Published Application/Species/Sample/Dilution | Reference |
---|
- blocking or activating experiments; human; loading ...; fig 3e
| Shen X, Geng R, Li Q, Chen Y, Li S, Wang Q, et al. ACE2-independent infection of T lymphocytes by SARS-CoV-2. Signal Transduct Target Ther. 2022;7:83 pubmed publisher
|
- immunohistochemistry; human; 1:100; loading ...; fig 3b
| Beumer J, Geurts M, Lamers M, Puschhof J, Zhang J, van der Vaart J, et al. A CRISPR/Cas9 genetically engineered organoid biobank reveals essential host factors for coronaviruses. Nat Commun. 2021;12:5498 pubmed publisher
|
- immunohistochemistry; human; 1:100; loading ...; fig 2a
| Li H, Liu C, Hsu T, Lin J, Hsu J, Li A, et al. Upregulation of ACE2 and TMPRSS2 by particulate matter and idiopathic pulmonary fibrosis: a potential role in severe COVID-19. Part Fibre Toxicol. 2021;18:11 pubmed publisher
|
- immunohistochemistry - frozen section; human; 1:200; fig 4a
| Andrews M, Mukhtar T, Eze U, Simoneau C, Perez Y, Mostajo Radji M, et al. Tropism of SARS-CoV-2 for Developing Human Cortical Astrocytes. bioRxiv. 2021;: pubmed publisher
|
- flow cytometry; human; loading ...; fig s2
| Chu H, Hu B, Huang X, Chai Y, Zhou D, Wang Y, et al. Host and viral determinants for efficient SARS-CoV-2 infection of the human lung. Nat Commun. 2021;12:134 pubmed publisher
|
- flow cytometry; human; loading ...; fig 6a, 6f
- immunocytochemistry; human; loading ...; fig 6h
| Daniloski Z, Jordan T, Wessels H, Hoagland D, Kasela S, Legut M, et al. Identification of Required Host Factors for SARS-CoV-2 Infection in Human Cells. Cell. 2021;184:92-105.e16 pubmed publisher
|
| Coria L, Rodriguez J, Demaria A, Bruno L, Medrano M, Castro C, et al. A Gamma-adapted subunit vaccine induces broadly neutralizing antibodies against SARS-CoV-2 variants and protects mice from infection. Nat Commun. 2024;15:997 pubmed publisher
|
| Puray Chavez M, Lapak K, Jasuja R, Pan J, Xu J, Eschbach J, et al. A basally active cGAS-STING pathway limits SARS-CoV-2 replication in a subset of ACE2 positive airway cell models. bioRxiv. 2024;: pubmed publisher
|
| Hou J, Wei Y, Zou J, Jaffery R, Sun L, Liang S, et al. Integrated multi-omics analyses identify anti-viral host factors and pathways controlling SARS-CoV-2 infection. Nat Commun. 2024;15:109 pubmed publisher
|
| Khan I, Li S, Tao L, Wang C, Ye B, Li H, et al. Tubeimosides are pan-coronavirus and filovirus inhibitors that can block their fusion protein binding to Niemann-Pick C1. Nat Commun. 2024;15:162 pubmed publisher
|
| Loi L, Yang C, Lin Y, Su Y, Juan Y, Chen Y, et al. Decoy peptides effectively inhibit the binding of SARS-CoV-2 to ACE2 on oral epithelial cells. Heliyon. 2023;9:e22614 pubmed publisher
|
| Hashimi M, Sebrell T, Hedges J, Snyder D, Lyon K, Byrum S, et al. Antiviral responses in a Jamaican fruit bat intestinal organoid model of SARS-CoV-2 infection. Nat Commun. 2023;14:6882 pubmed publisher
|
| Burke B, Rocha S, Zhan S, Eckley M, Reasoner C, Addetia A, et al. Regulatory T cell-like response to SARS-CoV-2 in Jamaican fruit bats (Artibeus jamaicensis) transduced with human ACE2. PLoS Pathog. 2023;19:e1011728 pubmed publisher
|
| Cui Q, Jeyachandran A, Garcia G, Qin C, Zhou Y, Zhang M, et al. The Apolipoprotein E neutralizing antibody inhibits SARS-CoV-2 infection by blocking cellular entry of lipoviral particles. MedComm (2020). 2023;4:e400 pubmed publisher
|
| Mhlekude B, Postmus D, Stenzel S, Weiner J, Jansen J, Zapatero Belinch xf3 n F, et al. Pharmacological inhibition of bromodomain and extra-terminal proteins induces an NRF-2-mediated antiviral state that is subverted by SARS-CoV-2 infection. PLoS Pathog. 2023;19:e1011657 pubmed publisher
|
| Sauvé F, Nampoothiri S, Clarke S, Fernandois D, Ferreira Co xea lho C, Dewisme J, et al. Long-COVID cognitive impairments and reproductive hormone deficits in men may stem from GnRH neuronal death. EBioMedicine. 2023;96:104784 pubmed publisher
|
| Liu Y, Chen D, Wang Y, Li X, Qiu Y, Zheng M, et al. Characterization of CCoV-HuPn-2018 spike protein-mediated viral entry. J Virol. 2023;97:e0060123 pubmed publisher
|
| Meyers W, Hong R, Sin W, Kim C, Haas K. A cell-based assay for rapid assessment of ACE2 catalytic function. Sci Rep. 2023;13:14123 pubmed publisher
|
| Uppal S, Postnikova O, Villasmil R, Rogozin I, Bocharov A, Eggerman T, et al. Low-Density Lipoprotein Receptor (LDLR) Is Involved in Internalization of Lentiviral Particles Pseudotyped with SARS-CoV-2 Spike Protein in Ocular Cells. Int J Mol Sci. 2023;24: pubmed publisher
|
| Zhang K, Eldin P, Ciesla J, Briant L, Lentini J, Ramos J, et al. Proteolytic cleavage and inactivation of the TRMT1 tRNA modification enzyme by SARS-CoV-2 main protease. bioRxiv. 2023;: pubmed publisher
|
| Robertson S, Bedard O, McNally K, Shaia C, Clancy C, Lewis M, et al. Genetically diverse mouse models of SARS-CoV-2 infection reproduce clinical variation in type I interferon and cytokine responses in COVID-19. Nat Commun. 2023;14:4481 pubmed publisher
|
| Wei C, Datta P, Siegerist F, Li J, Yashwanth S, Koh K, et al. SuPAR mediates viral response proteinuria by rapidly changing podocyte function. Nat Commun. 2023;14:4414 pubmed publisher
|
| Minami S, Matsumoto N, Omori H, Nakamura Y, Tamiya S, Nouda R, et al. Effective SARS-CoV-2 replication of monolayers of intestinal epithelial cells differentiated from human induced pluripotent stem cells. Sci Rep. 2023;13:11610 pubmed publisher
|
| Xu D, Jiang W, Wu L, Gaudet R, Park E, Su M, et al. PLSCR1 is a cell-autonomous defence factor against SARS-CoV-2 infection. Nature. 2023;619:819-827 pubmed publisher
|
| Baggen J, Jacquemyn M, Persoons L, Vanstreels E, Pye V, Wrobel A, et al. TMEM106B is a receptor mediating ACE2-independent SARS-CoV-2 cell entry. Cell. 2023;: pubmed publisher
|
| Khan J, Rohamare M, Rajamanickam K, Bhanumathy K, Lew J, Kumar A, et al. Generation of a SARS-CoV-2 Reverse Genetics System and Novel Human Lung Cell Lines That Exhibit High Virus-Induced Cytopathology. Viruses. 2023;15: pubmed publisher
|
| McMahon C, Castro J, SILVAS J, Muniz Perez A, Estrada M, Carrion R, et al. Fetal brain vulnerability to SARS-CoV-2 infection. Brain Behav Immun. 2023;112:188-205 pubmed publisher
|
| Liu K, Tang M, Xu W, Meng X, Jin H, Han M, et al. An inducible hACE2 transgenic mouse model recapitulates SARS-CoV-2 infection and pathogenesis in vivo. Proc Natl Acad Sci U S A. 2023;120:e2207210120 pubmed publisher
|
| López Orozco J, Fayad N, Khan J, Felix Lopez A, Elaish M, Rohamare M, et al. The RNA Interference Effector Protein Argonaute 2 Functions as a Restriction Factor Against SARS-CoV-2. J Mol Biol. 2023;435:168170 pubmed publisher
|
| Kummarapurugu A, Hawkridge A, Ma J, Osei S, Martin R, Zheng S, et al. Neutrophil elastase decreases SARS-CoV-2 spike protein binding to human bronchial epithelia by clipping ACE-2 ectodomain from the epithelial surface. J Biol Chem. 2023;299:104820 pubmed publisher
|
| Barreto E, Cruz A, Veras F, Martins R, Bernardelli R, Paiva I, et al. COVID-19-related hyperglycemia is associated with infection of hepatocytes and stimulation of gluconeogenesis. Proc Natl Acad Sci U S A. 2023;120:e2217119120 pubmed publisher
|
| Chen D, Turcinovic J, Feng S, Kenney D, Chin C, Choudhary M, et al. Cell culture systems for isolation of SARS-CoV-2 clinical isolates and generation of recombinant virus. iScience. 2023;26:106634 pubmed publisher
|
| Devignot S, Sha T, Burkard T, Schmerer P, Hagelkruys A, Mirazimi A, et al. Low-density lipoprotein receptor-related protein 1 (LRP1) as an auxiliary host factor for RNA viruses. Life Sci Alliance. 2023;6: pubmed publisher
|
| Kettunen P, Lesnikova A, R xe4 s xe4 nen N, Ojha R, Palmunen L, Laakso M, et al. SARS-CoV-2 Infection of Human Neurons Is TMPRSS2 Independent, Requires Endosomal Cell Entry, and Can Be Blocked by Inhibitors of Host Phosphoinositol-5 Kinase. J Virol. 2023;97:e0014423 pubmed publisher
|
| Luo S, Moussa E, López Orozco J, Felix Lopez A, Ishida R, Fayad N, et al. Identification of Human Host Substrates of the SARS-CoV-2 Mpro and PLpro Using Subtiligase N-Terminomics. ACS Infect Dis. 2023;9:749-761 pubmed publisher
|
| Phan A, Avila H, MacKay J. Biomimetic SARS-CoV-2 Spike Protein Nanoparticles. Biomacromolecules. 2023;24:2030-2041 pubmed publisher
|
| Ulinici M, Sulji x10d A, Poggianella M, Milan Bonotto R, Resman Rus K, Paraschiv A, et al. Characterisation of the Antibody Response in Sinopharm (BBIBP-CorV) Recipients and COVID-19 Convalescent Sera from the Republic of Moldova. Vaccines (Basel). 2023;11: pubmed publisher
|
| Mohammad S, Wang Y, Cordero J, Watson C, MOLESTINA R, Rashid S, et al. Development and validation of a rapid and easy-to-perform point-of-care lateral flow immunoassay (LFIA) for the detection of SARS-CoV-2 spike protein. Front Immunol. 2023;14:1111644 pubmed publisher
|
| McQuaid C, Solorzano A, Dickerson I, Deane R. Uptake of severe acute respiratory syndrome coronavirus 2 spike protein mediated by angiotensin converting enzyme 2 and ganglioside in human cerebrovascular cells. Front Neurosci. 2023;17:1117845 pubmed publisher
|
| Xiao Y, Yan Y, Chang L, Ji H, Sun H, Song S, et al. CDK4/6 inhibitor palbociclib promotes SARS-CoV-2 cell entry by down-regulating SKP2 dependent ACE2 degradation. Antiviral Res. 2023;212:105558 pubmed publisher
|
| Tang A, Buchholz D, Szigety K, Imbiakha B, Gao S, Frankfurter M, et al. Cell-autonomous requirement for ACE2 across organs in lethal mouse SARS-CoV-2 infection. PLoS Biol. 2023;21:e3001989 pubmed publisher
|
| Matsuda H, Nosaka T, Hiramatsu K, Takahashi K, Naito T, Ofuji K, et al. Histology and cytokine levels in hepatic injury accompanying a case of non-severe COVID-19. Clin J Gastroenterol. 2023;16:270-278 pubmed publisher
|
| Miluzio A, Cuomo A, Cordiglieri C, Donnici L, Pesce E, Bombaci M, et al. Mapping of functional SARS-CoV-2 receptors in human lungs establishes differences in variant binding and SLC1A5 as a viral entry modulator of hACE2. EBioMedicine. 2023;87:104390 pubmed publisher
|
| Balasubramanian N, James T, Selvakumar G, Reinhardt J, Marcinkiewcz C. Repeated ethanol exposure and withdrawal alters angiotensin-converting enzyme 2 expression in discrete brain regions: Implications for SARS-CoV-2 neuroinvasion. Alcohol Clin Exp Res (Hoboken). 2023;47:219-239 pubmed publisher
|
| Onnis A, Andreano E, Cassioli C, Finetti F, Della Bella C, Staufer O, et al. SARS-CoV-2 Spike protein suppresses CTL-mediated killing by inhibiting immune synapse assembly. J Exp Med. 2023;220: pubmed publisher
|
| Hirunpattarasilp C, James G, Kwanthongdee J, Freitas F, Huo J, Sethi H, et al. SARS-CoV-2 triggers pericyte-mediated cerebral capillary constriction. Brain. 2023;146:727-738 pubmed publisher
|
| Tsuji S, Minami S, Hashimoto R, Konishi Y, Suzuki T, Kondo T, et al. SARS-CoV-2 infection triggers paracrine senescence and leads to a sustained senescence-associated inflammatory response. Nat Aging. 2022;2:115-124 pubmed publisher
|
| Tailor N, Warner B, Griffin B, Tierney K, Moffat E, Frost K, et al. Generation and Characterization of a SARS-CoV-2-Susceptible Mouse Model Using Adeno-Associated Virus (AAV6.2FF)-Mediated Respiratory Delivery of the Human ACE2 Gene. Viruses. 2022;15: pubmed publisher
|
| Kato Y, Nishiyama K, Man Lee J, Ibuki Y, Imai Y, Noda T, et al. TRPC3-Nox2 Protein Complex Formation Increases the Risk of SARS-CoV-2 Spike Protein-Induced Cardiomyocyte Dysfunction through ACE2 Upregulation. Int J Mol Sci. 2022;24: pubmed publisher
|
| Garreta E, Moya Rull D, Stanifer M, Monteil V, Prado P, Marco A, et al. Protocol for SARS-CoV-2 infection of kidney organoids derived from human pluripotent stem cells. STAR Protoc. 2022;3:101872 pubmed publisher
|
| Guo X, Cao J, Cai J, Wu J, Huang J, Asthana P, et al. Control of SARS-CoV-2 infection by MT1-MMP-mediated shedding of ACE2. Nat Commun. 2022;13:7907 pubmed publisher
|
| Shi J, Wang G, Zheng J, Verma A, Guan X, Malisheni M, et al. Effective vaccination strategy using SARS-CoV-2 spike cocktail against Omicron and other variants of concern. NPJ Vaccines. 2022;7:169 pubmed publisher
|
| Adney D, Lovaglio J, Schulz J, Yinda C, Avanzato V, Haddock E, et al. Severe acute respiratory disease in American mink experimentally infected with SARS-CoV-2. JCI Insight. 2022;7: pubmed publisher
|
| Guo H, Li A, Dong T, Su J, Yao Y, Zhu Y, et al. ACE2-Independent Bat Sarbecovirus Entry and Replication in Human and Bat Cells. MBio. 2022;13:e0256622 pubmed publisher
|
| Mache C, Schulze J, Holland G, Bourquain D, Gensch J, Oh D, et al. SARS-CoV-2 Omicron variant is attenuated for replication in a polarized human lung epithelial cell model. Commun Biol. 2022;5:1138 pubmed publisher
|
| Harte J, Wakerlin S, Lindsay A, McCarthy J, Coleman Vaughan C. Metalloprotease-Dependent S2'-Activation Promotes Cell-Cell Fusion and Syncytiation of SARS-CoV-2. Viruses. 2022;14: pubmed publisher
|
| Beckman D, Bonillas A, Diniz G, Ott S, Roh J, Elizaldi S, et al. SARS-CoV-2 infects neurons and induces neuroinflammation in a non-human primate model of COVID-19. Cell Rep. 2022;41:111573 pubmed publisher
|
| Jalloh S, Olejnik J, Berrigan J, Nisa A, Suder E, Akiyama H, et al. CD169-mediated restrictive SARS-CoV-2 infection of macrophages induces pro-inflammatory responses. PLoS Pathog. 2022;18:e1010479 pubmed publisher
|
| Sun H, Du Y, Kumar R, Buchkovich N, He P. Increased circulating microparticles contribute to severe infection and adverse outcomes of COVID-19 in patients with diabetes. Am J Physiol Heart Circ Physiol. 2022;323:H1176-H1193 pubmed publisher
|
| Song J, Chow R, Pe xf1 a Hern xe1 ndez M, Zhang L, Loeb S, So E, et al. LRRC15 inhibits SARS-CoV-2 cellular entry in trans. PLoS Biol. 2022;20:e3001805 pubmed publisher
|
| Shilagardi K, Spear E, Abraham R, Griffin D, Michaelis S. The Integral Membrane Protein ZMPSTE24 Protects Cells from SARS-CoV-2 Spike-Mediated Pseudovirus Infection and Syncytia Formation. MBio. 2022;13:e0254322 pubmed publisher
|
| Saccon T, Mousovich Neto F, Ludwig R, Carregari V, Dos Anjos Souza A, Dos Passos A, et al. SARS-CoV-2 infects adipose tissue in a fat depot- and viral lineage-dependent manner. Nat Commun. 2022;13:5722 pubmed publisher
|
| Fuchs E, Rudnik Jansen I, Dinesen A, Selnihhin D, Mandrup O, Thiam K, et al. An albumin-angiotensin converting enzyme 2-based SARS-CoV-2 decoy with FcRn-driven half-life extension. Acta Biomater. 2022;153:411-418 pubmed publisher
|
| Brasu N, Elia I, Russo V, Montacchiesi G, Stabile S, De Intinis C, et al. Memory CD8+ T cell diversity and B cell responses correlate with protection against SARS-CoV-2 following mRNA vaccination. Nat Immunol. 2022;23:1445-1456 pubmed publisher
|
| Vanhulle E, D huys T, Provinciael B, Stroobants J, Camps A, Noppen S, et al. Carbohydrate-binding protein from stinging nettle as fusion inhibitor for SARS-CoV-2 variants of concern. Front Cell Infect Microbiol. 2022;12:989534 pubmed publisher
|
| Montano M, Victor A, Griffin D, Duong T, Bolduc N, Farmer A, et al. SARS-CoV-2 can infect human embryos. Sci Rep. 2022;12:15451 pubmed publisher
|
| Yao Y, Subedi K, Liu T, Khalasawi N, Pretto Kernahan C, Wotring J, et al. Surface translocation of ACE2 and TMPRSS2 upon TLR4/7/8 activation is required for SARS-CoV-2 infection in circulating monocytes. Cell Discov. 2022;8:89 pubmed publisher
|
| Hou J, Wei Y, Zou J, Jaffery R, Liang S, Zheng C, et al. Integrated multi-omics analyses identify key anti-viral host factors and pathways controlling SARS-CoV-2 infection. Res Sq. 2022;: pubmed publisher
|
| Cantoni D, Murray M, Kalemera M, Dicken S, Stejskal L, Brown G, et al. Evolutionary remodelling of N-terminal domain loops fine-tunes SARS-CoV-2 spike. EMBO Rep. 2022;23:e54322 pubmed publisher
|
| Patten J, Keiser P, Morselli Gysi D, Menichetti G, Mori H, Donahue C, et al. Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization. iScience. 2022;25:104925 pubmed publisher
|
| Kazmierski J, Friedmann K, Postmus D, Emanuel J, Fischer C, Jansen J, et al. Nonproductive exposure of PBMCs to SARS-CoV-2 induces cell-intrinsic innate immune responses. Mol Syst Biol. 2022;18:e10961 pubmed publisher
|
| Meng B, Datir R, Choi J, Bradley J, Smith K, Lee J, et al. SARS-CoV-2 spike N-terminal domain modulates TMPRSS2-dependent viral entry and fusogenicity. Cell Rep. 2022;40:111220 pubmed publisher
|
| Su P, Zhai D, Wong A, Liu F. Development of a novel peptide to prevent entry of SARS-CoV-2 into lung and olfactory bulb cells of hACE2 expressing mice. Mol Brain. 2022;15:71 pubmed publisher
|
| Zhu Y, Chew K, Wu M, Karawita A, McCallum G, Steele L, et al. Ancestral SARS-CoV-2, but not Omicron, replicates less efficiently in primary pediatric nasal epithelial cells. PLoS Biol. 2022;20:e3001728 pubmed publisher
|
| Chang C, Parsi K, Somasundaran M, Vanderleeden E, Liu P, Cruz J, et al. A Newly Engineered A549 Cell Line Expressing ACE2 and TMPRSS2 Is Highly Permissive to SARS-CoV-2, Including the Delta and Omicron Variants. Viruses. 2022;14: pubmed publisher
|
| Osan J, Talukdar S, Feldmann F, DeMontigny B, Jerome K, BAILEY K, et al. Goblet Cell Hyperplasia Increases SARS-CoV-2 Infection in Chronic Obstructive Pulmonary Disease. Microbiol Spectr. 2022;10:e0045922 pubmed publisher
|
| Aicher S, Streicher F, Chazal M, Planas D, Luo D, Buchrieser J, et al. Species-Specific Molecular Barriers to SARS-CoV-2 Replication in Bat Cells. J Virol. 2022;96:e0060822 pubmed publisher
|
| St xf6 lting H, Baillon L, Frise R, Bonner K, Hewitt R, Molyneaux P, et al. Distinct airway epithelial immune responses after infection with SARS-CoV-2 compared to H1N1. Mucosal Immunol. 2022;15:952-963 pubmed publisher
|
| Daniell H, Nair S, Shi Y, Wang P, Montone K, Shaw P, et al. Decrease in Angiotensin-Converting Enzyme activity but not concentration in plasma/lungs in COVID-19 patients offers clues for diagnosis/treatment. Mol Ther Methods Clin Dev. 2022;26:266-278 pubmed publisher
|
| Pohl M, Martin Sancho L, Ratnayake R, White K, Riva L, Chen Q, et al. Sec61 Inhibitor Apratoxin S4 Potently Inhibits SARS-CoV-2 and Exhibits Broad-Spectrum Antiviral Activity. ACS Infect Dis. 2022;8:1265-1279 pubmed publisher
|
| Ssenyange G, Kerfoot M, Zhao M, FARHADIAN S, Chen S, Peng L, et al. Development of an efficient reproducible cell-cell transmission assay for rapid quantification of SARS-CoV-2 spike interaction with hACE2. Cell Rep Methods. 2022;2:100252 pubmed publisher
|
| Favalli A, Favalli E, Gobbini A, Zagato E, Bombaci M, Maioli G, et al. Immunosuppressant Treatment in Rheumatic Musculoskeletal Diseases Does Not Inhibit Elicitation of Humoral Response to SARS-CoV-2 Infection and Preserves Effector Immune Cell Populations. Front Immunol. 2022;13:873195 pubmed publisher
|
| Ding S, Ullah I, Gong S, Grover J, Mohammadi M, Chen Y, et al. VE607 stabilizes SARS-CoV-2 Spike in the "RBD-up" conformation and inhibits viral entry. iScience. 2022;25:104528 pubmed publisher
|
| Zhang Y, Archie S, Ghanwatkar Y, Sharma S, Nozohouri S, Burks E, et al. Potential role of astrocyte angiotensin converting enzyme 2 in the neural transmission of COVID-19 and a neuroinflammatory state induced by smoking and vaping. Fluids Barriers CNS. 2022;19:46 pubmed publisher
|
| Eriksen A, M xf8 ller R, Makovoz B, tenOever B, Blenkinsop T. Protocols for SARS-CoV-2 infection in primary ocular cells and eye organoids. STAR Protoc. 2022;3:101383 pubmed publisher
|
| Magnen M, You R, Rao A, Davis R, Rodriguez L, Simoneau C, et al. Immediate myeloid depot for SARS-CoV-2 in the human lung. Res Sq. 2022;: pubmed publisher
|
| Vanhulle E, Stroobants J, Provinciael B, Camps A, Noppen S, Maes P, et al. SARS-CoV-2 Permissive glioblastoma cell line for high throughput antiviral screening. Antiviral Res. 2022;203:105342 pubmed publisher
|
| Magnen M, You R, Rao A, Davis R, Rodriguez L, Simoneau C, et al. Immediate myeloid depot for SARS-CoV-2 in the human lung. bioRxiv. 2022;: pubmed publisher
|
| Tey S, Lam H, Wong S, Zhao H, To K, Yam J. ACE2-enriched extracellular vesicles enhance infectivity of live SARS-CoV-2 virus. J Extracell Vesicles. 2022;11:e12231 pubmed publisher
|
| Garreta E, Prado P, Stanifer M, Monteil V, Marco A, Ullate Agote A, et al. A diabetic milieu increases ACE2 expression and cellular susceptibility to SARS-CoV-2 infections in human kidney organoids and patient cells. Cell Metab. 2022;34:857-873.e9 pubmed publisher
|
| Torres J, Ozorowski G, Andreano E, Liu H, Copps J, Piccini G, et al. Structural insights of a highly potent pan-neutralizing SARS-CoV-2 human monoclonal antibody. Proc Natl Acad Sci U S A. 2022;119:e2120976119 pubmed publisher
|
| Jocher G, Grass V, Tschirner S, Riepler L, Breimann S, Kaya T, et al. ADAM10 and ADAM17 promote SARS-CoV-2 cell entry and spike protein-mediated lung cell fusion. EMBO Rep. 2022;23:e54305 pubmed publisher
|
| Taha Z, Arulanandam R, Maznyi G, Godbout E, Carter Timofte M, Kurmasheva N, et al. Identification of FDA-approved bifonazole as a SARS-CoV-2 blocking agent following a bioreporter drug screen. Mol Ther. 2022;: pubmed publisher
|
| Kalejaiye T, Bhattacharya R, Burt M, Travieso T, Okafor A, Mou X, et al. SARS-CoV-2 Employ BSG/CD147 and ACE2 Receptors to Directly Infect Human Induced Pluripotent Stem Cell-Derived Kidney Podocytes. Front Cell Dev Biol. 2022;10:855340 pubmed publisher
|
| Struble L, Smith A, Lutz W, Grubbs G, Sagar S, Bayles K, et al. Insect cell expression and purification of recombinant SARS-COV-2 spike proteins that demonstrate ACE2 binding. Protein Sci. 2022;31:e4300 pubmed publisher
|
| Francesconi O, Donnici L, Fragai M, Pesce E, Bombaci M, Fasciani A, et al. Synthetic carbohydrate-binding agents neutralize SARS-CoV-2 by inhibiting binding of the spike protein to ACE2. iScience. 2022;25:104239 pubmed publisher
|
| Ramal Sanchez M, Castellini C, Cimini C, Taraschi A, Valbonetti L, Barbonetti A, et al. ACE2 Receptor and Its Isoform Short-ACE2 Are Expressed on Human Spermatozoa. Int J Mol Sci. 2022;23: pubmed publisher
|
| Spitalieri P, Centofanti F, Murdocca M, Scioli M, Latini A, Di Cesare S, et al. Two Different Therapeutic Approaches for SARS-CoV-2 in hiPSCs-Derived Lung Organoids. Cells. 2022;11: pubmed publisher
|
| Junqueira C, Crespo x, Ranjbar S, de Lacerda L, Lewandrowski M, Ingber J, et al. FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature. 2022;606:576-584 pubmed publisher
|
| Jalloh S, Olejnik J, Berrigan J, Nisa A, Suder E, Akiyama H, et al. CD169-mediated restrictive SARS-CoV-2 infection of macrophages induces pro-inflammatory responses. bioRxiv. 2022;: pubmed publisher
|
| Baldassi D, Ambike S, Feuerherd M, Cheng C, Peeler D, Feldmann D, et al. Inhibition of SARS-CoV-2 replication in the lung with siRNA/VIPER polyplexes. J Control Release. 2022;345:661-674 pubmed publisher
|
| Laghi V, Rezelj V, Boucontet L, Fr xe9 taud M, Da Costa B, Boudinot P, et al. Exploring Zebrafish Larvae as a COVID-19 Model: Probable Abortive SARS-CoV-2 Replication in the Swim Bladder. Front Cell Infect Microbiol. 2022;12:790851 pubmed publisher
|
| Casciola Rosen L, Thiemann D, Andrade F, Trejo Zambrano M, Leonard E, Spangler J, et al. IgM anti-ACE2 autoantibodies in severe COVID-19 activate complement and perturb vascular endothelial function. JCI Insight. 2022;7: pubmed publisher
|
| Wanner N, Andrieux G, Badia I Mompel P, Edler C, Pfefferle S, Lindenmeyer M, et al. Molecular consequences of SARS-CoV-2 liver tropism. Nat Metab. 2022;4:310-319 pubmed publisher
|
| Zhou Y, Wang K, Wang X, Cui H, Zhao Y, Zhu P, et al. SARS-CoV-2 pseudovirus enters the host cells through spike protein-CD147 in an Arf6-dependent manner. Emerg Microbes Infect. 2022;11:1135-1144 pubmed publisher
|
| Menuchin Lasowski Y, Schreiber A, Lecanda A, Mecate Zambrano A, Brunotte L, Psathaki O, et al. SARS-CoV-2 infects and replicates in photoreceptor and retinal ganglion cells of human retinal organoids. Stem Cell Reports. 2022;17:789-803 pubmed publisher
|
| Jana I, Bhttacharya P, Mayilsamy K, Banerjee S, Bhattacharje G, Das S, et al. Targeting an evolutionarily conserved "E-L-L" motif in the spike protein to develop a small molecule fusion inhibitor against SARS-CoV-2. bioRxiv. 2022;: pubmed publisher
|
| Friedrich M, Pfeifer G, Binder S, Aigner A, Vollmer Barbosa P, Makert G, et al. Selection and Validation of siRNAs Preventing Uptake and Replication of SARS-CoV-2. Front Bioeng Biotechnol. 2022;10:801870 pubmed publisher
|
| Rocha S, Fagre A, Latham A, Cummings J, Aboellail T, Reigan P, et al. A Novel Glucocorticoid and Androgen Receptor Modulator Reduces Viral Entry and Innate Immune Inflammatory Responses in the Syrian Hamster Model of SARS-CoV-2 Infection. Front Immunol. 2022;13:811430 pubmed publisher
|
| van der Heide V, Jangra S, Cohen P, Rathnasinghe R, Aslam S, Aydillo T, et al. Limited extent and consequences of pancreatic SARS-CoV-2 infection. Cell Rep. 2022;38:110508 pubmed publisher
|
| Wang X, Luo J, Wen Z, Shuai L, Wang C, Zhong G, et al. Diltiazem inhibits SARS-CoV-2 cell attachment and internalization and decreases the viral infection in mouse lung. PLoS Pathog. 2022;18:e1010343 pubmed publisher
|
| Rahmani W, Chung H, Sinha S, Bui Marinos M, Arora R, Jaffer A, et al. Attenuation of SARS-CoV-2 infection by losartan in human kidney organoids. iScience. 2022;25:103818 pubmed publisher
|
| van der Donk L, Eder J, van Hamme J, Brouwer P, Brinkkemper M, van Nuenen A, et al. SARS-CoV-2 infection activates dendritic cells via cytosolic receptors rather than extracellular TLRs. Eur J Immunol. 2022;52:646-655 pubmed publisher
|
| Taglauer E, Wachman E, Juttukonda L, Klouda T, Kim J, Wang Q, et al. Acute Severe Acute Respiratory Syndrome Coronavirus 2 Infection in Pregnancy Is Associated with Placental Angiotensin-Converting Enzyme 2 Shedding. Am J Pathol. 2022;192:595-603 pubmed publisher
|
| Krasemann S, Haferkamp U, Pfefferle S, Woo M, Heinrich F, Schweizer M, et al. The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2. Stem Cell Reports. 2022;17:307-320 pubmed publisher
|
| El Shennawy L, Hoffmann A, Dashzeveg N, McAndrews K, Mehl P, Cornish D, et al. Circulating ACE2-expressing extracellular vesicles block broad strains of SARS-CoV-2. Nat Commun. 2022;13:405 pubmed publisher
|
| Shikama Y, Kurosawa M, Furukawa M, Kudo Y, Ishimaru N, Matsushita K. The Priming Potential of Interferon Lambda-1 for Antiviral Defense in the Oral Mucosa. Inflammation. 2022;: pubmed publisher
|
| Jansen J, Reimer K, Nagai J, Varghese F, Overheul G, de Beer M, et al. SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids. Cell Stem Cell. 2022;29:217-231.e8 pubmed publisher
|
| Desilles J, Solo Nomenjanahary M, Ollivier V, Faille D, Bourrienne M, Hamdani M, et al. Impact of COVID-19 on thrombus composition and response to thrombolysis: Insights from a monocentric cohort population of COVID-19 patients with acute ischemic stroke. J Thromb Haemost. 2022;20:919-928 pubmed publisher
|
| Grau Exp xf3 sito J, Perea D, Suppi M, Massana N, Vergara A, Soler M, et al. Evaluation of SARS-CoV-2 entry, inflammation and new therapeutics in human lung tissue cells. PLoS Pathog. 2022;18:e1010171 pubmed publisher
|
| Cui Q, Garcia G, Zhang M, Wang C, Li H, Zhou T, et al. Compound screen identifies the small molecule Q34 as an inhibitor of SARS-CoV-2 infection. iScience. 2022;25:103684 pubmed publisher
|
| Li T, Yang Y, Li Y, Wang Z, Ma F, Luo R, et al. Platelets mediate inflammatory monocyte activation by SARS-CoV-2 spike protein. J Clin Invest. 2022;132: pubmed publisher
|
| Ettich J, Werner J, Weitz H, Mueller E, Schwarzer R, Lang P, et al. A Hybrid Soluble gp130/Spike-Nanobody Fusion Protein Simultaneously Blocks Interleukin-6 trans-Signaling and Cellular Infection with SARS-CoV-2. J Virol. 2022;96:e0162221 pubmed publisher
|
| Villa A, Brunialti E, Dellavedova J, Meda C, Rebecchi M, Conti M, et al. DNA aptamers masking angiotensin converting enzyme 2 as an innovative way to treat SARS-CoV-2 pandemic. Pharmacol Res. 2022;175:105982 pubmed publisher
|
| Nguyen L, McCord K, Bui D, Bouwman K, Kitova E, Elaish M, et al. Sialic acid-containing glycolipids mediate binding and viral entry of SARS-CoV-2. Nat Chem Biol. 2022;18:81-90 pubmed publisher
|
| Siddiq M, Chan A, Miorin L, Yadaw A, BEAUMONT K, Kehrer T, et al. Functional Effects of Cardiomyocyte Injury in COVID-19. J Virol. 2022;96:e0106321 pubmed publisher
|
| Singh S, Garcia G, Shah R, Kramerov A, Wright R, Spektor T, et al. SARS-CoV-2 and its beta variant of concern infect human conjunctival epithelial cells and induce differential antiviral innate immune response. Ocul Surf. 2022;23:184-194 pubmed publisher
|
| Shi J, Jin X, Ding Y, Liu X, Shen A, Wu Y, et al. Receptor-Binding Domain Proteins of SARS-CoV-2 Variants Elicited Robust Antibody Responses Cross-Reacting with Wild-Type and Mutant Viruses in Mice. Vaccines (Basel). 2021;9: pubmed publisher
|
| Ruffin M, Bigot J, Calmel C, Mercier J, Givelet M, Oliva J, et al. Flagellin From Pseudomonas aeruginosa Modulates SARS-CoV-2 Infectivity in Cystic Fibrosis Airway Epithelial Cells by Increasing TMPRSS2 Expression. Front Immunol. 2021;12:714027 pubmed publisher
|
| Biering S, de Sousa F, Tjang L, Pahmeier F, Ruan R, Blanc S, et al. SARS-CoV-2 Spike triggers barrier dysfunction and vascular leak via integrins and TGF-β signaling. bioRxiv. 2021;: pubmed publisher
|
| Wu M, Liu F, Sun J, Li X, He X, Zheng H, et al. SARS-CoV-2-triggered mast cell rapid degranulation induces alveolar epithelial inflammation and lung injury. Signal Transduct Target Ther. 2021;6:428 pubmed publisher
|
| Wang J, Yang G, Wang X, Wen Z, Shuai L, Luo J, et al. SARS-CoV-2 uses metabotropic glutamate receptor subtype 2 as an internalization factor to infect cells. Cell Discov. 2021;7:119 pubmed publisher
|
| Gon xe7 alves J, Juliano A, Charepe N, Alenquer M, Athayde D, Ferreira F, et al. Secretory IgA and T cells targeting SARS-CoV-2 spike protein are transferred to the breastmilk upon mRNA vaccination. Cell Rep Med. 2021;2:100468 pubmed publisher
|
| Okoloko O, Vanderwall E, Rich L, White M, Reeves S, Harrington W, et al. Effect of Angiotensin-Converting-Enzyme Inhibitor and Angiotensin II Receptor Antagonist Treatment on ACE2 Expression and SARS-CoV-2 Replication in Primary Airway Epithelial Cells. Front Pharmacol. 2021;12:765951 pubmed publisher
|
| Song J, Chow R, Pena Hernandez M, Zhang L, Loeb S, So E, et al. LRRC15 is an inhibitory receptor blocking SARS-CoV-2 spike-mediated entry in trans. bioRxiv. 2021;: pubmed publisher
|
| Ostrov D, Bluhm A, Li D, Khan J, Rohamare M, Rajamanickam K, et al. Highly Specific Sigma Receptor Ligands Exhibit Anti-Viral Properties in SARS-CoV-2 Infected Cells. Pathogens. 2021;10: pubmed publisher
|
| Khan M, Yoo S, Clijsters M, Backaert W, Vanstapel A, Speleman K, et al. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell. 2021;184:5932-5949.e15 pubmed publisher
|
| Helms L, Marchianò S, Stanaway I, Hsiang T, Juliar B, Saini S, et al. Cross-validation of SARS-CoV-2 responses in kidney organoids and clinical populations. JCI Insight. 2021;6: pubmed publisher
|
| Wang Q, Nair M, Anang S, Zhang S, Nguyen H, Huang Y, et al. Functional differences among the spike glycoproteins of multiple emerging severe acute respiratory syndrome coronavirus 2 variants of concern. iScience. 2021;24:103393 pubmed publisher
|
| Duan X, Tang X, Nair M, Zhang T, Qiu Y, Zhang W, et al. An airway organoid-based screen identifies a role for the HIF1α-glycolysis axis in SARS-CoV-2 infection. Cell Rep. 2021;37:109920 pubmed publisher
|
| Schimmel L, Chew K, Stocks C, Yordanov T, Essebier P, Kulasinghe A, et al. Endothelial cells are not productively infected by SARS-CoV-2. Clin Transl Immunology. 2021;10:e1350 pubmed publisher
|
| Klouda T, Hao Y, Kim H, Kim J, Olejnik J, Hume A, et al. Interferon-alpha or -beta facilitates SARS-CoV-2 pulmonary vascular infection by inducing ACE2. Angiogenesis. 2021;: pubmed publisher
|
| Guo X, Kazanova A, Thurmond S, Saragovi H, Rudd C. Effective chimeric antigen receptor T cells against SARS-CoV-2. iScience. 2021;24:103295 pubmed publisher
|
| Ku M, Authie P, Bourgine M, Anna F, Noirat A, Moncoq F, et al. Brain cross-protection against SARS-CoV-2 variants by a lentiviral vaccine in new transgenic mice. EMBO Mol Med. 2021;13:e14459 pubmed publisher
|
| Kr xfc ger N, Rocha C, Runft S, Kr xfc ger J, F xe4 rber I, Armando F, et al. The Upper Respiratory Tract of Felids Is Highly Susceptible to SARS-CoV-2 Infection. Int J Mol Sci. 2021;22: pubmed publisher
|
| Chen H, Huang C, Tian L, Huang X, Zhang C, Llewellyn G, et al. Cytoplasmic Tail Truncation of SARS-CoV-2 Spike Protein Enhances Titer of Pseudotyped Vectors but Masks the Effect of the D614G Mutation. J Virol. 2021;95:e0096621 pubmed publisher
|
| Nath P, Chauhan N, Jena K, Datey A, Kumar N, Mehto S, et al. Inhibition of IRGM establishes a robust antiviral immune state to restrict pathogenic viruses. EMBO Rep. 2021;22:e52948 pubmed publisher
|
| Shukla S, Cho K, Rustagi V, Gao X, Fu X, Zhang S, et al. "Molecular Masks" for ACE2 to Effectively and Safely Block SARS-CoV-2 Virus Entry. Int J Mol Sci. 2021;22: pubmed publisher
|
| Chen Y, Zhang Y, Yan R, Wang G, Zhang Y, Zhang Z, et al. ACE2-targeting monoclonal antibody as potent and broad-spectrum coronavirus blocker. Signal Transduct Target Ther. 2021;6:315 pubmed publisher
|
| Constant O, Barthelemy J, Bollore K, Tuaillon E, Gosselet F, Chable Bessia C, et al. SARS-CoV-2 Poorly Replicates in Cells of the Human Blood-Brain Barrier Without Associated Deleterious Effects. Front Immunol. 2021;12:697329 pubmed publisher
|
| Sherman E, Emmer B. ACE2 protein expression within isogenic cell lines is heterogeneous and associated with distinct transcriptomes. Sci Rep. 2021;11:15900 pubmed publisher
|
| Alenquer M, Ferreira F, Lousa D, Val xe9 rio M, Medina Lopes M, Bergman M, et al. Signatures in SARS-CoV-2 spike protein conferring escape to neutralizing antibodies. PLoS Pathog. 2021;17:e1009772 pubmed publisher
|
| Williams T, Colzani M, Macrae R, Robinson E, Bloor S, Greenwood E, et al. Human embryonic stem cell-derived cardiomyocyte platform screens inhibitors of SARS-CoV-2 infection. Commun Biol. 2021;4:926 pubmed publisher
|
| Liu F, Han K, Blair R, Kenst K, Qin Z, Upcin B, et al. SARS-CoV-2 Infects Endothelial Cells In Vivo and In Vitro. Front Cell Infect Microbiol. 2021;11:701278 pubmed publisher
|
| Almeida da Silva C, Matshik Dakafay H, Liu K, Ojcius D. Cigarette Smoke Stimulates SARS-CoV-2 Internalization by Activating AhR and Increasing ACE2 Expression in Human Gingival Epithelial Cells. Int J Mol Sci. 2021;22: pubmed publisher
|
| Kondo Y, Larabee J, Gao L, Shi H, Shao B, Hoover C, et al. L-SIGN is a receptor on liver sinusoidal endothelial cells for SARS-CoV-2 virus. JCI Insight. 2021;6: pubmed publisher
|
| Chen D, Khan N, Close B, Goel R, Blum B, Tavares A, et al. SARS-CoV-2 Disrupts Proximal Elements in the JAK-STAT Pathway. J Virol. 2021;95:e0086221 pubmed publisher
|
| Wang L, Sievert D, Clark A, Lee S, Federman H, Gastfriend B, et al. A human three-dimensional neural-perivascular 'assembloid' promotes astrocytic development and enables modeling of SARS-CoV-2 neuropathology. Nat Med. 2021;27:1600-1606 pubmed publisher
|
| Puray Chavez M, Lapak K, Schrank T, Elliott J, Bhatt D, Agajanian M, et al. Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell. Cell Rep. 2021;36:109364 pubmed publisher
|
| Partridge L, Urwin L, Nicklin M, James D, Green L, Monk P. ACE2-Independent Interaction of SARS-CoV-2 Spike Protein with Human Epithelial Cells Is Inhibited by Unfractionated Heparin. Cells. 2021;10: pubmed publisher
|
| Toyonaga T, Araba K, Kennedy M, Keith B, Wolber E, Beasley C, et al. Increased colonic expression of ACE2 associates with poor prognosis in Crohn's disease. Sci Rep. 2021;11:13533 pubmed publisher
|
| Adhikary P, Kandel S, Mamani U, Mustafa B, Hao S, Qiu J, et al. Discovery of Small Anti-ACE2 Peptides to Inhibit SARS-CoV-2 Infectivity. Adv Ther (Weinh). 2021;4:2100087 pubmed publisher
|
| Yue J, Jin W, Yang H, Faulkner J, Song X, Qiu H, et al. Heparan Sulfate Facilitates Spike Protein-Mediated SARS-CoV-2 Host Cell Invasion and Contributes to Increased Infection of SARS-CoV-2 G614 Mutant and in Lung Cancer. Front Mol Biosci. 2021;8:649575 pubmed publisher
|
| Motozono C, Toyoda M, Zahradník J, Saito A, Nasser H, Tan T, et al. SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host Microbe. 2021;29:1124-1136.e11 pubmed publisher
|
| Zhao M, Su P, Castro D, Tripler T, Hu Y, Cook M, et al. Rapid, reliable, and reproducible cell fusion assay to quantify SARS-Cov-2 spike interaction with hACE2. PLoS Pathog. 2021;17:e1009683 pubmed publisher
|
| Wang X, Chen C, Badeti S, Cho J, Naghizadeh A, Wang Z, et al. Deletion of ER-retention motif on SARS-CoV-2 spike protein reduces cell hybrid during cell-cell fusion. Cell Biosci. 2021;11:114 pubmed publisher
|
| Djidrovski I, Georgiou M, Hughes G, Patterson E, Casas Sánchez A, Pennington S, et al. SARS-CoV-2 infects an upper airway model derived from induced pluripotent stem cells. Stem Cells. 2021;39:1310-1321 pubmed publisher
|
| Steenblock C, Richter S, Berger I, Barovic M, Schmid J, Schubert U, et al. Viral infiltration of pancreatic islets in patients with COVID-19. Nat Commun. 2021;12:3534 pubmed publisher
|
| Colson A, Depoix C, Dessilly G, Baldin P, Danhaive O, Hubinont C, et al. Clinical and in Vitro Evidence against Placenta Infection at Term by Severe Acute Respiratory Syndrome Coronavirus 2. Am J Pathol. 2021;191:1610-1623 pubmed publisher
|
| Tang X, Uhl S, Zhang T, Xue D, Li B, Vandana J, et al. SARS-CoV-2 infection induces beta cell transdifferentiation. Cell Metab. 2021;33:1577-1591.e7 pubmed publisher
|
| Vandergaast R, Carey T, Reiter S, Lathrum C, Lech P, Gnanadurai C, et al. IMMUNO-COV v2.0: Development and Validation of a High-Throughput Clinical Assay for Measuring SARS-CoV-2-Neutralizing Antibody Titers. mSphere. 2021;6:e0017021 pubmed publisher
|
| Xu C, Wang A, Geng K, Honnen W, Wang X, Bruiners N, et al. Human Immunodeficiency Viruses Pseudotyped with SARS-CoV-2 Spike Proteins Infect a Broad Spectrum of Human Cell Lines through Multiple Entry Mechanisms. Viruses. 2021;13: pubmed publisher
|
| Baratchian M, McManus J, Berk M, Nakamura F, Mukhopadhyay S, Xu W, et al. Androgen regulation of pulmonary AR, TMPRSS2 and ACE2 with implications for sex-discordant COVID-19 outcomes. Sci Rep. 2021;11:11130 pubmed publisher
|
| Ebisudani T, Sugimoto S, Haga K, Mitsuishi A, Takai Todaka R, Fujii M, et al. Direct derivation of human alveolospheres for SARS-CoV-2 infection modeling and drug screening. Cell Rep. 2021;35:109218 pubmed publisher
|
| Eriksen A, Møller R, Makovoz B, Uhl S, tenOever B, Blenkinsop T. SARS-CoV-2 infects human adult donor eyes and hESC-derived ocular epithelium. Cell Stem Cell. 2021;28:1205-1220.e7 pubmed publisher
|
| Han M, Pandey D. ZMPSTE24 Regulates SARS-CoV-2 Spike Protein-enhanced Expression of Endothelial Plasminogen Activator Inhibitor-1. Am J Respir Cell Mol Biol. 2021;: pubmed publisher
|
| Marin C, Tubita V, Langdon C, Fuentes M, Rojas Lechuga M, Valero A, et al. ACE2 downregulation in olfactory mucosa: Eosinophilic rhinosinusitis as COVID-19 protective factor?. Allergy. 2021;76:2904-2907 pubmed publisher
|
| DiMuzio J, Heimbach B, Howanski R, Dowling J, Patel N, Henriquez N, et al. Unbiased interrogation of memory B cells from convalescent COVID-19 patients reveals a broad antiviral humoral response targeting SARS-CoV-2 antigens beyond the spike protein. Vaccine X. 2021;8:100098 pubmed publisher
|
| Ramírez S, Fernandez Antunez C, Galli A, Underwood A, Pham L, Ryberg L, et al. Overcoming Culture Restriction for SARS-CoV-2 in Human Cells Facilitates the Screening of Compounds Inhibiting Viral Replication. Antimicrob Agents Chemother. 2021;65:e0009721 pubmed publisher
|
| Wang L, Fan X, Bonenfant G, Cui D, Hossain J, Jiang N, et al. Susceptibility to SARS-CoV-2 of Cell Lines and Substrates Commonly Used to Diagnose and Isolate Influenza and Other Viruses. Emerg Infect Dis. 2021;27:1380-1392 pubmed publisher
|
| Ouyang Y, Bagalkot T, Fitzgerald W, Sadovsky E, Chu T, Mart xed nez Marchal A, et al. Term Human Placental Trophoblasts Express SARS-CoV-2 Entry Factors ACE2, TMPRSS2, and Furin. mSphere. 2021;6: pubmed publisher
|
| Chen C, Badeti S, Cho J, Naghizadeh A, Wang X, Liu D. Deletion of ER-retention Motif on SARS-CoV-2 Spike Protein Reduces Cell Hybrid During Cell-cell Fusion. Res Sq. 2021;: pubmed publisher
|
| Mena E, Donahue C, Vaites L, Li J, Róna G, O Leary C, et al. ORF10-Cullin-2-ZYG11B complex is not required for SARS-CoV-2 infection. Proc Natl Acad Sci U S A. 2021;118: pubmed publisher
|
| Dittmar M, Lee J, Whig K, Segrist E, Li M, Kamalia B, et al. Drug repurposing screens reveal cell-type-specific entry pathways and FDA-approved drugs active against SARS-Cov-2. Cell Rep. 2021;35:108959 pubmed publisher
|
| Mills R, Humphrey S, Fortuna P, Lor M, Foster S, Quaife Ryan G, et al. BET inhibition blocks inflammation-induced cardiac dysfunction and SARS-CoV-2 infection. Cell. 2021;184:2167-2182.e22 pubmed publisher
|
| Dicken S, Murray M, Thorne L, Reuschl A, Forrest C, Ganeshalingham M, et al. Characterisation of B.1.1.7 and Pangolin coronavirus spike provides insights on the evolutionary trajectory of SARS-CoV-2. bioRxiv. 2021;: pubmed publisher
|
| Zhang Y, Niu G, Flisikowska T, Schnieke A, Flisikowski K. A tissue- and gender-specific regulation of the SARS-CoV-2 receptor ACE2 by p53 in pigs. Biochem Biophys Res Commun. 2021;553:25-29 pubmed publisher
|
| Zhang Y, Guo R, Kim S, Shah H, Zhang S, Liang J, et al. SARS-CoV-2 hijacks folate and one-carbon metabolism for viral replication. Nat Commun. 2021;12:1676 pubmed publisher
|
| Puray Chavez M, Lapak K, Schrank T, Elliott J, Bhatt D, Agajanian M, et al. Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell. bioRxiv. 2021;: pubmed publisher
|
| Baggen J, Persoons L, Vanstreels E, Jansen S, Van Looveren D, Boeckx B, et al. Genome-wide CRISPR screening identifies TMEM106B as a proviral host factor for SARS-CoV-2. Nat Genet. 2021;53:435-444 pubmed publisher
|
| Uemura K, Sasaki M, Sanaki T, Toba S, Takahashi Y, Orba Y, et al. MRC5 cells engineered to express ACE2 serve as a model system for the discovery of antivirals targeting SARS-CoV-2. Sci Rep. 2021;11:5376 pubmed publisher
|
| Khoury E, Knaney Y, Fokra A, Kinaneh S, Azzam Z, Heyman S, et al. Pulmonary, cardiac and renal distribution of ACE2, furin, TMPRSS2 and ADAM17 in rats with heart failure: Potential implication for COVID-19 disease. J Cell Mol Med. 2021;25:3840-3855 pubmed publisher
|
| Piepenbrink M, Park J, Oladunni F, Deshpande A, Basu M, Sarkar S, et al. Therapeutic activity of an inhaled potent SARS-CoV-2 neutralizing human monoclonal antibody in hamsters. Cell Rep Med. 2021;2:100218 pubmed publisher
|
| Sugimoto S, Kobayashi E, Fujii M, Ohta Y, Arai K, Matano M, et al. An organoid-based organ-repurposing approach to treat short bowel syndrome. Nature. 2021;592:99-104 pubmed publisher
|
| Zhao S, Xie T, Shen L, Liu H, Wang L, Ma X, et al. An Immunological Perspective: What Happened to Pregnant Women After Recovering From COVID-19?. Front Immunol. 2021;12:631044 pubmed publisher
|
| Hörnich B, Großkopf A, Schlagowski S, Tenbusch M, Kleine Weber H, Neipel F, et al. SARS-CoV-2 and SARS-CoV Spike-Mediated Cell-Cell Fusion Differ in Their Requirements for Receptor Expression and Proteolytic Activation. J Virol. 2021;95: pubmed publisher
|
| Huerga Encabo H, Grey W, Garcia Albornoz M, WOOD H, Ulferts R, Aramburu I, et al. Human Erythroid Progenitors Are Directly Infected by SARS-CoV-2: Implications for Emerging Erythropoiesis in Severe COVID-19 Patients. Stem Cell Reports. 2021;16:428-436 pubmed publisher
|
| Suresh V, Parida D, Minz A, Sethi M, Sahoo B, Senapati S. Tissue Distribution of ACE2 Protein in Syrian Golden Hamster (Mesocricetus auratus) and Its Possible Implications in SARS-CoV-2 Related Studies. Front Pharmacol. 2020;11:579330 pubmed publisher
|
| Bouwman K, Tomris I, Turner H, van der Woude R, Shamorkina T, Bosman G, et al. Multimerization- and glycosylation-dependent receptor binding of SARS-CoV-2 spike proteins. PLoS Pathog. 2021;17:e1009282 pubmed publisher
|
| Onodi F, Bonnet Madin L, Meertens L, Karpf L, Poirot J, Zhang S, et al. SARS-CoV-2 induces human plasmacytoid predendritic cell diversification via UNC93B and IRAK4. J Exp Med. 2021;218: pubmed publisher
|
| Wysocki J, Ye M, Hassler L, Gupta A, Wang Y, Nicoleascu V, et al. A Novel Soluble ACE2 Variant with Prolonged Duration of Action Neutralizes SARS-CoV-2 Infection in Human Kidney Organoids. J Am Soc Nephrol. 2021;: pubmed publisher
|
| Condor Capcha J, Lambert G, Dykxhoorn D, Salerno A, Hare J, Whitt M, et al. Generation of SARS-CoV-2 Spike Pseudotyped Virus for Viral Entry and Neutralization Assays: A 1-Week Protocol. Front Cardiovasc Med. 2020;7:618651 pubmed publisher
|
| Samelson A, Tran Q, Robinot R, Carrau L, Rezelj V, Mac Kain A, et al. BRD2 inhibition blocks SARS-CoV-2 infection by reducing transcription of the host cell receptor ACE2. bioRxiv. 2021;: pubmed publisher
|
| Onodi F, Bonnet Madin L, Meertens L, Karpf L, Poirot J, Zhang S, et al. SARS-CoV-2 induces human plasmacytoid pre-dendritic cell diversification via UNC93B and IRAK4. bioRxiv. 2021;: pubmed publisher
|
| Yin X, Riva L, Pu Y, Martin Sancho L, Kanamune J, Yamamoto Y, et al. MDA5 Governs the Innate Immune Response to SARS-CoV-2 in Lung Epithelial Cells. Cell Rep. 2021;34:108628 pubmed publisher
|
| Song E, Zhang C, Israelow B, Lu Culligan A, Prado A, Skriabine S, et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med. 2021;218: pubmed publisher
|
| Blume C, Jackson C, Spalluto C, Legebeke J, Nazlamova L, Conforti F, et al. A novel ACE2 isoform is expressed in human respiratory epithelia and is upregulated in response to interferons and RNA respiratory virus infection. Nat Genet. 2021;53:205-214 pubmed publisher
|
| Schweitzer K, Crue T, Nall J, Foster D, Sajuthi S, Correll K, et al. Influenza virus infection increases ACE2 expression and shedding in human small airway epithelial cells. Eur Respir J. 2021;: pubmed publisher
|
| Mykytyn A, Breugem T, Riesebosch S, Schipper D, van den Doel P, Rottier R, et al. SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site. elife. 2021;10: pubmed publisher
|
| Ku M, Bourgine M, Authie P, Lopez J, Nemirov K, Moncoq F, et al. Intranasal vaccination with a lentiviral vector protects against SARS-CoV-2 in preclinical animal models. Cell Host Microbe. 2021;29:236-249.e6 pubmed publisher
|
| Wang R, Simoneau C, Kulsuptrakul J, Bouhaddou M, Travisano K, Hayashi J, et al. Genetic Screens Identify Host Factors for SARS-CoV-2 and Common Cold Coronaviruses. Cell. 2021;184:106-119.e14 pubmed publisher
|
| Zheng J, Wang Y, Li K, Meyerholz D, Allamargot C, Perlman S. Severe Acute Respiratory Syndrome Coronavirus 2-Induced Immune Activation and Death of Monocyte-Derived Human Macrophages and Dendritic Cells. J Infect Dis. 2021;223:785-795 pubmed publisher
|
| Samuel R, Majd H, Richter M, Ghazizadeh Z, Zekavat S, Navickas A, et al. Androgen Signaling Regulates SARS-CoV-2 Receptor Levels and Is Associated with Severe COVID-19 Symptoms in Men. Cell Stem Cell. 2020;27:876-889.e12 pubmed publisher
|
| Kusmartseva I, Wu W, Syed F, van der Heide V, Jorgensen M, Joseph P, et al. Expression of SARS-CoV-2 Entry Factors in the Pancreas of Normal Organ Donors and Individuals with COVID-19. Cell Metab. 2020;32:1041-1051.e6 pubmed publisher
|
| Osan J, Talukdar S, Feldmann F, Ann DeMontigny B, Jerome K, BAILEY K, et al. Goblet Cell Hyperplasia Increases SARS-CoV-2 Infection in COPD. bioRxiv. 2020;: pubmed publisher
|
| Bois M, Boire N, Layman A, Aubry M, Alexander M, Roden A, et al. COVID-19-Associated Nonocclusive Fibrin Microthrombi in the Heart. Circulation. 2021;143:230-243 pubmed publisher
|
| O Sullivan M, Mitchel J, Mwase C, McGill M, Kanki P, Park J. In well-differentiated primary human bronchial epithelial cells, TGF-β1 and TGF-β2 induce expression of furin. Am J Physiol Lung Cell Mol Physiol. 2021;320:L246-L253 pubmed publisher
|
| Hao S, Ning K, Kuz C, Vorhies K, Yan Z, Qiu J. Long-Term Modeling of SARS-CoV-2 Infection of In Vitro Cultured Polarized Human Airway Epithelium. MBio. 2020;11: pubmed publisher
|
| Tandon R, Mitra D, Sharma P, McCandless M, Stray S, Bates J, et al. Effective screening of SARS-CoV-2 neutralizing antibodies in patient serum using lentivirus particles pseudotyped with SARS-CoV-2 spike glycoprotein. Sci Rep. 2020;10:19076 pubmed publisher
|
| Han Y, Duan X, Yang L, Nilsson Payant B, Wang P, Duan F, et al. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature. 2021;589:270-275 pubmed publisher
|
| Lee I, Nakayama T, Wu C, Goltsev Y, Jiang S, Gall P, et al. ACE2 localizes to the respiratory cilia and is not increased by ACE inhibitors or ARBs. Nat Commun. 2020;11:5453 pubmed publisher
|
| Pellegrini L, Albecka A, Mallery D, Kellner M, Paul D, Carter A, et al. SARS-CoV-2 Infects the Brain Choroid Plexus and Disrupts the Blood-CSF Barrier in Human Brain Organoids. Cell Stem Cell. 2020;27:951-961.e5 pubmed publisher
|
| Yang Q, Hughes T, Kelkar A, Yu X, Cheng K, Park S, et al. Inhibition of SARS-CoV-2 viral entry upon blocking N- and O-glycan elaboration. elife. 2020;9: pubmed publisher
|
| Rut W, Groborz K, Zhang L, Sun X, Zmudzinski M, Pawlik B, et al. SARS-CoV-2 Mpro inhibitors and activity-based probes for patient-sample imaging. Nat Chem Biol. 2021;17:222-228 pubmed publisher
|
| Casciola Rosen L, Thiemann D, Andrade F, Trejo Zambrano M, Hooper J, Leonard E, et al. IgM autoantibodies recognizing ACE2 are associated with severe COVID-19. medRxiv. 2020;: pubmed publisher
|
| Baratchian M, McManus J, Berk M, Nakamura F, Mukhopadhyay S, Xu W, et al. Sex, androgens and regulation of pulmonary AR, TMPRSS2 and ACE2. bioRxiv. 2020;: pubmed publisher
|
| Rathnasinghe R, Strohmeier S, Amanat F, Gillespie V, Krammer F, Garcia Sastre A, et al. Comparison of transgenic and adenovirus hACE2 mouse models for SARS-CoV-2 infection. Emerg Microbes Infect. 2020;9:2433-2445 pubmed publisher
|
| Xie X, Muruato A, Zhang X, Lokugamage K, Fontes Garfias C, Zou J, et al. A nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-19. Nat Commun. 2020;11:5214 pubmed publisher
|
| Sajuthi S, Deford P, Li Y, Jackson N, Montgomery M, Everman J, et al. Type 2 and interferon inflammation regulate SARS-CoV-2 entry factor expression in the airway epithelium. Nat Commun. 2020;11:5139 pubmed publisher
|
| Robinson F, Mihealsick R, Wagener B, Hanna P, Poston M, Efimov I, et al. Role of angiotensin-converting enzyme 2 and pericytes in cardiac complications of COVID-19 infection. Am J Physiol Heart Circ Physiol. 2020;319:H1059-H1068 pubmed publisher
|
| Pr xe9 vost J, Gasser R, Beaudoin Bussi xe8 res G, Richard J, Duerr R, Laumaea A, et al. Cross-Sectional Evaluation of Humoral Responses against SARS-CoV-2 Spike. Cell Rep Med. 2020;1:100126 pubmed publisher
|
| Wang R, Simoneau C, Kulsuptrakul J, Bouhaddou M, Travisano K, Hayashi J, et al. Functional genomic screens identify human host factors for SARS-CoV-2 and common cold coronaviruses. bioRxiv. 2020;: pubmed publisher
|
| Huang J, Hume A, Abo K, Werder R, Villacorta Martin C, Alysandratos K, et al. SARS-CoV-2 Infection of Pluripotent Stem Cell-Derived Human Lung Alveolar Type 2 Cells Elicits a Rapid Epithelial-Intrinsic Inflammatory Response. Cell Stem Cell. 2020;27:962-973.e7 pubmed publisher
|
| Song E, Zhang C, Israelow B, Lu Culligan A, Prado A, Skriabine S, et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. bioRxiv. 2020;: pubmed publisher
|
| Perez Bermejo J, Kang S, Rockwood S, Simoneau C, Joy D, Ramadoss G, et al. SARS-CoV-2 infection of human iPSC-derived cardiac cells predicts novel cytopathic features in hearts of COVID-19 patients. bioRxiv. 2020;: pubmed publisher
|
| Busnadiego I, Fernbach S, Pohl M, Karakus U, Huber M, Trkola A, et al. Antiviral Activity of Type I, II, and III Interferons Counterbalances ACE2 Inducibility and Restricts SARS-CoV-2. MBio. 2020;11: pubmed publisher
|
| Azad T, Singaravelu R, Crupi M, Jamieson T, Dave J, Brown E, et al. Implications for SARS-CoV-2 Vaccine Design: Fusion of Spike Glycoprotein Transmembrane Domain to Receptor-Binding Domain Induces Trimerization. Membranes (Basel). 2020;10: pubmed publisher
|
| Taglauer E, Benarroch Y, Rop K, Barnett E, Sabharwal V, Yarrington C, et al. Consistent localization of SARS-CoV-2 spike glycoprotein and ACE2 over TMPRSS2 predominance in placental villi of 15 COVID-19 positive maternal-fetal dyads. Placenta. 2020;100:69-74 pubmed publisher
|
| Duan F, Guo L, Yang L, Han Y, Thakur A, Nilsson Payant B, et al. Modeling COVID-19 with Human Pluripotent Stem Cell-Derived Cells Reveals Synergistic Effects of Anti-inflammatory Macrophages with ACE2 Inhibition Against SARS-CoV-2. Res Sq. 2020;: pubmed publisher
|
| Sharma A, Garcia G, Wang Y, Plummer J, Morizono K, Arumugaswami V, et al. Human iPSC-Derived Cardiomyocytes Are Susceptible to SARS-CoV-2 Infection. Cell Rep Med. 2020;1:100052 pubmed publisher
|
| Shiers S, Ray P, Wangzhou A, Sankaranarayanan I, Tatsui C, Rhines L, et al. ACE2 and SCARF expression in human dorsal root ganglion nociceptors: implications for SARS-CoV-2 virus neurological effects. Pain. 2020;161:2494-2501 pubmed publisher
|
| Alexpandi R, De Mesquita J, Pandian S, Ravi A. Quinolines-Based SARS-CoV-2 3CLpro and RdRp Inhibitors and Spike-RBD-ACE2 Inhibitor for Drug-Repurposing Against COVID-19: An in silico Analysis. Front Microbiol. 2020;11:1796 pubmed publisher
|
| Dieterle M, Haslwanter D, Bortz R, Wirchnianski A, Lasso G, Vergnolle O, et al. A Replication-Competent Vesicular Stomatitis Virus for Studies of SARS-CoV-2 Spike-Mediated Cell Entry and Its Inhibition. Cell Host Microbe. 2020;28:486-496.e6 pubmed publisher
|
| Pfaender S, Mar K, Michailidis E, Kratzel A, Boys I, V kovski P, et al. LY6E impairs coronavirus fusion and confers immune control of viral disease. Nat Microbiol. 2020;5:1330-1339 pubmed publisher
|
| Rathnasinghe R, Strohmeier S, Amanat F, Gillespie V, Krammer F, Garcia Sastre A, et al. Comparison of Transgenic and Adenovirus hACE2 Mouse Models for SARS-CoV-2 Infection. bioRxiv. 2020;: pubmed publisher
|
| Zhao X, Chen D, Szabla R, Zheng M, Li G, Du P, et al. Broad and Differential Animal Angiotensin-Converting Enzyme 2 Receptor Usage by SARS-CoV-2. J Virol. 2020;94: pubmed publisher
|
| Huang J, Hume A, Abo K, Werder R, Villacorta Martin C, Alysandratos K, et al. SARS-CoV-2 Infection of Pluripotent Stem Cell-derived Human Lung Alveolar Type 2 Cells Elicits a Rapid Epithelial-Intrinsic Inflammatory Response. bioRxiv. 2020;: pubmed publisher
|
| Zecha J, Lee C, Bayer F, Meng C, Grass V, Zerweck J, et al. Data, Reagents, Assays and Merits of Proteomics for SARS-CoV-2 Research and Testing. Mol Cell Proteomics. 2020;19:1503-1522 pubmed publisher
|
| Yang L, Han Y, Nilsson Payant B, Gupta V, Wang P, Duan X, et al. A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids. Cell Stem Cell. 2020;27:125-136.e7 pubmed publisher
|
| Prévost J, Gasser R, Beaudoin Bussieres G, Richard J, Duerr R, Laumaea A, et al. Cross-sectional evaluation of humoral responses against SARS-CoV-2 Spike. bioRxiv. 2020;: pubmed publisher
|
| Lee I, Nakayama T, Wu C, Goltsev Y, Jiang S, Gall P, et al. Robust ACE2 protein expression localizes to the motile cilia of the respiratory tract epithelia and is not increased by ACE inhibitors or angiotensin receptor blockers. medRxiv. 2020;: pubmed publisher
|
| Han Y, Yang L, Duan X, Duan F, Nilsson Payant B, Yaron T, et al. Identification of Candidate COVID-19 Therapeutics using hPSC-derived Lung Organoids. bioRxiv. 2020;: pubmed publisher
|
| Dieterle M, Haslwanter D, Bortz R, Wirchnianski A, Lasso G, Vergnolle O, et al. A replication-competent vesicular stomatitis virus for studies of SARS-CoV-2 spike-mediated cell entry and its inhibition. bioRxiv. 2020;: pubmed publisher
|
| Collin J, Queen R, Zerti D, Dorgau B, Georgiou M, Djidrovski I, et al. Co-expression of SARS-CoV-2 entry genes in the superficial adult human conjunctival, limbal and corneal epithelium suggests an additional route of entry via the ocular surface. Ocul Surf. 2021;19:190-200 pubmed publisher
|
| Zhou J, Li C, Liu X, Chiu M, Zhao X, Wang D, et al. Infection of bat and human intestinal organoids by SARS-CoV-2. Nat Med. 2020;26:1077-1083 pubmed publisher
|
| Crawford K, Eguia R, Dingens A, Loes A, Malone K, Wolf C, et al. Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays. Viruses. 2020;12: pubmed publisher
|
| Yang M, Ma X, Xuan X, Deng H, Chen Q, Yuan L. Liraglutide Attenuates Non-Alcoholic Fatty Liver Disease in Mice by Regulating the Local Renin-Angiotensin System. Front Pharmacol. 2020;11:432 pubmed publisher
|
| Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11:1620 pubmed publisher
|
| Hoffmann M, Kleine Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;: pubmed publisher
|
| Tian D, Uda A, Ami Y, Hotta A, Park E, Nagata N, et al. Protective effects of the Francisella tularensis ΔpdpC mutant against its virulent parental strain SCHU P9 in Cynomolgus macaques. Sci Rep. 2019;9:9193 pubmed publisher
|
| Schrom E, Huber M, Aneja M, Dohmen C, Emrich D, Geiger J, et al. Translation of Angiotensin-Converting Enzyme 2 upon Liver- and Lung-Targeted Delivery of Optimized Chemically Modified mRNA. Mol Ther Nucleic Acids. 2017;7:350-365 pubmed publisher
|
| Xiao F, Zimpelmann J, Burger D, Kennedy C, Hébert R, Burns K. Protein Kinase C-? Mediates Shedding of Angiotensin-Converting Enzyme 2 from Proximal Tubular Cells. Front Pharmacol. 2016;7:146 pubmed publisher
|
| Milewska A, Kaminski K, Ciejka J, Kosowicz K, Zeglen S, Wojarski J, et al. HTCC: Broad Range Inhibitor of Coronavirus Entry. PLoS ONE. 2016;11:e0156552 pubmed publisher
|
| Yu Y, Chien S, Chen I, Lai C, Tsay Y, Chang S, et al. Surface vimentin is critical for the cell entry of SARS-CoV. J Biomed Sci. 2016;23:14 pubmed publisher
|