This is a Validated Antibody Database (VAD) review about Chinese ha.. Gapdh, based on 56 published articles (read how Labome selects the articles), using Gapdh antibody in all methods. It is aimed to help Labome visitors find the most suited Gapdh antibody. Please note the number of articles fluctuates since newly identified citations are added and citations for discontinued catalog numbers are removed regularly.
Gapdh synonym: GAPD; glyceraldehyde-3-phosphate dehydrogenase; Peptidyl-cysteine S-nitrosylase GAPDH

Invitrogen
mouse monoclonal (GA1R)
  • western blot; human; 1:1000; loading ...; fig 6h
  • western blot; mouse; 1:1000; loading ...; fig 6h
In order to study induction of cell death by low frequency magnetic fields, Invitrogen Gapdh antibody (Thermo Fisher Scientific, MA5-15738-BTIN) was used in western blot on human samples at 1:1000 (fig 6h) and in western blot on mouse samples at 1:1000 (fig 6h). Sci Rep (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; 1:5000; fig 9a
In order to investigate the effects of glutathione deficiency on lens homeostasis and cataractogenesis, Invitrogen Gapdh antibody (Thermo Fisher Scientific, MA5-15738) was used in western blot on mouse samples at 1:5000 (fig 9a). Invest Ophthalmol Vis Sci (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; loading ...; fig s1b
In order to report that the Myomixer-Myomaker interaction regulates myofiber formation during muscle development, Invitrogen Gapdh antibody (Thermo Fisher Scientific, MA5-15738) was used in western blot on mouse samples (fig s1b). Science (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; human; loading ...; fig 4e
In order to identify and study the allosteric pockets of SPAK and OSR1, Invitrogen Gapdh antibody (Thermo Scientific, MA5-15738) was used in western blot on human samples (fig 4e). ChemMedChem (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; baker's yeast; fig 1c
In order to describe the effects of 6-Bio using a preclinical model of Parkinson disease, Invitrogen Gapdh antibody (Thermo Scientific, MA5-15738) was used in western blot on baker's yeast samples (fig 1c). Autophagy (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; 1:10,000; loading ...; fig 4f
In order to study the interaction between Hap1 and Dcaf7, Invitrogen Gapdh antibody (Thermo Fisher, GA1R) was used in western blot on mouse samples at 1:10,000 (fig 4f). Proc Natl Acad Sci U S A (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 1:4000; loading ...; fig 1a
In order to determine the role of mitochondrial Cx40 in endothelial cells, Invitrogen Gapdh antibody (Thermo, MA5-15738) was used in western blot on human samples at 1:4000 (fig 1a). Am J Physiol Cell Physiol (2017) ncbi
mouse monoclonal (1D4)
  • western blot; rat; 1:40,000; loading ...
In order to test if increasing the transcription factor cAMP response element-binding protein expression also ameliorates age-related behavioral and biophysical deficits, Invitrogen Gapdh antibody (Thermo Fischer Scientific, MA1-16757) was used in western blot on rat samples at 1:40,000. elife (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; human; loading ...
In order to distinguish the effects of the non-neutrophil-containing plasma fractions on human skeletal muscle myoblast differentiation, Invitrogen Gapdh antibody (Pierce, MA5-15738) was used in western blot on human samples . Am J Sports Med (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; 1:2000; loading ...; fig 1c
In order to discover a gene silencing mechanism in developing mammalian hearts regulated by the interaction of DNMT3B-mediated non-CpG methylation and REST binding, Invitrogen Gapdh antibody (Thermo Fisher, MA5-15738) was used in western blot on mouse samples at 1:2000 (fig 1c). Nucleic Acids Res (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; loading ...
In order to elucidate how calcium-dependent signaling contributes to colitis, Invitrogen Gapdh antibody (Pierce, MA5-15738) was used in western blot on mouse samples . Am J Physiol Gastrointest Liver Physiol (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; human; loading ...; fig 2b
In order to determine effect of oxyresveratrol on intestinal tight junctions through stimulation of trefoil factor 3 production in goblet cells, Invitrogen Gapdh antibody (Thermo Scientific, MA5-15738) was used in western blot on human samples (fig 2b). Biomed Pharmacother (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; loading ...; fig 5d
In order to elucidate how FoxO1 regulates mitochondrial uncoupling proteins, Invitrogen Gapdh antibody (Pierce, MA5-15738) was used in western blot on mouse samples (fig 5d). Cell Death Discov (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; loading ...; fig 4b
In order to report that stiffer pancreatic ductal adenocarcinoma cells are more invasive than more compliant cells, Invitrogen Gapdh antibody (ThermoFisher, MA5-15738) was used in western blot on human samples (fig 4b). Integr Biol (Camb) (2016) ncbi
mouse monoclonal (1D4)
  • western blot; mouse; loading ...; fig 4
In order to evaluate the antifibrotic effect of emodin in silica inhalation-induced lung fibrosis, Invitrogen Gapdh antibody (Invitrogen, MA1-16757) was used in western blot on mouse samples (fig 4). Mol Med Rep (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; loading ...; fig 5a
In order to report that Zfp407 overexpression improved glucose homeostasis, Invitrogen Gapdh antibody (Thermo Fischer, MA5-15738) was used in western blot on mouse samples (fig 5a). Am J Physiol Endocrinol Metab (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; loading ...; fig 1b
In order to investigate the differentiation of mesenchymal stem cells into beige/brown adipocytes, Invitrogen Gapdh antibody (Thermo Fisher, MA5-15738) was used in western blot on human samples (fig 1b). Biochem Biophys Res Commun (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; fission yeast; fig 3
In order to generate and characterize recoded fluorescent proteins for three-color analysis in Schizosaccharomyces pombe, Invitrogen Gapdh antibody (Thermo Scientific, MA5-15738) was used in western blot on fission yeast samples (fig 3). PLoS ONE (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 1:1500; fig 6
In order to characterize 3D-cultured prostate cancer cells' drug response and expression of drug-action associated proteins and the influence of matrices, Invitrogen Gapdh antibody (Thermo Scientific, MA5-15738) was used in western blot on human samples at 1:1500 (fig 6). PLoS ONE (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; fig 6
In order to study the involvement of the host protein ORP1L and interactions between the endoplasmic reticulum and the Coxiella burnetii parasitophorous vacuole, Invitrogen Gapdh antibody (ThermoFisher, MA5-15738) was used in western blot on human samples (fig 6). Cell Microbiol (2017) ncbi
mouse monoclonal (GA1R)
  • western blot; human; fig 3
In order to study novel activities of human cytomegalovirus tegument protein pUL103 by study of protein-protein interactions, Invitrogen Gapdh antibody (Thermo Scientific, MA5-15738) was used in western blot on human samples (fig 3). J Virol (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; fig 2
In order to study protection against ischemic myopathy in high fat fed mice by targeted expression of catalase to mitochondria, Invitrogen Gapdh antibody (Thermo Fisher Scientific, MA5-15738) was used in western blot on mouse samples (fig 2). Diabetes (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; fig 1
In order to learn suppression of autophagy and lipid droplet growth in adipocytes by FoxO1 antagonist, Invitrogen Gapdh antibody (Pierce, MA5-15738) was used in western blot on mouse samples (fig 1). Cell Cycle (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; 1:2000; fig 1c
In order to study the role of cytosolic Ca(2+)/calmodulin-dependent protein kinase II in the high-intensity endurance training that reduces cardiac dysfunction, Invitrogen Gapdh antibody (Thermo Fisher, MA5-15738) was used in western blot on mouse samples at 1:2000 (fig 1c). J Appl Physiol (1985) (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; Caenorhabditis elegans; 1:5000; fig 2
In order to study the lifespan extension of Caenorhabditis elegans by resveratrol and oxyresveratrol by SIR-2.1-dependence, Invitrogen Gapdh antibody (Thermo Scientific, MA5-15738) was used in western blot on Caenorhabditis elegans samples at 1:5000 (fig 2). Exp Biol Med (Maywood) (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; fig 4
In order to learn enhancement of RBM15 protein translation during megakaryocyte differentiation by the AS-RBM15 IncRNA, Invitrogen Gapdh antibody (Thermo Scientific, MA5-15738) was used in western blot on human samples (fig 4). EMBO Rep (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human
In order to assess the effect of 11B3 loss on tumorigenesis, Invitrogen Gapdh antibody (ThermoFisher, MA5-15738-HRP) was used in western blot on human samples . Nature (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; loading ...; fig 1a
In order to investigate gamma-interferon-inducible lysosomal thiol reductase expression in melanoma, Invitrogen Gapdh antibody (Thermo Scientific, GA1R) was used in western blot on human samples (fig 1a). Melanoma Res (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human
In order to discuss the findings of The Reproducibility Project: Cancer Biology, Invitrogen Gapdh antibody (Life Technologies, MA5-15738) was used in western blot on human samples . elife (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 1:1000; fig 1a
In order to determine which 2',5'-oligoadenylate synthetase regulates RNase L activation during viral infection, Invitrogen Gapdh antibody (Thermo Fisher, GA1R) was used in western blot on human samples at 1:1000 (fig 1a). Proc Natl Acad Sci U S A (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 1:5000; fig 2
In order to determine reduction of osteo-inductive potential of human plasma derived extracellular vesicles by a decrease in vesicular galectin-3 levels that decreses with donor age, Invitrogen Gapdh antibody (Pierce, MA5-15738) was used in western blot on human samples at 1:5000 (fig 2). Aging (Albany NY) (2016) ncbi
mouse monoclonal (GA1R)
  • western blot; human; fig 1
In order to report that PRMT1 regulates alternative RNA splicing by reducing RBM15, Invitrogen Gapdh antibody (Thermo Scientific, MA5-15738) was used in western blot on human samples (fig 1). elife (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; fig 6
In order to elucidate the mechanisms by which increased LMNB1 levels cause autosomal dominant leukodystrophy, Invitrogen Gapdh antibody (Pierce, MA515738) was used in western blot on mouse samples (fig 6). J Neurosci (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; 1:100; fig 2d
In order to compare cognitive and motor behaviors in various LRRK2 transgenic mice, Invitrogen Gapdh antibody (Thermo Scientific, MA5-15738) was used in western blot on mouse samples at 1:100 (fig 2d). Parkinsonism Relat Disord (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; baker's yeast; fig 6
In order to develop methods to study pseudouridylation of mRNA, Invitrogen Gapdh antibody (Pierce, MA5-15738) was used in western blot on baker's yeast samples (fig 6). Methods Enzymol (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 1:10,000; fig 1.a,b
In order to examine the role of the host unfolded protein response during L. pneumophila infection, Invitrogen Gapdh antibody (Thermo, MA5-15738) was used in western blot on human samples at 1:10,000 (fig 1.a,b). Nat Commun (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; human
In order to investigate the mechanisms of cell cycle regulation by the small isoform of JADE1, Invitrogen Gapdh antibody (Thermo Scientific, MA5-15738) was used in western blot on human samples . Cell Cycle (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; human; fig 4
In order to investigate alterations in surface protein expression associated with the 11q13 amplicon, Invitrogen Gapdh antibody (Thermo Scientific, MA5-15738) was used in western blot on human samples (fig 4). J Proteome Res (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; 1:5000; fig s3
In order to investigate the role of nebulin in muscle cells using transgenic mice, Invitrogen Gapdh antibody (ThermoScientific, GA1R) was used in western blot on mouse samples at 1:5000 (fig s3). Hum Mol Genet (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; Helicobacter pylori; 1:5000
Invitrogen Gapdh antibody (Thermo Fisher Scientific, GA1R) was used in western blot on Helicobacter pylori samples at 1:5000. Int J Mol Med (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; fission yeast
In order to characterize histone sprocket arginine residue mutants in yeast, Invitrogen Gapdh antibody (Thermo Scientific, MA5-15738) was used in western blot on fission yeast samples . Genetics (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; human
Invitrogen Gapdh antibody (Thermo Scientific, GA1R) was used in western blot on human samples . J Virol (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; human
Invitrogen Gapdh antibody (Thermo Fisher Scientific, GA1R) was used in western blot on human samples . Cell Mol Life Sci (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; rat; fig 1
In order to test if acute pharmacological activation of AKT induces cardioprotection, Invitrogen Gapdh antibody (Pierce, MA5-15738) was used in western blot on rat samples (fig 1). J Transl Med (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse
Invitrogen Gapdh antibody (Thermo Scientific, GA1R) was used in western blot on mouse samples . Infect Immun (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; chicken
Invitrogen Gapdh antibody (Thermo Scientific, GA1R) was used in western blot on chicken samples . Virus Res (2015) ncbi
mouse monoclonal (1D4)
  • western blot; human
In order to correlate epigenomic changes with tumor aggressiveness, Invitrogen Gapdh antibody (Thermo Scientific, MA1-16757) was used in western blot on human samples . Int J Cancer (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; fig 4
In order to assess the effects of TNBS- and DSS-induced colitis on renal Ncx1 expression, Invitrogen Gapdh antibody (Pierce, MA5-15738) was used in western blot on mouse samples (fig 4). J Biol Chem (2015) ncbi
mouse monoclonal (GA1R)
In order to generate safer genetically modified organisms that are dependent on synthetic metabolites, Invitrogen Gapdh antibody (Thermo, MA5-15738) was used . Nature (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse
In order to study the effects of Tamoxifen administration on obesity, Invitrogen Gapdh antibody (Thermo Fisher Scientific, MA5-15738) was used in western blot on mouse samples . Cell Death Dis (2015) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 1:3000; fig 1,2,3,4
In order to study targeting of Ubc13 and ZEB1 by miR-2015 that acts as a tumour radiosensitizer, Invitrogen Gapdh antibody (Thermo, MA5-15738) was used in western blot on human samples at 1:3000 (fig 1,2,3,4). Nat Commun (2014) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 25 ng/ml; fig 4
In order to investigate TRiC-mediated protein folding in the telomerase pathway, Invitrogen Gapdh antibody (Thermo, MA5-15738) was used in western blot on human samples at 25 ng/ml (fig 4). Cell (2014) ncbi
mouse monoclonal (GA1R)
  • western blot; human; 1:2000
Invitrogen Gapdh antibody (Sigma-Aldrich, MA5-15738) was used in western blot on human samples at 1:2000. Breast Cancer Res (2014) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse
Invitrogen Gapdh antibody (Thermo Scientific, GA1R) was used in western blot on mouse samples . Front Physiol (2014) ncbi
mouse monoclonal (GA1R)
  • western blot; mouse; 1:3000; fig 4c
  • western blot; human; 1:3000; fig 1a
In order to show that the zinc finger E-box binding homeobox 1 regulates radiosensitivity and the DNA damage response in breast cancer cells, Invitrogen Gapdh antibody (Thermo, MA5-15738) was used in western blot on mouse samples at 1:3000 (fig 4c) and in western blot on human samples at 1:3000 (fig 1a). Nat Cell Biol (2014) ncbi
mouse monoclonal (GA1R)
  • western blot; rat
In order to examine the p.G2019S mutation in the leucine-rich repeat kinase 2 (LRRK2) and it's role in Parkinson's disease, Invitrogen Gapdh antibody (Thermo, MA5-15738) was used in western blot on rat samples . J Parkinsons Dis (2014) ncbi
Articles Reviewed
  1. Xu Y, Wang Y, Yao A, Xu Z, Dou H, Shen S, et al. Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling Pathway. Sci Rep. 2017;7:11776 pubmed publisher
  2. Whitson J, Zhang X, Medvedovic M, Chen J, Wei Z, Monnier V, et al. Transcriptome of the GSH-Depleted Lens Reveals Changes in Detoxification and EMT Signaling Genes, Transport Systems, and Lipid Homeostasis. Invest Ophthalmol Vis Sci. 2017;58:2666-2684 pubmed publisher
  3. Bi P, Ramirez Martinez A, Li H, Cannavino J, McAnally J, Shelton J, et al. Control of muscle formation by the fusogenic micropeptide myomixer. Science. 2017;356:323-327 pubmed publisher
  4. AlAmri M, Kadri H, Alderwick L, Simpkins N, Mehellou Y. Rafoxanide and Closantel Inhibit SPAK and OSR1 Kinases by Binding to a Highly Conserved Allosteric Site on Their C-terminal Domains. ChemMedChem. 2017;12:639-645 pubmed publisher
  5. Suresh S, Chavalmane A, Dj V, Yarreiphang H, Rai S, Paul A, et al. A novel autophagy modulator 6-Bio ameliorates SNCA/?-synuclein toxicity. Autophagy. 2017;13:1221-1234 pubmed publisher
  6. Xiang J, Yang S, Xin N, Gaertig M, Reeves R, Li S, et al. DYRK1A regulates Hap1-Dcaf7/WDR68 binding with implication for delayed growth in Down syndrome. Proc Natl Acad Sci U S A. 2017;114:E1224-E1233 pubmed publisher
  7. Guo R, Si R, Scott B, Makino A. Mitochondrial connexin40 regulates mitochondrial calcium uptake in coronary endothelial cells. Am J Physiol Cell Physiol. 2017;312:C398-C406 pubmed publisher
  8. Yu X, Curlik D, Oh M, Yin J, Disterhoft J. CREB overexpression in dorsal CA1 ameliorates long-term memory deficits in aged rats. elife. 2017;6: pubmed publisher
  9. Miroshnychenko O, Chang W, Dragoo J. The Use of Platelet-Rich and Platelet-Poor Plasma to Enhance Differentiation of Skeletal Myoblasts: Implications for the Use of Autologous Blood Products for Muscle Regeneration. Am J Sports Med. 2017;45:945-953 pubmed publisher
  10. Zhang D, Wu B, Wang P, Wang Y, Lu P, Nechiporuk T, et al. Non-CpG methylation by DNMT3B facilitates REST binding and gene silencing in developing mouse hearts. Nucleic Acids Res. 2017;45:3102-3115 pubmed publisher
  11. Radhakrishnan V, Gilpatrick M, Parsa N, Kiela P, Ghishan F. Expression of Cav1.3 calcium channel in the human and mouse colon: posttranscriptional inhibition by IFNγ. Am J Physiol Gastrointest Liver Physiol. 2017;312:G77-G84 pubmed publisher
  12. Hwang D, Jo H, Hwang S, Kim J, Kim I, Lim Y. Conditioned medium from LS 174T goblet cells treated with oxyresveratrol strengthens tight junctions in Caco-2 cells. Biomed Pharmacother. 2017;85:280-286 pubmed publisher
  13. Liu L, Tao Z, Zheng L, Brooke J, Smith C, Liu D, et al. FoxO1 interacts with transcription factor EB and differentially regulates mitochondrial uncoupling proteins via autophagy in adipocytes. Cell Death Discov. 2016;2:16066 pubmed
  14. Nguyen A, Nyberg K, Scott M, Welsh A, Nguyen A, Wu N, et al. Stiffness of pancreatic cancer cells is associated with increased invasive potential. Integr Biol (Camb). 2016;8:1232-1245 pubmed
  15. Yang T, Wang J, Pang Y, Dang X, Ren H, Liu Y, et al. Emodin suppresses silica-induced lung fibrosis by promoting Sirt1 signaling via direct contact. Mol Med Rep. 2016;14:4643-4649 pubmed publisher
  16. Charrier A, Wang L, Stephenson E, Ghanta S, Ko C, Croniger C, et al. Zinc finger protein 407 overexpression upregulates PPAR target gene expression and improves glucose homeostasis in mice. Am J Physiol Endocrinol Metab. 2016;311:E869-E880 pubmed publisher
  17. Wang Y, Lin S, Hsieh P, Hung S. Concomitant beige adipocyte differentiation upon induction of mesenchymal stem cells into brown adipocytes. Biochem Biophys Res Commun. 2016;478:689-95 pubmed publisher
  18. Al Sady B, Greenstein R, El Samad H, Braun S, Madhani H. Sensitive and Quantitative Three-Color Protein Imaging in Fission Yeast Using Spectrally Diverse, Recoded Fluorescent Proteins with Experimentally-Characterized In Vivo Maturation Kinetics. PLoS ONE. 2016;11:e0159292 pubmed publisher
  19. Edmondson R, Adcock A, Yang L. Influence of Matrices on 3D-Cultured Prostate Cancer Cells' Drug Response and Expression of Drug-Action Associated Proteins. PLoS ONE. 2016;11:e0158116 pubmed publisher
  20. Justis A, Hansen B, Beare P, King K, Heinzen R, Gilk S. Interactions between the Coxiella burnetii parasitophorous vacuole and the endoplasmic reticulum involve the host protein ORP1L. Cell Microbiol. 2017;19: pubmed publisher
  21. Ortiz D, Glassbrook J, Pellett P. Protein-Protein Interactions Suggest Novel Activities of Human Cytomegalovirus Tegument Protein pUL103. J Virol. 2016;90:7798-810 pubmed publisher
  22. Ryan T, Schmidt C, Green T, Spangenburg E, Neufer P, McClung J. Targeted Expression of Catalase to Mitochondria Protects Against Ischemic Myopathy in High-Fat Diet-Fed Mice. Diabetes. 2016;65:2553-68 pubmed publisher
  23. Liu L, Zheng L, Zou P, Brooke J, Smith C, Long Y, et al. FoxO1 antagonist suppresses autophagy and lipid droplet growth in adipocytes. Cell Cycle. 2016;15:2033-41 pubmed publisher
  24. Høydal M, Stølen T, Kettlewell S, Maier L, Brown J, Sowa T, et al. Exercise training reverses myocardial dysfunction induced by CaMKII?C overexpression by restoring Ca2+ homeostasis. J Appl Physiol (1985). 2016;121:212-20 pubmed publisher
  25. Lee J, Kwon G, Park J, Kim J, Lim Y. Brief Communication: SIR-2.1-dependent lifespan extension of Caenorhabditis elegans by oxyresveratrol and resveratrol. Exp Biol Med (Maywood). 2016;241:1757-63 pubmed publisher
  26. Tran N, Su H, Khodadadi Jamayran A, Lin S, Zhang L, Zhou D, et al. The AS-RBM15 lncRNA enhances RBM15 protein translation during megakaryocyte differentiation. EMBO Rep. 2016;17:887-900 pubmed publisher
  27. Liu Y, Chen C, Xu Z, Scuoppo C, Rillahan C, Gao J, et al. Deletions linked to TP53 loss drive cancer through p53-independent mechanisms. Nature. 2016;531:471-475 pubmed publisher
  28. Nguyen J, Bernert R, In K, Kang P, Sebastiao N, Hu C, et al. Gamma-interferon-inducible lysosomal thiol reductase is upregulated in human melanoma. Melanoma Res. 2016;26:125-37 pubmed publisher
  29. Haven B, Heilig E, Donham C, Settles M, Vasilevsky N, Owen K. Registered report: A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. elife. 2016;5: pubmed publisher
  30. Li Y, Banerjee S, Wang Y, Goldstein S, Dong B, Gaughan C, et al. Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses. Proc Natl Acad Sci U S A. 2016;113:2241-6 pubmed publisher
  31. Weilner S, Keider V, Winter M, Harreither E, Salzer B, Weiss F, et al. Vesicular Galectin-3 levels decrease with donor age and contribute to the reduced osteo-inductive potential of human plasma derived extracellular vesicles. Aging (Albany NY). 2016;8:16-33 pubmed
  32. Zhang L, Tran N, Su H, Wang R, Lu Y, Tang H, et al. Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing. elife. 2015;4: pubmed publisher
  33. Rolyan H, Tyurina Y, Hernandez M, Amoscato A, Sparvero L, Nmezi B, et al. Defects of Lipid Synthesis Are Linked to the Age-Dependent Demyelination Caused by Lamin B1 Overexpression. J Neurosci. 2015;35:12002-17 pubmed publisher
  34. Volta M, Cataldi S, Beccano Kelly D, Munsie L, Tatarnikov I, Chou P, et al. Chronic and acute LRRK2 silencing has no long-term behavioral effects, whereas wild-type and mutant LRRK2 overexpression induce motor and cognitive deficits and altered regulation of dopamine release. Parkinsonism Relat Disord. 2015;21:1156-63 pubmed publisher
  35. Wu G, Huang C, Yu Y. Pseudouridine in mRNA: Incorporation, Detection, and Recoding. Methods Enzymol. 2015;560:187-217 pubmed publisher
  36. Treacy Abarca S, Mukherjee S. Legionella suppresses the host unfolded protein response via multiple mechanisms. Nat Commun. 2015;6:7887 pubmed publisher
  37. Siriwardana N, Meyer R, Panchenko M. The novel function of JADE1S in cytokinesis of epithelial cells. Cell Cycle. 2015;14:2821-34 pubmed publisher
  38. Hoover H, Li J, Marchese J, Rothwell C, Borawoski J, Jeffery D, et al. Quantitative Proteomic Verification of Membrane Proteins as Potential Therapeutic Targets Located in the 11q13 Amplicon in Cancers. J Proteome Res. 2015;14:3670-9 pubmed publisher
  39. Li F, Buck D, De Winter J, Kolb J, Meng H, Birch C, et al. Nebulin deficiency in adult muscle causes sarcomere defects and muscle-type-dependent changes in trophicity: novel insights in nemaline myopathy. Hum Mol Genet. 2015;24:5219-33 pubmed publisher
  40. Yuan Y, Wu Q, Cheng G, Liu X, Liu S, Luo J, et al. Recombinant human lactoferrin enhances the efficacy of triple therapy in mice infected with Helicobacter pylori. Int J Mol Med. 2015;36:363-8 pubmed publisher
  41. Hodges A, Gallegos I, Laughery M, Meas R, Tran L, Wyrick J. Histone Sprocket Arginine Residues Are Important for Gene Expression, DNA Repair, and Cell Viability in Saccharomyces cerevisiae. Genetics. 2015;200:795-806 pubmed publisher
  42. Wright J, Atwan Z, Morris S, Leppard K. The Human Adenovirus Type 5 L4 Promoter Is Negatively Regulated by TFII-I and L4-33K. J Virol. 2015;89:7053-63 pubmed publisher
  43. Pasqualon T, Pruessmeyer J, Weidenfeld S, Babendreyer A, Groth E, Schumacher J, et al. A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation. Cell Mol Life Sci. 2015;72:3783-801 pubmed publisher
  44. Moreira J, Wohlwend M, Alves M, Wisløff U, Bye A. A small molecule activator of AKT does not reduce ischemic injury of the rat heart. J Transl Med. 2015;13:76 pubmed publisher
  45. Richardson E, Shukla S, Sweet D, Wearsch P, Tsichlis P, Boom W, et al. Toll-like receptor 2-dependent extracellular signal-regulated kinase signaling in Mycobacterium tuberculosis-infected macrophages drives anti-inflammatory responses and inhibits Th1 polarization of responding T cells. Infect Immun. 2015;83:2242-54 pubmed publisher
  46. Jarosinski K, Donovan K, Du G. Expression of fluorescent proteins within the repeat long region of the Marek's disease virus genome allows direct identification of infected cells while retaining full pathogenicity. Virus Res. 2015;201:50-60 pubmed publisher
  47. Bulk E, Ay A, Hammadi M, Ouadid Ahidouch H, Schelhaas S, Hascher A, et al. Epigenetic dysregulation of KCa 3.1 channels induces poor prognosis in lung cancer. Int J Cancer. 2015;137:1306-17 pubmed publisher
  48. Radhakrishnan V, Kojs P, Ramalingam R, Midura Kiela M, Angeli P, Kiela P, et al. Experimental colitis is associated with transcriptional inhibition of Na+/Ca2+ exchanger isoform 1 (NCX1) expression by interferon γ in the renal distal convoluted tubules. J Biol Chem. 2015;290:8964-74 pubmed publisher
  49. Mandell D, Lajoie M, Mee M, Takeuchi R, Kuznetsov G, Norville J, et al. Biocontainment of genetically modified organisms by synthetic protein design. Nature. 2015;518:55-60 pubmed publisher
  50. Liu L, Zou P, Zheng L, Linarelli L, Amarell S, Passaro A, et al. Tamoxifen reduces fat mass by boosting reactive oxygen species. Cell Death Dis. 2015;6:e1586 pubmed publisher
  51. Zhang P, Wang L, Rodriguez Aguayo C, Yuan Y, Debeb B, Chen D, et al. miR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nat Commun. 2014;5:5671 pubmed publisher
  52. Freund A, Zhong F, Venteicher A, Meng Z, Veenstra T, Frydman J, et al. Proteostatic control of telomerase function through TRiC-mediated folding of TCAB1. Cell. 2014;159:1389-403 pubmed publisher
  53. Tan X, Peng J, Fu Y, An S, Rezaei K, Tabbara S, et al. miR-638 mediated regulation of BRCA1 affects DNA repair and sensitivity to UV and cisplatin in triple-negative breast cancer. Breast Cancer Res. 2014;16:435 pubmed publisher
  54. Sarkar J, Simanian E, Tuggy S, Bartlett J, Snead M, Sugiyama T, et al. Comparison of two mouse ameloblast-like cell lines for enamel-specific gene expression. Front Physiol. 2014;5:277 pubmed publisher
  55. Zhang P, Wei Y, Wang L, Debeb B, Yuan Y, Zhang J, et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol. 2014;16:864-75 pubmed publisher
  56. Walker M, Volta M, Cataldi S, Dinelle K, Beccano Kelly D, Munsie L, et al. Behavioral deficits and striatal DA signaling in LRRK2 p.G2019S transgenic rats: a multimodal investigation including PET neuroimaging. J Parkinsons Dis. 2014;4:483-98 pubmed publisher