Reference |
---|
Thompson A, Sankaranarayanan N, Chittum J, Mahida V, Vishweshwara S, Raigawali R, et al. Identification of an Unnatural Sulfated Monosaccharide as a High-Affinity Ligand for Pan-Variant Targeting of SARS-CoV-2 Spike Glycoprotein. ACS Chem Biol. 2025;20:1394-1405 pubmed publisher
|
Peng Y, Huang Y, Kiessling F, Renn D, Rueping M. Nanobody-Based Lateral Flow Immunoassay for Rapid Antigen Detection of SARS-CoV-2 and MERS-CoV Proteins. ACS Synth Biol. 2025;14:420-430 pubmed publisher
|
Hofstee M, Kaczorowska J, Postema A, Zomer E, van Waalwijk M, Jonathans G, et al. High SARS-CoV-2 antibody levels after three consecutive BNT162b2 booster vaccine doses in nursing home residents. Immun Ageing. 2025;22:1 pubmed publisher
|
Erlach L, Kuhn R, Agrafiotis A, Shlesinger D, Yermanos A, Reddy S. Evaluating predictive patterns of antigen-specific B cells by single-cell transcriptome and antibody repertoire sequencing. Cell Syst. 2024;15:1295-1303.e5 pubmed publisher
|
Yang Y, Hu J, Deng H, Chen D, Wu G, Xing H, et al. Maternal Preconception COVID-19 Vaccination and Its Protective Effect on Infants after a Breakthrough Infection during Pregnancy. Vaccines (Basel). 2024;12: pubmed publisher
|
Meng F, Xing H, Li J, Liu Y, Tang L, Chen Z, et al. Fc-empowered exosomes with superior epithelial layer transmission and lung distribution ability for pulmonary vaccination. Bioact Mater. 2024;42:573-586 pubmed publisher
|
Yan Q, Gao X, Liu B, Hou R, He P, Ma Y, et al. Antibodies utilizing VL6-57 light chains target a convergent cryptic epitope on SARS-CoV-2 spike protein and potentially drive the genesis of Omicron variants. Nat Commun. 2024;15:7585 pubmed publisher
|
Barnett C, Krolikowski K, Postelnicu R, Mukherjee V, Sulaiman I, Chung M, et al. Impaired immune responses in the airways are associated with poor outcome in critically ill COVID-19 patients. ERJ Open Res. 2024;10: pubmed publisher
|
Ferreira Gomes M, Chen Y, Durek P, Rincón Arévalo H, Heinrich F, Bauer L, et al. Recruitment of plasma cells from IL-21-dependent and IL-21-independent immune reactions to the bone marrow. Nat Commun. 2024;15:4182 pubmed publisher
|
Wang Y, Zhang Z, Yang M, Xiong X, Yan Q, Cao L, et al. Identification of a broad sarbecovirus neutralizing antibody targeting a conserved epitope on the receptor-binding domain. Cell Rep. 2024;43:113653 pubmed publisher
|
Wang Z, Li Z, Shi W, Zhu D, Hu S, Dinh P, et al. A SARS-CoV-2 and influenza double hit vaccine based on RBD-conjugated inactivated influenza A virus. Sci Adv. 2023;9:eabo4100 pubmed publisher
|
Yu X, Pan B, Zhao C, Shorty D, Solano L, Sun G, et al. Discovery of Peptidic Ligands against the SARS-CoV-2 Spike Protein and Their Use in the Development of a Highly Sensitive Personal Use Colorimetric COVID-19 Biosensor. ACS Sens. 2023;8:2159-2168 pubmed publisher
|
Solforosi L, Costes L, Tolboom J, McMahan K, Anioke T, Hope D, et al. Booster with Ad26.COV2.S or Omicron-adapted vaccine enhanced immunity and efficacy against SARS-CoV-2 Omicron in macaques. Nat Commun. 2023;14:1944 pubmed publisher
|
Jia T, Wu Y, Liao G, Lei Y, Wu Z, Yang F, et al. Stable and durable antibody responses in SARS-recovered donors vaccinated with inactivated SARS-CoV-2 vaccine. J Med Virol. 2023;95:e28662 pubmed publisher
|
Meng L, Zha J, Zhou B, Cao L, Jiang C, Zhu Y, et al. A Spike-destructing human antibody effectively neutralizes Omicron-included SARS-CoV-2 variants with therapeutic efficacy. PLoS Pathog. 2023;19:e1011085 pubmed publisher
|
Yang C, Li D, Wang S, Xu M, Wang D, Li X, et al. Inhibitory activities of alginate phosphate and sulfate derivatives against SARS-CoV-2 in vitro. Int J Biol Macromol. 2023;227:316-328 pubmed publisher
|
Sarma S, Herrera S, Xiao X, Hudalla G, Hall C. Computational Design and Experimental Validation of ACE2-Derived Peptides as SARS-CoV-2 Receptor Binding Domain Inhibitors. J Phys Chem B. 2022;126:8129-8139 pubmed publisher
|
Ku Z, Xie X, Lin J, Gao P, Wu B, El Sahili A, et al. Engineering SARS-CoV-2 specific cocktail antibodies into a bispecific format improves neutralizing potency and breadth. Nat Commun. 2022;13:5552 pubmed publisher
|
Chen Y, Yang X, Liu J, Zhang D, He J, Tang L, et al. In vitro selection of a single-strand DNA aptamer targeting the receptor-binding domain of SARS-CoV-2 spike protein. Nucleosides Nucleotides Nucleic Acids. 2022;:1-14 pubmed publisher
|
Chen R, Xie H, Khorsandzadeh S, Smith M, Shaabani N, Hu Q, et al. Delivering an mRNA vaccine using a lymphatic drug delivery device improves humoral and cellular immunity against SARS-CoV-2. J Mol Cell Biol. 2022;14: pubmed publisher
|
Yu L, Wang R, Wen T, Liu L, Wang T, Liu S, et al. Peptide Binder with High-Affinity for the SARS-CoV-2 Spike Receptor-Binding Domain. ACS Appl Mater Interfaces. 2022;14:28527-28536 pubmed publisher
|
Waickman A, Lu J, Chase C, Fang H, McDowell E, Bingham E, et al. Systemic Cancer Therapy Does Not Significantly Impact Early Vaccine-Elicited SARS-CoV-2 Immunity in Patients with Solid Tumors. Vaccines (Basel). 2022;10: pubmed publisher
|
Hong J, Kwon H, Cachau R, Chen C, Butay K, Duan Z, et al. Dromedary camel nanobodies broadly neutralize SARS-CoV-2 variants. Proc Natl Acad Sci U S A. 2022;119:e2201433119 pubmed publisher
|
Ren W, Ju X, Gong M, Lan J, Yu Y, Long Q, et al. Characterization of SARS-CoV-2 Variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 by Cell Entry and Immune Evasion. MBio. 2022;13:e0009922 pubmed publisher
|
Wu P, Yang Q, Zhao X, Liu Q, Xi J, Zhang F, et al. A SARS-CoV-2 nanobody that can bind to the RBD region may be used for treatment in COVID-19 in animals. Res Vet Sci. 2022;145:46-49 pubmed publisher
|
Ku Z, Xie X, Lin J, Gao P, El Sahili A, Su H, et al. Engineering SARS-CoV-2 cocktail antibodies into a bispecific format improves neutralizing potency and breadth. bioRxiv. 2022;: pubmed publisher
|
Huang Y, Harris B, Minami S, Jung S, Shah P, Nandi S, et al. SARS-CoV-2 spike binding to ACE2 is stronger and longer ranged due to glycan interaction. Biophys J. 2022;121:79-90 pubmed publisher
|
Li J, Zhang Z, Gu J, Stacey H, Ang J, Capretta A, et al. Diverse high-affinity DNA aptamers for wild-type and B.1.1.7 SARS-CoV-2 spike proteins from a pre-structured DNA library. Nucleic Acids Res. 2021;49:7267-7279 pubmed publisher
|
Ku Z, Xie X, Davidson E, Ye X, Su H, Menachery V, et al. Molecular determinants and mechanism for antibody cocktail preventing SARS-CoV-2 escape. Nat Commun. 2021;12:469 pubmed publisher
|
Mazzini L, Martinuzzi D, Hyseni I, Benincasa L, Molesti E, Casa E, et al. Comparative analyses of SARS-CoV-2 binding (IgG, IgM, IgA) and neutralizing antibodies from human serum samples. J Immunol Methods. 2021;489:112937 pubmed publisher
|
Du S, Cao Y, Zhu Q, Yu P, Qi F, Wang G, et al. Structurally Resolved SARS-CoV-2 Antibody Shows High Efficacy in Severely Infected Hamsters and Provides a Potent Cocktail Pairing Strategy. Cell. 2020;183:1013-1023.e13 pubmed publisher
|
Chi X, Liu X, Wang C, Zhang X, Li X, Hou J, et al. Humanized single domain antibodies neutralize SARS-CoV-2 by targeting the spike receptor binding domain. Nat Commun. 2020;11:4528 pubmed publisher
|
Gorshkov K, Susumu K, Chen J, Xu M, Pradhan M, Zhu W, et al. Quantum Dot-Conjugated SARS-CoV-2 Spike Pseudo-Virions Enable Tracking of Angiotensin Converting Enzyme 2 Binding and Endocytosis. ACS Nano. 2020;14:12234-12247 pubmed publisher
|
Clausen T, Sandoval D, Spliid C, Pihl J, Painter C, Thacker B, et al. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. bioRxiv. 2020;: pubmed publisher
|
Wu Y, Li C, Xia S, Tian X, Kong Y, Wang Z, et al. Identification of Human Single-Domain Antibodies against SARS-CoV-2. Cell Host Microbe. 2020;27:891-898.e5 pubmed publisher
|