Published Application/Species/Sample/Dilution | Reference |
---|
- immunocytochemistry; human; fig 6
- western blot; human; 1:2000; fig 7
| Okatsu K, Koyano F, Kimura M, Kosako H, Saeki Y, Tanaka K, et al. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J Cell Biol. 2015;209:111-28 pubmed publisher
|
- immunocytochemistry; mouse; loading ...; fig 3b
- western blot; mouse; loading ...; fig 2c
| Corsetti V, Florenzano F, Atlante A, Bobba A, Ciotti M, Natale F, et al. NH2-truncated human tau induces deregulated mitophagy in neurons by aberrant recruitment of Parkin and UCHL-1: implications in Alzheimer's disease. Hum Mol Genet. 2015;24:3058-81 pubmed publisher
|
- western blot; mouse; 1:5000; fig 1
| Zhang C, Lee S, Peng Y, Bunker E, Shen C, Giaime E, et al. A chemical genetic approach to probe the function of PINK1 in regulating mitochondrial dynamics. Cell Res. 2015;25:394-7 pubmed publisher
|
- immunoprecipitation; human; 1:6000; fig 2
- western blot; human; 1:6000; fig 2
- immunoprecipitation; mouse; 1:6000; fig 2
- western blot; mouse; 1:6000; fig 2
| Maraschi A, Ciammola A, Folci A, Sassone F, Ronzitti G, Cappelletti G, et al. Parkin regulates kainate receptors by interacting with the GluK2 subunit. Nat Commun. 2014;5:5182 pubmed publisher
|
- western blot; human; 1:2000
| Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature. 2014;510:162-6 pubmed publisher
|
- western blot; mouse
- immunocytochemistry; African green monkey
| Brot S, Auger C, Bentata R, Rogemond V, Ménigoz S, Chounlamountri N, et al. Collapsin response mediator protein 5 (CRMP5) induces mitophagy, thereby regulating mitochondrion numbers in dendrites. J Biol Chem. 2014;289:2261-76 pubmed publisher
|
| Okatsu K, Sato Y, Yamano K, Matsuda N, Negishi L, Takahashi A, et al. Structural insights into ubiquitin phosphorylation by PINK1. Sci Rep. 2018;8:10382 pubmed publisher
|
| Gouspillou G, Godin R, Piquereau J, Picard M, Mofarrahi M, Mathew J, et al. Protective role of Parkin in skeletal muscle contractile and mitochondrial function. J Physiol. 2018;596:2565-2579 pubmed publisher
|
| Callegari S, Oeljeklaus S, Warscheid B, Dennerlein S, Thumm M, Rehling P, et al. Phospho-ubiquitin-PARK2 complex as a marker for mitophagy defects. Autophagy. 2017;13:201-211 pubmed publisher
|
| Tang J, Hu Z, Tan J, Yang S, Zeng L. Parkin Protects against Oxygen-Glucose Deprivation/Reperfusion Insult by Promoting Drp1 Degradation. Oxid Med Cell Longev. 2016;2016:8474303 pubmed publisher
|
| Aversa Z, Pin F, Lucia S, Penna F, Verzaro R, Fazi M, et al. Autophagy is induced in the skeletal muscle of cachectic cancer patients. Sci Rep. 2016;6:30340 pubmed publisher
|
| Yamano K, Queliconi B, Koyano F, Saeki Y, Hirokawa T, Tanaka K, et al. Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation. J Biol Chem. 2015;290:25199-211 pubmed publisher
|
| Okatsu K, Kimura M, Oka T, Tanaka K, Matsuda N. Unconventional PINK1 localization to the outer membrane of depolarized mitochondria drives Parkin recruitment. J Cell Sci. 2015;128:964-78 pubmed publisher
|
| Ishihara T, Ban Ishihara R, Maeda M, Matsunaga Y, Ichimura A, Kyogoku S, et al. Dynamics of mitochondrial DNA nucleoids regulated by mitochondrial fission is essential for maintenance of homogeneously active mitochondria during neonatal heart development. Mol Cell Biol. 2015;35:211-23 pubmed publisher
|
| Piquereau J, Godin R, Deschênes S, Bessi V, Mofarrahi M, Hussain S, et al. Protective role of PARK2/Parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction. Autophagy. 2013;9:1837-51 pubmed publisher
|
| Koyano F, Okatsu K, Ishigaki S, Fujioka Y, Kimura M, Sobue G, et al. The principal PINK1 and Parkin cellular events triggered in response to dissipation of mitochondrial membrane potential occur in primary neurons. Genes Cells. 2013;18:672-81 pubmed publisher
|
| Okatsu K, Oka T, Iguchi M, Imamura K, Kosako H, Tani N, et al. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat Commun. 2012;3:1016 pubmed publisher
|
| Fett M, Pilsl A, Paquet D, van Bebber F, Haass C, Tatzelt J, et al. Parkin is protective against proteotoxic stress in a transgenic zebrafish model. PLoS ONE. 2010;5:e11783 pubmed publisher
|
| Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier C, et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol. 2010;189:211-21 pubmed publisher
|
| Pawlyk A, Giasson B, Sampathu D, Perez F, Lim K, Dawson V, et al. Novel monoclonal antibodies demonstrate biochemical variation of brain parkin with age. J Biol Chem. 2003;278:48120-8 pubmed
|
| Imai Y, Soda M, Takahashi R. Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem. 2000;275:35661-4 pubmed
|
| Gu W, Abbas N, Lagunes M, Parent A, Pradier L, Bohme G, et al. Cloning of rat parkin cDNA and distribution of parkin in rat brain. J Neurochem. 2000;74:1773-6 pubmed
|
| Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392:605-8 pubmed
|