Published Application/Species/Sample/Dilution | Reference |
---|
- immunocytochemistry knockout validation; mouse; loading ...; fig 3a
| West J, Mito M, Kurosaka S, Takumi T, Tanegashima C, Chujo T, et al. Structural, super-resolution microscopy analysis of paraspeckle nuclear body organization. J Cell Biol. 2016;214:817-30 pubmed publisher
|
- immunocytochemistry; human; 1:250; loading ...; fig e2f
- immunohistochemistry; mouse; 1:250; loading ...; fig e2e
- western blot; mouse; 1:500; loading ...; fig e2g
| Korobeynikov V, Lyashchenko A, Blanco Redondo B, Jafar Nejad P, Shneider N. Antisense oligonucleotide silencing of FUS expression as a therapeutic approach in amyotrophic lateral sclerosis. Nat Med. 2022;28:104-116 pubmed publisher
|
- immunocytochemistry; mouse; 1:400; loading ...; fig s1b
| Birsa N, Ule A, Garone M, Tsang B, Mattedi F, Chong P, et al. FUS-ALS mutants alter FMRP phase separation equilibrium and impair protein translation. Sci Adv. 2021;7: pubmed publisher
|
- western blot; human; 1:2000; fig 6a
| S xe9 vigny M, Bourdeau Julien I, Venkatasubramani J, Hui J, Dutchak P, Sephton C. FUS contributes to mTOR-dependent inhibition of translation. J Biol Chem. 2020;295:18459-18473 pubmed publisher
|
- immunocytochemistry; human; loading ...; fig 2a
| Qamar S, Wang G, Randle S, Ruggeri F, Varela J, Lin J, et al. FUS Phase Separation Is Modulated by a Molecular Chaperone and Methylation of Arginine Cation-π Interactions. Cell. 2018;173:720-734.e15 pubmed publisher
|
- western blot; human; loading ...; fig 1e
| Fletcher C, Godfrey J, Shibakawa A, Bushell M, Bevan C. A novel role for GSK3? as a modulator of Drosha microprocessor activity and MicroRNA biogenesis. Nucleic Acids Res. 2016;: pubmed
|
- immunohistochemistry; human; loading ...; fig 2a
| Hill S, Mordes D, Cameron L, Neuberg D, Landini S, Eggan K, et al. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage. Proc Natl Acad Sci U S A. 2016;113:E7701-E7709 pubmed
|
- immunohistochemistry; mouse; loading ...; fig 2a, 2b
- immunoprecipitation; human; loading ...; fig 1a, 5a
- immunocytochemistry; human; loading ...; fig 1b, 2c, 2d, 5b, 5d
- western blot; human; loading ...; fig 1f
| Yamaguchi A, Takanashi K. FUS interacts with nuclear matrix-associated protein SAFB1 as well as Matrin3 to regulate splicing and ligand-mediated transcription. Sci Rep. 2016;6:35195 pubmed publisher
|
- western blot; human; loading ...; fig 2d
| Klein G, Mathé C, Biola Clier M, Devineau S, Drouineau E, Hatem E, et al. RNA-binding proteins are a major target of silica nanoparticles in cell extracts. Nanotoxicology. 2016;10:1555-1564 pubmed
|
- immunohistochemistry - frozen section; mouse; 1:500; fig 6
- western blot; mouse; 1:1000; fig 6
- immunohistochemistry - paraffin section; human; 1:500; fig 8
| Alves S, Marais T, Biferi M, Furling D, Marinello M, El Hachimi K, et al. Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Mol Neurodegener. 2016;11:58 pubmed publisher
|
- immunoprecipitation; human; loading ...; fig 2
| Kamelgarn M, Chen J, Kuang L, Arenas A, Zhai J, Zhu H, et al. Proteomic analysis of FUS interacting proteins provides insights into FUS function and its role in ALS. Biochim Biophys Acta. 2016;1862:2004-14 pubmed publisher
|
- immunoprecipitation; mouse; fig S1c
- western blot; human; 1:100; fig 5b
| Kapeli K, Pratt G, Vu A, Hutt K, Martinez F, Sundararaman B, et al. Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses. Nat Commun. 2016;7:12143 pubmed publisher
|
- immunocytochemistry; mouse; 1:1000; loading ...; fig 6b
- western blot; mouse; 1:1000; loading ...; fig 6a
| Maharjan N, Künzli C, Buthey K, Saxena S. C9ORF72 Regulates Stress Granule Formation and Its Deficiency Impairs Stress Granule Assembly, Hypersensitizing Cells to Stress. Mol Neurobiol. 2017;54:3062-3077 pubmed publisher
|
- immunohistochemistry - paraffin section; rat; 1:200; fig 1
- western blot; rat; 1:400; fig 1
| Schoen M, Reichel J, Demestre M, Putz S, Deshpande D, Proepper C, et al. Super-Resolution Microscopy Reveals Presynaptic Localization of the ALS/FTD Related Protein FUS in Hippocampal Neurons. Front Cell Neurosci. 2015;9:496 pubmed publisher
|
- proximity ligation assay; human; 1:500; fig s4
- immunocytochemistry; human; 1:500; fig 5
| Ansseau E, Eidahl J, Lancelot C, Tassin A, Mattéotti C, Yip C, et al. Homologous Transcription Factors DUX4 and DUX4c Associate with Cytoplasmic Proteins during Muscle Differentiation. PLoS ONE. 2016;11:e0146893 pubmed publisher
|
- ChIP-Seq; human; fig 2
- western blot; human; 1:2000; fig s10
| Luo Y, Blechingberg J, Fernandes A, Li S, Fryland T, Børglum A, et al. EWS and FUS bind a subset of transcribed genes encoding proteins enriched in RNA regulatory functions. BMC Genomics. 2015;16:929 pubmed publisher
|
- western blot; human; 1:2000; fig 3
| Lenzi J, De Santis R, de Turris V, Morlando M, Laneve P, Calvo A, et al. ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons. Dis Model Mech. 2015;8:755-66 pubmed publisher
|
- cross-linking immunoprecipitation; mouse; fig 1
- immunoprecipitation; mouse; fig 5
- western blot; mouse; fig 5
| Masuda A, Takeda J, Okuno T, Okamoto T, Ohkawara B, Ito M, et al. Position-specific binding of FUS to nascent RNA regulates mRNA length. Genes Dev. 2015;29:1045-57 pubmed publisher
|
- western blot; mouse; 1:500; fig 2
| Sun S, Ling S, Qiu J, Albuquerque C, Zhou Y, Tokunaga S, et al. ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nat Commun. 2015;6:6171 pubmed publisher
|
- immunohistochemistry - paraffin section; human; 1:100
| Nakamura M, Murray M, Lin W, Kusaka H, Dickson D. Optineurin immunoreactivity in neuronal and glial intranuclear inclusions in adult-onset neuronal intranuclear inclusion disease. Am J Neurodegener Dis. 2014;3:93-102 pubmed
|
- western blot; human; 1:800; loading ...; fig 2b
| Wang T, Jiang X, Chen G, Xu J. Interaction of amyotrophic lateral sclerosis/frontotemporal lobar degeneration-associated fused-in-sarcoma with proteins involved in metabolic and protein degradation pathways. Neurobiol Aging. 2015;36:527-35 pubmed publisher
|
- western blot; human; fig 2
| Tsuiji H, Iguchi Y, Furuya A, Kataoka A, Hatsuta H, Atsuta N, et al. Spliceosome integrity is defective in the motor neuron diseases ALS and SMA. EMBO Mol Med. 2013;5:221-34 pubmed publisher
|
- chromatin immunoprecipitation; human
- western blot; human
| Morlando M, Dini Modigliani S, Torrelli G, Rosa A, Di Carlo V, Caffarelli E, et al. FUS stimulates microRNA biogenesis by facilitating co-transcriptional Drosha recruitment. EMBO J. 2012;31:4502-10 pubmed publisher
|
| Harley J, Hagemann C, Serio A, Patani R. TDP-43 and FUS mislocalization in VCP mutant motor neurons is reversed by pharmacological inhibition of the VCP D2 ATPase domain. Brain Commun. 2021;3:fcab166 pubmed publisher
|
| Levone B, Lenzken S, Antonaci M, Maiser A, Rapp A, Conte F, et al. FUS-dependent liquid-liquid phase separation is important for DNA repair initiation. J Cell Biol. 2021;220: pubmed publisher
|
| Tyzack G, Luisier R, Taha D, Neeves J, Modic M, Mitchell J, et al. Widespread FUS mislocalization is a molecular hallmark of amyotrophic lateral sclerosis. Brain. 2019;142:2572-2580 pubmed publisher
|
| De Santis R, Alfano V, de Turris V, Colantoni A, Santini L, Garone M, et al. Mutant FUS and ELAVL4 (HuD) Aberrant Crosstalk in Amyotrophic Lateral Sclerosis. Cell Rep. 2019;27:3818-3831.e5 pubmed publisher
|
| Tischbein M, Baron D, Lin Y, Gall K, Landers J, Fallini C, et al. The RNA-binding protein FUS/TLS undergoes calcium-mediated nuclear egress during excitotoxic stress and is required for GRIA2 mRNA processing. J Biol Chem. 2019;: pubmed publisher
|
| An H, Skelt L, Notaro A, Highley J, Fox A, La Bella V, et al. ALS-linked FUS mutations confer loss and gain of function in the nucleus by promoting excessive formation of dysfunctional paraspeckles. Acta Neuropathol Commun. 2019;7:7 pubmed publisher
|
| Capauto D, Colantoni A, Lu L, Santini T, Peruzzi G, Biscarini S, et al. A Regulatory Circuitry Between Gria2, miR-409, and miR-495 Is Affected by ALS FUS Mutation in ESC-Derived Motor Neurons. Mol Neurobiol. 2018;55:7635-7651 pubmed publisher
|
| Bailey J, Shen W, Liang X, Crooke S. Nucleic acid binding proteins affect the subcellular distribution of phosphorothioate antisense oligonucleotides. Nucleic Acids Res. 2017;45:10649-10671 pubmed publisher
|
| Errichelli L, Dini Modigliani S, Laneve P, Colantoni A, Legnini I, Capauto D, et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat Commun. 2017;8:14741 pubmed publisher
|
| Kukharsky M, Quintiero A, Matsumoto T, Matsukawa K, An H, Hashimoto T, et al. Calcium-responsive transactivator (CREST) protein shares a set of structural and functional traits with other proteins associated with amyotrophic lateral sclerosis. Mol Neurodegener. 2015;10:20 pubmed publisher
|
| Schwartz J, Podell E, Han S, Berry J, EGGAN K, Cech T. FUS is sequestered in nuclear aggregates in ALS patient fibroblasts. Mol Biol Cell. 2014;25:2571-8 pubmed publisher
|
| Shelkovnikova T, Robinson H, Troakes C, Ninkina N, Buchman V. Compromised paraspeckle formation as a pathogenic factor in FUSopathies. Hum Mol Genet. 2014;23:2298-312 pubmed publisher
|
| Fujioka Y, Ishigaki S, Masuda A, Iguchi Y, Udagawa T, Watanabe H, et al. FUS-regulated region- and cell-type-specific transcriptome is associated with cell selectivity in ALS/FTLD. Sci Rep. 2013;3:2388 pubmed publisher
|
| Nishimoto Y, Nakagawa S, Hirose T, Okano H, Takao M, Shibata S, et al. The long non-coding RNA nuclear-enriched abundant transcript 1_2 induces paraspeckle formation in the motor neuron during the early phase of amyotrophic lateral sclerosis. Mol Brain. 2013;6:31 pubmed publisher
|
| Convertini P, Zhang J, de la Grange P, Hayward L, Zhu H, Stamm S. Genome wide array analysis indicates that an amyotrophic lateral sclerosis mutation of FUS causes an early increase of CAMK2N2 in vitro. Biochim Biophys Acta. 2013;1832:1129-35 pubmed publisher
|
| Yamaguchi A, Kitajo K. The effect of PRMT1-mediated arginine methylation on the subcellular localization, stress granules, and detergent-insoluble aggregates of FUS/TLS. PLoS ONE. 2012;7:e49267 pubmed publisher
|
| Blechingberg J, Luo Y, Bolund L, Damgaard C, Nielsen A. Gene expression responses to FUS, EWS, and TAF15 reduction and stress granule sequestration analyses identifies FET-protein non-redundant functions. PLoS ONE. 2012;7:e46251 pubmed publisher
|
| Blechingberg J, Holm I, Nielsen A. Characterization and expression analysis in the developing embryonic brain of the porcine FET family: FUS, EWS, and TAF15. Gene. 2012;493:27-35 pubmed publisher
|
| Kim S, Shanware N, Bowler M, Tibbetts R. Amyotrophic lateral sclerosis-associated proteins TDP-43 and FUS/TLS function in a common biochemical complex to co-regulate HDAC6 mRNA. J Biol Chem. 2010;285:34097-105 pubmed publisher
|
| Gal J, Zhang J, Kwinter D, Zhai J, Jia H, Jia J, et al. Nuclear localization sequence of FUS and induction of stress granules by ALS mutants. Neurobiol Aging. 2011;32:2323.e27-40 pubmed publisher
|
| Deng H, Zhai H, Bigio E, Yan J, Fecto F, Ajroud K, et al. FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis. Ann Neurol. 2010;67:739-48 pubmed publisher
|
| Boccardo E, Manzini Baldi C, Carvalho A, Rabachini T, Torres C, Barreta L, et al. Expression of human papillomavirus type 16 E7 oncoprotein alters keratinocytes expression profile in response to tumor necrosis factor-alpha. Carcinogenesis. 2010;31:521-31 pubmed publisher
|
| Neumann M, Roeber S, Kretzschmar H, Rademakers R, Baker M, Mackenzie I. Abundant FUS-immunoreactive pathology in neuronal intermediate filament inclusion disease. Acta Neuropathol. 2009;118:605-16 pubmed publisher
|