product summary
Loading...
company name :
Tocris Bioscience
product type :
chemical
product name :
Wnt-C59
catalog :
5148/10
quantity :
10 mg (also 50 mg)
price :
358 USD
more info or order :
citations: 49
Reference
Paul K, Krolewski R, Lucumi Moreno E, Blank J, Holton K, Ahfeldt T, et al. A pesticide and iPSC dopaminergic neuron screen identifies and classifies Parkinson-relevant pesticides. Nat Commun. 2023;14:2803 pubmed publisher
Patberg M, Oniani T, Disse P, Peischard S, Vinnenberg L, Zobeiri M, et al. Optimized synthesis and pharmacological evaluation of HCN channel inhibitor EC18. Arch Pharm (Weinheim). 2023;356:e2200665 pubmed publisher
Wang B, Nash T, Zhang X, Rao J, Abriola L, Kim Y, et al. Engineered cardiac tissue model of restrictive cardiomyopathy for drug discovery. Cell Rep Med. 2023;4:100976 pubmed publisher
S xe1 nchez Aguilera P, L xf3 pez Crisosto C, Norambuena Soto I, Penannen C, Zhu J, Bomer N, et al. IGF-1 boosts mitochondrial function by a Ca2+ uptake-dependent mechanism in cultured human and rat cardiomyocytes. Front Physiol. 2023;14:1106662 pubmed publisher
King O, Cruz Moreira D, Sayed A, Kermani F, Kit Anan W, Sunyovszki I, et al. Functional microvascularization of human myocardium in vitro. Cell Rep Methods. 2022;2:100280 pubmed publisher
Huang H, Fang Y, Jiang M, Zhang Y, Biermann J, Melms J, et al. Contribution of Trp63CreERT2-labeled cells to alveolar regeneration is independent of tuft cells. elife. 2022;11: pubmed publisher
Mu xf1 oz J, Dariolli R, da Silva C, Neri E, Valad xe3 o I, Tura xe7 a L, et al. Time-regulated transcripts with the potential to modulate human pluripotent stem cell-derived cardiomyocyte differentiation. Stem Cell Res Ther. 2022;13:437 pubmed publisher
Mukherjee S, Luedeke D, McCoy L, Iwafuchi M, Zorn A. SOX transcription factors direct TCF-independent WNT/β-catenin responsive transcription to govern cell fate in human pluripotent stem cells. Cell Rep. 2022;40:111247 pubmed publisher
Zhang X, Wang B, Kim M, Nash T, Liu B, Rao J, et al. STK25 inhibits PKA signaling by phosphorylating PRKAR1A. Cell Rep. 2022;40:111203 pubmed publisher
Peischard S, M xf6 ller M, Disse P, Ho H, Verkerk A, Strutz Seebohm N, et al. Virus-induced inhibition of cardiac pacemaker channel HCN4 triggers bradycardia in human-induced stem cell system. Cell Mol Life Sci. 2022;79:440 pubmed publisher
Hnatiuk A, Bruyneel A, Tailor D, Pandrala M, Dheeraj A, Li W, et al. Reengineering Ponatinib to Minimize Cardiovascular Toxicity. Cancer Res. 2022;82:2777-2791 pubmed publisher
Budjan C, Liu S, Ranga A, Gayen S, Pourqui xe9 O, Hormoz S. Paraxial mesoderm organoids model development of human somites. elife. 2022;11: pubmed publisher
Elorbany R, Popp J, RHODES K, Strober B, Barr K, Qi G, et al. Single-cell sequencing reveals lineage-specific dynamic genetic regulation of gene expression during human cardiomyocyte differentiation. PLoS Genet. 2022;18:e1009666 pubmed publisher
Bomer N, Pavez Giani M, Deiman F, Linders A, Hoes M, Baierl C, et al. Selenoprotein DIO2 Is a Regulator of Mitochondrial Function, Morphology and UPRmt in Human Cardiomyocytes. Int J Mol Sci. 2021;22: pubmed publisher
Torres V, Barrera D, Varas Godoy M, Arancibia D, Inestrosa N. Selective Surface and Intraluminal Localization of Wnt Ligands on Small Extracellular Vesicles Released by HT-22 Hippocampal Neurons. Front Cell Dev Biol. 2021;9:735888 pubmed publisher
Findley A, Monziani A, Richards A, RHODES K, WARD M, Kalita C, et al. Functional dynamic genetic effects on gene regulation are specific to particular cell types and environmental conditions. elife. 2021;10: pubmed publisher
Santoro F, Chien K, Sahara M. Isolation of human ESC-derived cardiac derivatives and embryonic heart cells for population and single-cell RNA-seq analysis. STAR Protoc. 2021;2:100339 pubmed publisher
Maas R, Lee S, Harakalová M, Snijders Blok C, Goodyer W, Hjortnaes J, et al. Massive expansion and cryopreservation of functional human induced pluripotent stem cell-derived cardiomyocytes. STAR Protoc. 2021;2:100334 pubmed publisher
Lauschke K, Volpini L, Liu Y, Vinggaard A, Hall V. A Comparative Assessment of Marker Expression Between Cardiomyocyte Differentiation of Human Induced Pluripotent Stem Cells and the Developing Pig Heart. Stem Cells Dev. 2021;30:374-385 pubmed publisher
WARD M, Banovich N, Sarkar A, Stephens M, Gilad Y. Dynamic effects of genetic variation on gene expression revealed following hypoxic stress in cardiomyocytes. elife. 2021;10: pubmed publisher
Triplet E, Kim H, Yoon H, Radulovic M, Kleppe L, Simon W, et al. The thrombin receptor links brain derived neurotrophic factor to neuron cholesterol production, resiliency and repair after spinal cord injury. Neurobiol Dis. 2021;152:105294 pubmed publisher
Souidi M, Sleiman Y, Acimovic I, Pribyl J, Charrabi A, Baecker V, et al. Oxygen Is an Ambivalent Factor for the Differentiation of Human Pluripotent Stem Cells in Cardiac 2D Monolayer and 3D Cardiac Spheroids. Int J Mol Sci. 2021;22: pubmed publisher
Roth J, Muench K, Asokan A, Mallett V, Gai H, Verma Y, et al. 16p11.2 microdeletion imparts transcriptional alterations in human iPSC-derived models of early neural development. elife. 2020;9: pubmed publisher
Sleiman Y, Souidi M, Kumar R, Yang E, Jaffré F, Zhou T, et al. Modeling polymorphic ventricular tachycardia at rest using patient-specific induced pluripotent stem cell-derived cardiomyocytes. EBioMedicine. 2020;60:103024 pubmed publisher
McKeithan W, Feyen D, Bruyneel A, Okolotowicz K, Ryan D, Sampson K, et al. Reengineering an Antiarrhythmic Drug Using Patient hiPSC Cardiomyocytes to Improve Therapeutic Potential and Reduce Toxicity. Cell Stem Cell. 2020;27:813-821.e6 pubmed publisher
Walsh P, Truong V, Nayak S, Sald xed as Montivero M, Low W, Parr A, et al. Accelerated differentiation of human pluripotent stem cells into neural lineages via an early intermediate ectoderm population. Stem Cells. 2020;38:1400-1408 pubmed publisher
Feyen D, McKeithan W, Bruyneel A, Spiering S, Hörmann L, Ulmer B, et al. Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes. Cell Rep. 2020;32:107925 pubmed publisher
Bollmann E, Schreiber J, Ritter N, Peischard S, Ho H, W xfc nsch B, et al. 4,4'-Diisothiocyanato-2,2'-Stilbenedisulfonic Acid (DIDS) Modulates the Activity of KCNQ1/KCNE1 Channels by an Interaction with the Central Pore Region. Cell Physiol Biochem. 2020;54:321-332 pubmed publisher
Selewa A, Dohn R, Eckart H, Lozano S, Xie B, Gauchat E, et al. Systematic Comparison of High-throughput Single-Cell and Single-Nucleus Transcriptomes during Cardiomyocyte Differentiation. Sci Rep. 2020;10:1535 pubmed publisher
Hoes M, Tromp J, Ouwerkerk W, Bomer N, Oberdorf Maass S, Samani N, et al. The role of cathepsin D in the pathophysiology of heart failure and its potentially beneficial properties: a translational approach. Eur J Heart Fail. 2020;22:2102-2111 pubmed publisher
Poncet N, Halley P, Lipina C, Gierlinski M, Dady A, Singer G, et al. Wnt regulates amino acid transporter Slc7a5 and so constrains the integrated stress response in mouse embryos. EMBO Rep. 2020;21:e48469 pubmed publisher
Liang W, Han P, Kim E, Mak J, Zhang R, Torrente A, et al. Canonical Wnt signaling promotes pacemaker cell specification of cardiac mesodermal cells derived from mouse and human embryonic stem cells. Stem Cells. 2020;38:352-368 pubmed publisher
Shafa M, Walsh T, Panchalingam K, Richardson T, Menendez L, Tian X, et al. Long-Term Stability and Differentiation Potential of Cryopreserved cGMP-Compliant Human Induced Pluripotent Stem Cells. Int J Mol Sci. 2019;21: pubmed publisher
Rao D, Shackleford M, Bordeaux E, Sottnik J, Ferguson R, Yamamoto T, et al. Wnt family member 4 (WNT4) and WNT3A activate cell-autonomous Wnt signaling independent of porcupine O-acyltransferase or Wnt secretion. J Biol Chem. 2019;294:19950-19966 pubmed publisher
Ronaldson Bouchard K, Yeager K, Teles D, Chen T, Ma S, Song L, et al. Engineering of human cardiac muscle electromechanically matured to an adult-like phenotype. Nat Protoc. 2019;14:2781-2817 pubmed publisher
WARD M, Gilad Y. A generally conserved response to hypoxia in iPSC-derived cardiomyocytes from humans and chimpanzees. elife. 2019;8: pubmed publisher
Rostovskaya M, Stirparo G, Smith A. Capacitation of human naïve pluripotent stem cells for multi-lineage differentiation. Development. 2019;146: pubmed publisher
Jiang Y, Zhou Y, Bao X, Chen C, Randolph L, Du J, et al. An Ultrasensitive Calcium Reporter System via CRISPR-Cas9-Mediated Genome Editing in Human Pluripotent Stem Cells. iScience. 2018;9:27-35 pubmed publisher
Pavlovic B, Blake L, Roux J, Chavarria C, Gilad Y. A Comparative Assessment of Human and Chimpanzee iPSC-derived Cardiomyocytes with Primary Heart Tissues. Sci Rep. 2018;8:15312 pubmed publisher
Montefiori L, Sobreira D, Sakabe N, Aneas I, Joslin A, Hansen G, et al. A promoter interaction map for cardiovascular disease genetics. elife. 2018;7: pubmed publisher
Sharma A, Zhang Y, Buikema J, Serpooshan V, Chirikian O, Kosaric N, et al. Stage-specific Effects of Bioactive Lipids on Human iPSC Cardiac Differentiation and Cardiomyocyte Proliferation. Sci Rep. 2018;8:6618 pubmed publisher
Shafa M, Yang F, Fellner T, Rao M, Baghbaderani B. Human-Induced Pluripotent Stem Cells Manufactured Using a Current Good Manufacturing Practice-Compliant Process Differentiate Into Clinically Relevant Cells From Three Germ Layers. Front Med (Lausanne). 2018;5:69 pubmed publisher
Hoes M, Grote Beverborg N, Kijlstra J, Kuipers J, Swinkels D, Giepmans B, et al. Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function. Eur J Heart Fail. 2018;20:910-919 pubmed publisher
Pfeiffer M, Quaranta R, Piccini I, Fell J, Rao J, Röpke A, et al. Cardiogenic programming of human pluripotent stem cells by dose-controlled activation of EOMES. Nat Commun. 2018;9:440 pubmed publisher
Piccini I, Fehrmann E, Frank S, Müller F, Greber B, Seebohm G. Adrenergic Stress Protection of Human iPS Cell-Derived Cardiomyocytes by Fast Kv7.1 Recycling. Front Physiol. 2017;8:705 pubmed publisher
Marczenke M, Piccini I, Mengarelli I, Fell J, Röpke A, Seebohm G, et al. Cardiac Subtype-Specific Modeling of Kv1.5 Ion Channel Deficiency Using Human Pluripotent Stem Cells. Front Physiol. 2017;8:469 pubmed publisher
Bernatik O, Radaszkiewicz T, Behal M, Dave Z, Witte F, Mahl A, et al. A Novel Role for the BMP Antagonist Noggin in Sensitizing Cells to Non-canonical Wnt-5a/Ror2/Disheveled Pathway Activation. Front Cell Dev Biol. 2017;5:47 pubmed publisher
Nigmatullina L, Norkin M, Dzama M, Messner B, Sayols S, Soshnikova N. Id2 controls specification of Lgr5+ intestinal stem cell progenitors during gut development. EMBO J. 2017;36:869-885 pubmed publisher
Zhang M, Schulte J, Heinick A, Piccini I, Rao J, Quaranta R, et al. Universal cardiac induction of human pluripotent stem cells in two and three-dimensional formats: implications for in vitro maturation. Stem Cells. 2015;33:1456-69 pubmed publisher
product information
brand :
Tocris
MasterCode :
5148
SKU :
5148/10
product name :
Wnt-C59
target :
PORCN Inhibitors
category :
Small Molecules
unit size :
10 mg (also 50 mg)
purity :
99%
observed molecular weight :
379.45
url print :
?utm_source=biocompare&utm_medium=referral&utm_campaign=product&utm_term=smallmolecules
details of functionality :
Wnt-C59 is a highly potent inhibitor of MBOAT (membrane-bound O-acyltranferase) family member Porcupine (PORCN) (IC50 = 74 pM) that mediates WNT palmitoylation and secretion. Wnt-C59 potently inhibits the processing of both canonical (1, 2, 3a, 6, 7b, 8a, 9a, 9b, 10) and non-canonical (4, 5a, 11, 16) Wnt subtypes. Wnt-C59 blocks progression of mammary tumors in MMTV-WNT1 transgenic mice and downregulates Wnt/ -catenin target genes. Wnt-C59 treated tumors show a decrease in -catenin, CyclinD1 and c-Myc. Wnt-C59 induces cardiomyocyte differentiation from human iPSCs following culture with CHIR 99021 (Cat. No. 4423). Wnt-C59 efficiently induces neural differentiation of CTIP2+/COUP-TF1- cells from PSCs in culture. When grafted into the cortex of adult mice, Wnt-C59-treated cells develop abundant axonal fiber extensions toward the spinal cord. The compound has also been used in protocls to generate cells from human PSCs. Cell permeable and orally bioavailable.
extended description :
Highly potent PORCN inhibitor
chemical name text :
4-(2-Methyl-4-pyridinyl)-N-[4-(3-pyridinyl)phenyl]benzeneacetamide
formula :
C 25 H 21 N 3 O
formula text :
C25H21N3O
cas num :
1243243-89-1
USD :
358 USD
product details :
Highly potent PORCN inhibitor
storage :
Store at -20°C
more info or order :
company information
Tocris Bioscience
The Watkins Building
Atlantic Road
Avonmouth, Bristol
BS11 9QD
info@bio-techne.com
https://www.tocris.com
800-343-7475
headquarters: UK