Published Application/Species/Sample/Dilution | Reference |
---|
- western blot; human; loading ...; fig 1c
| Gain C, Malik S, Bhattacharjee S, Ghosh A, Robertson E, Das B, et al. Proteasomal inhibition triggers viral oncoprotein degradation via autophagy-lysosomal pathway. PLoS Pathog. 2020;16:e1008105 pubmed publisher
|
- immunoprecipitation; human; fig 2b
- western blot; human; 1:500; loading ...; fig s4
| Klein M, Dickson M, Antonescu C, Qin L, Dooley S, Barlas A, et al. PDLIM7 and CDH18 regulate the turnover of MDM2 during CDK4/6 inhibitor therapy-induced senescence. Oncogene. 2018;37:5066-5078 pubmed publisher
|
- immunoprecipitation; human; loading ...; fig 4a
| Giono L, Resnick Silverman L, Carvajal L, St Clair S, Manfredi J. Mdm2 promotes Cdc25C protein degradation and delays cell cycle progression through the G2/M phase. Oncogene. 2017;36:6762-6773 pubmed publisher
|
- western blot; human; loading ...; fig 6
| Lee T, Pelletier J. Dependence of p53-deficient cells on the DHX9 DExH-box helicase. Oncotarget. 2017;8:30908-30921 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; 1:50; loading ...; fig 1c
| Zhang Y, Zeng S, Hao Q, Lu H. Monitoring p53 by MDM2 and MDMX is required for endocrine pancreas development and function in a spatio-temporal manner. Dev Biol. 2017;423:34-45 pubmed publisher
|
- western blot; human; loading ...; fig s3e
| Chen S, FORRESTER W, Lahav G. Schedule-dependent interaction between anticancer treatments. Science. 2016;351:1204-8 pubmed publisher
|
- western blot; human; loading ...; fig 1b
- western blot; mouse; loading ...; fig ev1g
| Liu X, Tan Y, Zhang C, Zhang Y, Zhang L, Ren P, et al. NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2. EMBO Rep. 2016;17:349-66 pubmed publisher
|
- western blot; human; fig s3
| Ivanschitz L, Takahashi Y, Jollivet F, Ayrault O, Le Bras M, de Thé H. PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence. Proc Natl Acad Sci U S A. 2015;112:14278-83 pubmed publisher
|
- western blot; human; fig 6a
| Haupt S, Buckley D, Pang J, Panimaya J, Paul P, Gamell C, et al. Targeting Mdmx to treat breast cancers with wild-type p53. Cell Death Dis. 2015;6:e1821 pubmed publisher
|
- immunoprecipitation; human; loading ...; fig 2D
| Wu H, Leng R. MDM2 mediates p73 ubiquitination: a new molecular mechanism for suppression of p73 function. Oncotarget. 2015;6:21479-92 pubmed
|
- western blot; human; fig 2
| Kovatcheva M, Liu D, Dickson M, Klein M, O Connor R, Wilder F, et al. MDM2 turnover and expression of ATRX determine the choice between quiescence and senescence in response to CDK4 inhibition. Oncotarget. 2015;6:8226-43 pubmed
|
| Idogawa M, Ohashi T, Sugisaka J, Sasaki Y, Suzuki H, Tokino T. Array-based genome-wide RNAi screening to identify shRNAs that enhance p53-related apoptosis in human cancer cells. Oncotarget. 2014;5:7540-8 pubmed
|
- immunoprecipitation; human
| Jacob A, Singh R, Comiskey D, Rouhier M, Mohammad F, Bebee T, et al. Stress-induced alternative splice forms of MDM2 and MDMX modulate the p53-pathway in distinct ways. PLoS ONE. 2014;9:e104444 pubmed publisher
|
| Yamauchi T, Nishiyama M, Moroishi T, Yumimoto K, Nakayama K. MDM2 mediates nonproteolytic polyubiquitylation of the DEAD-Box RNA helicase DDX24. Mol Cell Biol. 2014;34:3321-40 pubmed publisher
|
| Thirunavukarasou A, Singh P, Govindarajalu G, Bandi V, Baluchamy S. E3 ubiquitin ligase Cullin4B mediated polyubiquitination of p53 for its degradation. Mol Cell Biochem. 2014;390:93-100 pubmed publisher
|
| Singh S, Ramamoorthy M, Vaughan C, Yeudall W, Deb S, Palit Deb S. Human oncoprotein MDM2 activates the Akt signaling pathway through an interaction with the repressor element-1 silencing transcription factor conferring a survival advantage to cancer cells. Cell Death Differ. 2013;20:558-66 pubmed publisher
|
| Calabrò V, Mansueto G, Parisi T, Vivo M, Calogero R, La Mantia G. The human MDM2 oncoprotein increases the transcriptional activity and the protein level of the p53 homolog p63. J Biol Chem. 2002;277:2674-81 pubmed
|
| Sica V, Bravo San Pedro J, Izzo V, Pol J, Pierredon S, Enot D, et al. Lethal Poisoning of Cancer Cells by Respiratory Chain Inhibition plus Dimethyl α-Ketoglutarate. Cell Rep. 2019;27:820-834.e9 pubmed publisher
|
| Carugo A, Minelli R, Sapio L, Soeung M, Carbone F, Robinson F, et al. p53 Is a Master Regulator of Proteostasis in SMARCB1-Deficient Malignant Rhabdoid Tumors. Cancer Cell. 2019;35:204-220.e9 pubmed publisher
|
| Tajan M, Hock A, Blagih J, Robertson N, Labuschagne C, Kruiswijk F, et al. A Role for p53 in the Adaptation to Glutamine Starvation through the Expression of SLC1A3. Cell Metab. 2018;28:721-736.e6 pubmed publisher
|
| Li D, Tavana O, Sun S, Gu W. Peli1 Modulates the Subcellular Localization and Activity of Mdmx. Cancer Res. 2018;78:2897-2910 pubmed publisher
|
| Epanchintsev A, Costanzo F, Rauschendorf M, Caputo M, Ye T, Donnio L, et al. Cockayne's Syndrome A and B Proteins Regulate Transcription Arrest after Genotoxic Stress by Promoting ATF3 Degradation. Mol Cell. 2017;68:1054-1066.e6 pubmed publisher
|
| Porter J, Fisher B, Baranello L, Liu J, Kambach D, Nie Z, et al. Global Inhibition with Specific Activation: How p53 and MYC Redistribute the Transcriptome in the DNA Double-Strand Break Response. Mol Cell. 2017;67:1013-1025.e9 pubmed publisher
|
| Li Q, Liu X, Jin K, Lu M, Zhang C, Du X, et al. NAT10 is upregulated in hepatocellular carcinoma and enhances mutant p53 activity. BMC Cancer. 2017;17:605 pubmed publisher
|
| McClurg U, Cork D, Darby S, Ryan Munden C, Nakjang S, Mendes Côrtes L, et al. Identification of a novel K311 ubiquitination site critical for androgen receptor transcriptional activity. Nucleic Acids Res. 2017;45:1793-1804 pubmed publisher
|
| Qi D, Cobrinik D. MDM2 but not MDM4 promotes retinoblastoma cell proliferation through p53-independent regulation of MYCN translation. Oncogene. 2017;36:1760-1769 pubmed publisher
|
| López Mateo I, Arruabarrena Aristorena A, Artaza Irigaray C, López J, Calvo E, Belandia B. HEY1 functions are regulated by its phosphorylation at Ser-68. Biosci Rep. 2016;36: pubmed publisher
|
| Swetzig W, Wang J, Das G. Estrogen receptor alpha (ERα/ESR1) mediates the p53-independent overexpression of MDM4/MDMX and MDM2 in human breast cancer. Oncotarget. 2016;7:16049-69 pubmed publisher
|
| Ye M, Tang Y, Tang S, Liu J, Wu K, Yao S, et al. STIP is a critical nuclear scaffolding protein linking USP7 to p53-Mdm2 pathway regulation. Oncotarget. 2015;6:34718-31 pubmed publisher
|
| Hoffman Luca C, Yang C, Lu J, Ziazadeh D, McEachern D, Debussche L, et al. Significant Differences in the Development of Acquired Resistance to the MDM2 Inhibitor SAR405838 between In Vitro and In Vivo Drug Treatment. PLoS ONE. 2015;10:e0128807 pubmed publisher
|
| Huang E, Wang F, Chen Y, Chen Y, Wang C, Lin I, et al. Amifostine alleviates radiation-induced lethal small bowel damage via promotion of 14-3-3σ-mediated nuclear p53 accumulation. Oncotarget. 2014;5:9756-69 pubmed
|
| Monti P, Ciribilli Y, Bisio A, Foggetti G, Raimondi I, Campomenosi P, et al. ?N-P63? and TA-P63? exhibit intrinsic differences in transactivation specificities that depend on distinct features of DNA target sites. Oncotarget. 2014;5:2116-30 pubmed
|
| Allen M, Andrysik Z, Dengler V, Mellert H, Guarnieri A, Freeman J, et al. Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms. elife. 2014;3:e02200 pubmed publisher
|
| Dolfi S, Jäger A, Medina D, Haffty B, Yang J, Hirshfield K. Fulvestrant treatment alters MDM2 protein turnover and sensitivity of human breast carcinoma cells to chemotherapeutic drugs. Cancer Lett. 2014;350:52-60 pubmed publisher
|
| Yu Q, Li Y, Mu K, Li Z, Meng Q, Wu X, et al. Amplification of Mdmx and overexpression of MDM2 contribute to mammary carcinogenesis by substituting for p53 mutations. Diagn Pathol. 2014;9:71 pubmed publisher
|
| McEvoy J, Ulyanov A, Brennan R, Wu G, Pounds S, Zhang J, et al. Analysis of MDM2 and MDM4 single nucleotide polymorphisms, mRNA splicing and protein expression in retinoblastoma. PLoS ONE. 2012;7:e42739 pubmed publisher
|
| Brekman A, Singh K, Polotskaia A, Kundu N, Bargonetti J. A p53-independent role of Mdm2 in estrogen-mediated activation of breast cancer cell proliferation. Breast Cancer Res. 2011;13:R3 pubmed publisher
|
| Xiong L, Kou F, Yang Y, Wu J. A novel role for IGF-1R in p53-mediated apoptosis through translational modulation of the p53-Mdm2 feedback loop. J Cell Biol. 2007;178:995-1007 pubmed
|