu C, Abdul Ghaffar S, Madarasingha N, Venables Z, et al. Filaggrin-null mutations are associated with increased maturation markers on Langerhans cells. J Allergy Clin Immunol. 2016;138:482-490.e7 pubmed publisher
  47. Zondler L, Müller K, Khalaji S, Bliederhäuser C, Ruf W, Grozdanov V, et al. Peripheral monocytes are functionally altered and invade the CNS in ALS patients. Acta Neuropathol. 2016;132:391-411 pubmed publisher
  48. Srivastava P, Paluch B, Matsuzaki J, James S, Collamat Lai G, Blagitko Dorfs N, et al. Induction of cancer testis antigen expression in circulating acute myeloid leukemia blasts following hypomethylating agent monotherapy. Oncotarget. 2016;7:12840-56 pubmed publisher
  49. Johnson D, Estrada M, Salgado R, Sanchez V, Doxie D, Opalenik S, et al. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat Commun. 2016;7:10582 pubmed publisher
  50. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed publisher
  51. Younis R, Han K, Webb T. Human Head and Neck Squamous Cell Carcinoma-Associated Semaphorin 4D Induces Expansion of Myeloid-Derived Suppressor Cells. J Immunol. 2016;196:1419-29 pubmed publisher
  52. Schulz A, Mälzer J, Domingo C, Jürchott K, Grützkau A, Babel N, et al. Low Thymic Activity and Dendritic Cell Numbers Are Associated with the Immune Response to Primary Viral Infection in Elderly Humans. J Immunol. 2015;195:4699-711 pubmed publisher
  53. McCausland M, Juchnowski S, Zidar D, Kuritzkes D, Andrade A, Sieg S, et al. Altered Monocyte Phenotype in HIV-1 Infection Tends to Normalize with Integrase-Inhibitor-Based Antiretroviral Therapy. PLoS ONE. 2015;10:e0139474 pubmed publisher
  54. Rosario M, Liu B, Kong L, Collins L, Schneider S, Chen X, et al. The IL-15-Based ALT-803 Complex Enhances FcγRIIIa-Triggered NK Cell Responses and In Vivo Clearance of B Cell Lymphomas. Clin Cancer Res. 2016;22:596-608 pubmed publisher
  55. Denkovskij J, Rudys R, Bernotiene E, Minderis M, Bagdonas S, Kirdaite G. Cell surface markers and exogenously induced PpIX in synovial mesenchymal stem cells. Cytometry A. 2015;87:1001-11 pubmed publisher
  56. Li X, Liu X, Zhao Y, Zhong R, Song A, Sun L. Effect of thymosin α₁ on the phenotypic and functional maturation of dendritic cells from children with acute lymphoblastic leukemia. Mol Med Rep. 2015;12:6093-7 pubmed publisher
  57. Pojero F, Flores Montero J, Sanoja L, Pérez J, Puig N, Paiva B, et al. Utility of CD54, CD229, and CD319 for the identification of plasma cells in patients with clonal plasma cell diseases. Cytometry B Clin Cytom. 2016;90:91-100 pubmed publisher
  58. Yawata N, Selva K, Liu Y, Tan K, Lee A, Siak J, et al. Dynamic change in natural killer cell type in the human ocular mucosa in situ as means of immune evasion by adenovirus infection. Mucosal Immunol. 2016;9:159-70 pubmed publisher
  59. Weinberg A, Muresan P, Richardson K, Fenton T, Domínguez T, Bloom A, et al. Determinants of vaccine immunogenicity in HIV-infected pregnant women: analysis of B and T cell responses to pandemic H1N1 monovalent vaccine. PLoS ONE. 2015;10:e0122431 pubmed publisher
  60. Herbst S, Shah A, Mazon Moya M, Marzola V, Jensen B, Reed A, et al. Phagocytosis-dependent activation of a TLR9-BTK-calcineurin-NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus. EMBO Mol Med. 2015;7:240-58 pubmed publisher
  61. Tomimaru Y, Mishra S, Safran H, Charpentier K, Martin W, De Groot A, et al. Aspartate-β-hydroxylase induces epitope-specific T cell responses in hepatocellular carcinoma. Vaccine. 2015;33:1256-66 pubmed publisher
  62. Hautefort A, Girerd B, Montani D, Cohen Kaminsky S, Price L, Lambrecht B, et al. T-helper 17 cell polarization in pulmonary arterial hypertension. Chest. 2015;147:1610-1620 pubmed publisher
  63. Weed D, Vella J, Reis I, De La Fuente A, Gomez C, Sargi Z, et al. Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res. 2015;21:39-48 pubmed publisher
  64. Rogacev K, Zawada A, Hundsdorfer J, Achenbach M, Held G, Fliser D, et al. Immunosuppression and monocyte subsets. Nephrol Dial Transplant. 2015;30:143-53 pubmed publisher
  65. Ziblat A, Domaica C, Spallanzani R, Iraolagoitia X, Rossi L, Avila D, et al. IL-27 stimulates human NK-cell effector functions and primes NK cells for IL-18 responsiveness. Eur J Immunol. 2015;45:192-202 pubmed publisher
  66. Li Z, Li W, Li N, Jiao Y, Chen D, Cui L, et al. γδ T cells are involved in acute HIV infection and associated with AIDS progression. PLoS ONE. 2014;9:e106064 pubmed publisher
  67. Chao Y, Kaliaperumal N, Chretien A, Tang S, Lee B, Poidinger M, et al. Human plasmacytoid dendritic cells regulate IFN-α production through activation-induced splicing of IL-18Rα. J Leukoc Biol. 2014;96:1037-46 pubmed publisher
  68. Li G, Cheng M, Nunoya J, Cheng L, Guo H, Yu H, et al. Plasmacytoid dendritic cells suppress HIV-1 replication but contribute to HIV-1 induced immunopathogenesis in humanized mice. PLoS Pathog. 2014;10:e1004291 pubmed publisher
  69. Jitschin R, Braun M, Büttner M, Dettmer Wilde K, Bricks J, Berger J, et al. CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood. 2014;124:750-60 pubmed publisher
  70. Klinker M, Lizzio V, Reed T, Fox D, Lundy S. Human B Cell-Derived Lymphoblastoid Cell Lines Constitutively Produce Fas Ligand and Secrete MHCII(+)FasL(+) Killer Exosomes. Front Immunol. 2014;5:144 pubmed publisher
  71. Fredriksson K, Mishra A, Lam J, Mushaben E, Cuento R, Meyer K, et al. The very low density lipoprotein receptor attenuates house dust mite-induced airway inflammation by suppressing dendritic cell-mediated adaptive immune responses. J Immunol. 2014;192:4497-509 pubmed publisher
  72. Shey M, Nemes E, Whatney W, de Kock M, Africa H, Barnard C, et al. Maturation of innate responses to mycobacteria over the first nine months of life. J Immunol. 2014;192:4833-43 pubmed publisher
  73. Narita T, Ishida T, Masaki A, Suzuki S, Ito A, Mori F, et al. HTLV-1 bZIP factor-specific CD4 T cell responses in adult T cell leukemia/lymphoma patients after allogeneic hematopoietic stem cell transplantation. J Immunol. 2014;192:940-7 pubmed publisher