product summary
Loading...
company name :
R&D Systems
product type :
antibody
product name :
Mouse VEGFR3/Flt-4 Antibody
catalog :
AF743
quantity :
100 ug (also 25 ug)
price :
499 USD
clonality :
polyclonal
host :
domestic goat
conjugate :
nonconjugated
reactivity :
mouse
application :
western blot, immunohistochemistry, immunocytochemistry, immunoprecipitation, flow cytometry, immunohistochemistry - paraffin section, immunohistochemistry - frozen section, blocking or activating experiments
more info or order :
citations: 93
Published Application/Species/Sample/DilutionReference
  • immunocytochemistry; mouse; 1:100; loading ...; fig s4a
Zhang D, Huang J, Sun X, Chen H, Huang S, Yang J, et al. Targeting local lymphatics to ameliorate heterotopic ossification via FGFR3-BMPR1a pathway. Nat Commun. 2021;12:4391 pubmed publisher
  • immunohistochemistry; mouse; 1:50; loading ...; fig 4a
  • western blot; mouse; 1:5000; loading ...; fig 7a
Maruyama K, Naemura K, Arima Y, Uchijima Y, Nagao H, Yoshihara K, et al. Semaphorin3E-PlexinD1 signaling in coronary artery and lymphatic vessel development with clinical implications in myocardial recovery. iScience. 2021;24:102305 pubmed publisher
  • immunohistochemistry; mouse; loading ...
Maisel K, Hrusch C, Medellin J, Potin L, Chapel D, Nurmi H, et al. Pro-lymphangiogenic VEGFR-3 signaling modulates memory T cell responses in allergic airway inflammation. Mucosal Immunol. 2021;14:144-151 pubmed publisher
  • immunohistochemistry; mouse; loading ...; fig 1
Norden P, Sabine A, Wang Y, Demir C, Liu T, Petrova T, et al. Shear stimulation of FOXC1 and FOXC2 differentially regulates cytoskeletal activity during lymphatic valve maturation. elife. 2020;9: pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:200; loading ...; fig 8b
Engelbrecht E, Lévesque M, He L, Vanlandewijck M, Nitzsche A, Niazi H, et al. Sphingosine 1-phosphate-regulated transcriptomes in heterogenous arterial and lymphatic endothelium of the aorta. elife. 2020;9: pubmed publisher
  • immunohistochemistry; mouse; 1:100-1:200; loading ...; fig 1d
Shibata Germanos S, Goodman J, Grieg A, Trivedi C, Benson B, Foti S, et al. Structural and functional conservation of non-lumenized lymphatic endothelial cells in the mammalian leptomeninges. Acta Neuropathol. 2020;139:383-401 pubmed publisher
  • immunohistochemistry - paraffin section; mouse; loading ...; fig 2a
Urner S, Planas Paz L, Hilger L, Henning C, Branopolski A, Kelly Goss M, et al. Identification of ILK as a critical regulator of VEGFR3 signalling and lymphatic vascular growth. EMBO J. 2019;38: pubmed publisher
  • immunohistochemistry - frozen section; mouse; fig s1a
  • immunohistochemistry; mouse
Souma T, Thomson B, Heinen S, Carota I, Yamaguchi S, Onay T, et al. Context-dependent functions of angiopoietin 2 are determined by the endothelial phosphatase VEPTP. Proc Natl Acad Sci U S A. 2018;115:1298-1303 pubmed publisher
  • immunohistochemistry - frozen section; mouse; loading ...; fig s3c
Kim J, Park D, Bae H, Park D, Kim D, Lee C, et al. Impaired angiopoietin/Tie2 signaling compromises Schlemm's canal integrity and induces glaucoma. J Clin Invest. 2017;127:3877-3896 pubmed publisher
  • immunohistochemistry - paraffin section; mouse; loading ...; fig s1c
Olmeda D, Cerezo Wallis D, Riveiro Falkenbach E, Pennacchi P, Contreras Alcalde M, Ibarz N, et al. Whole-body imaging of lymphovascular niches identifies pre-metastatic roles of midkine. Nature. 2017;546:676-680 pubmed publisher
  • immunohistochemistry; mouse; loading ...; fig 2j
Wong B, Wang X, Zecchin A, Thienpont B, Cornelissen I, Kalucka J, et al. The role of fatty acid ?-oxidation in lymphangiogenesis. Nature. 2017;542:49-54 pubmed publisher
  • immunohistochemistry - frozen section; mouse; loading ...; fig s5b
  • western blot; mouse; loading ...; fig 3i
Lee S, Rho S, Park H, Park J, Kim J, Lee I, et al. Carbohydrate-binding protein CLEC14A regulates VEGFR-2- and VEGFR-3-dependent signals during angiogenesis and lymphangiogenesis. J Clin Invest. 2017;127:457-471 pubmed publisher
  • immunohistochemistry; mouse; 1:100; loading ...; fig 5b
Wang Y, Baeyens N, Corti F, Tanaka K, Fang J, Zhang J, et al. Syndecan 4 controls lymphatic vasculature remodeling during mouse embryonic development. Development. 2016;143:4441-4451 pubmed
  • flow cytometry; mouse; fig 1
Liang Q, Ju Y, Chen Y, Wang W, Li J, Zhang L, et al. Lymphatic endothelial cells efferent to inflamed joints produce iNOS and inhibit lymphatic vessel contraction and drainage in TNF-induced arthritis in mice. Arthritis Res Ther. 2016;18:62 pubmed publisher
  • immunohistochemistry - frozen section; mouse; fig 1
Munger S, Geng X, Srinivasan R, Witte M, Paul D, Simon A. Segregated Foxc2, NFATc1 and Connexin expression at normal developing venous valves, and Connexin-specific differences in the valve phenotypes of Cx37, Cx43, and Cx47 knockout mice. Dev Biol. 2016;412:173-90 pubmed publisher
  • blocking or activating experiments; mouse; 1:200; fig 2
  • immunocytochemistry; mouse; 1:200; fig 6
Wong H, Jin G, Cao R, Zhang S, Cao Y, Zhou Z. MT1-MMP sheds LYVE-1 on lymphatic endothelial cells and suppresses VEGF-C production to inhibit lymphangiogenesis. Nat Commun. 2016;7:10824 pubmed publisher
  • immunohistochemistry - paraffin section; mouse; 1:50; fig 3
Janssen L, Dupont L, Bekhouche M, Noel A, Leduc C, Voz M, et al. ADAMTS3 activity is mandatory for embryonic lymphangiogenesis and regulates placental angiogenesis. Angiogenesis. 2016;19:53-65 pubmed publisher
  • immunohistochemistry - frozen section; mouse; loading ...; fig 1h
Huang J, Woolf A, Kolatsi Joannou M, Baluk P, Sandford R, Peters D, et al. Vascular Endothelial Growth Factor C for Polycystic Kidney Diseases. J Am Soc Nephrol. 2016;27:69-77 pubmed publisher
Crossey E, Carty S, Shao F, Henao Vasquez J, Ysasi A, Zeng M, et al. Influenza induces lung lymphangiogenesis independent of YAP/TAZ activity in lymphatic endothelial cells. Sci Rep. 2024;14:21324 pubmed publisher
Tai Y, Chow A, Han S, Coker C, Ma W, Gu Y, et al. FLT1 activation in cancer cells promotes PARP-inhibitor resistance in breast cancer. EMBO Mol Med. 2024;16:1957-1980 pubmed publisher
Guo T, Pei F, Zhang M, Yamada T, Feng J, Jing J, et al. Vascular architecture regulates mesenchymal stromal cell heterogeneity via P53-PDGF signaling in the mouse incisor. Cell Stem Cell. 2024;31:904-920.e6 pubmed publisher
Crossey E, Carty S, Shao F, Henao Vasquez J, Ysasi A, Zeng M, et al. Influenza Induces Lung Lymphangiogenesis Independent of YAP/TAZ Activity in Lymphatic Endothelial Cells. Res Sq. 2024;: pubmed publisher
Iga T, Kobayashi H, Kusumoto D, Sanosaka T, Fujita N, Tai Nagara I, et al. Spatial heterogeneity of bone marrow endothelial cells unveils a distinct subtype in the epiphysis. Nat Cell Biol. 2023;25:1415-1425 pubmed publisher
U xe7 ar M, Hannezo E, Tiilikainen E, Liaqat I, Jakobsson E, Nurmi H, et al. Self-organized and directed branching results in optimal coverage in developing dermal lymphatic networks. Nat Commun. 2023;14:5878 pubmed publisher
Jannaway M, Iyer D, Mastrogiacomo D, Li K, Sung D, Yang Y, et al. VEGFR3 is required for button junction formation in lymphatic vessels. Cell Rep. 2023;42:112777 pubmed publisher
Freise L, Behncke R, Allerkamp H, Sandermann T, Chu N, Funk E, et al. Three-Dimensional Histological Characterization of the Placental Vasculature Using Light Sheet Microscopy. Biomolecules. 2023;13: pubmed publisher
Sato Nishiuchi R, Doiguchi M, Morooka N, Sekiguchi K. Polydom/SVEP1 binds to Tie1 and promotes migration of lymphatic endothelial cells. J Cell Biol. 2023;222: pubmed publisher
Qi L, Li X, Zhang F, Zhu X, Zhao Q, Yang D, et al. VEGFR-3 signaling restrains the neuron-macrophage crosstalk during neurotropic viral infection. Cell Rep. 2023;42:112489 pubmed publisher
Shankar N, Thapa S, Shrestha A, Sarkar P, Gaber M, Barrios R, et al. Hyperoxia Disrupts Lung Lymphatic Homeostasis in Neonatal Mice. Antioxidants (Basel). 2023;12: pubmed publisher
Kazenwadel J, Venugopal P, Oszmiana A, Toubia J, Arriola Martinez L, Panara V, et al. A Prox1 enhancer represses haematopoiesis in the lymphatic vasculature. Nature. 2023;614:343-348 pubmed publisher
Li Z, Solomonidis E, Berkeley B, Tang M, Stewart K, Perez Vicencio D, et al. Multi-species meta-analysis identifies transcriptional signatures associated with cardiac endothelial responses in the ischaemic heart. Cardiovasc Res. 2023;119:136-154 pubmed publisher
Maruyama K, Miyagawa Tomita S, Haneda Y, Kida M, Matsuzaki F, Imanaka Yoshida K, et al. The cardiopharyngeal mesoderm contributes to lymphatic vessel development in mouse. elife. 2022;11: pubmed publisher
Takahashi K, Abe K, Kubota S, Fukatsu N, Morishita Y, Yoshimatsu Y, et al. An analysis modality for vascular structures combining tissue-clearing technology and topological data analysis. Nat Commun. 2022;13:5239 pubmed publisher
Kataru R, Park H, Shin J, Baik J, Sarker A, Brown S, et al. Structural and Functional Changes in Aged Skin Lymphatic Vessels. Front Aging. 2022;3:864860 pubmed publisher
Hu H, Cui Y, Yang J, Cao Y. Loss of the Sympathetic Signal Produces Sterile Inflammation of the Prostate. Front Mol Neurosci. 2022;15:855376 pubmed publisher
Li X, Qi L, Yang D, Hao S, Zhang F, Zhu X, et al. Meningeal lymphatic vessels mediate neurotropic viral drainage from the central nervous system. Nat Neurosci. 2022;25:577-587 pubmed publisher
Cautivo K, Matatia P, Lizama C, Mroz N, Dahlgren M, Yu X, et al. Interferon gamma constrains type 2 lymphocyte niche boundaries during mixed inflammation. Immunity. 2022;55:254-271.e7 pubmed publisher
Baluk P, McDonald D. Imaging Blood Vessels and Lymphatics in Mouse Trachea Wholemounts. Methods Mol Biol. 2022;2441:115-134 pubmed publisher
Karaman S, Paavonsalo S, Heinolainen K, Lackman M, Ranta A, Hemanthakumar K, et al. Interplay of vascular endothelial growth factor receptors in organ-specific vessel maintenance. J Exp Med. 2022;219: pubmed publisher
Olmeda D, Cerezo Wallis D, Mucientes C, Calvo T, Cañón E, Alonso Curbelo D, et al. Live imaging of neolymphangiogenesis identifies acute antimetastatic roles of dsRNA mimics. EMBO Mol Med. 2021;13:e12924 pubmed publisher
Redder E, Kirschnick N, Bobe S, Hägerling R, Hansmeier N, Kiefer F. Vegfr3-tdTomato, a reporter mouse for microscopic visualization of lymphatic vessel by multiple modalities. PLoS ONE. 2021;16:e0249256 pubmed publisher
Chakraborty A, Upadhya R, Usman T, Shetty A, Rutkowski J. Chronic VEGFR-3 signaling preserves dendritic arborization and sensitization under stress. Brain Behav Immun. 2021;98:219-233 pubmed publisher
Cordero Espinoza L, Dowbaj A, Kohler T, Strauss B, Sarlidou O, Belenguer G, et al. Dynamic cell contacts between periportal mesenchyme and ductal epithelium act as a rheostat for liver cell proliferation. Cell Stem Cell. 2021;28:1907-1921.e8 pubmed publisher
Ma W, Gil H, Liu X, Diebold L, Morgan M, Oxendine Burns M, et al. Mitochondrial respiration controls the Prox1-Vegfr3 feedback loop during lymphatic endothelial cell fate specification and maintenance. Sci Adv. 2021;7: pubmed publisher
Sun Y, Wang Q, Wang Y, Ren W, Cao Y, Li J, et al. Sarm1-mediated neurodegeneration within the enteric nervous system protects against local inflammation of the colon. Protein Cell. 2021;12:621-638 pubmed publisher
Yeo K, Lim H, Thiam C, Azhar S, Tan C, Tang Y, et al. Efficient aortic lymphatic drainage is necessary for atherosclerosis regression induced by ezetimibe. Sci Adv. 2020;6: pubmed publisher
Tai Nagara I, Hasumi Y, Kusumoto D, Hasumi H, Okabe K, Ando T, et al. Blood and lymphatic systems are segregated by the FLCN tumor suppressor. Nat Commun. 2020;11:6314 pubmed publisher
Cha B, Ho Y, Geng X, Mahamud M, Chen L, Kim Y, et al. YAP and TAZ maintain PROX1 expression in the developing lymphatic and lymphovenous valves in response to VEGF-C signaling. Development. 2020;147: pubmed publisher
Hong S, Yang M, Cho H, Park I, Bae H, Choe K, et al. Distinct fibroblast subsets regulate lacteal integrity through YAP/TAZ-induced VEGF-C in intestinal villi. Nat Commun. 2020;11:4102 pubmed publisher
Wu Y, Seong Y, Li K, Choi D, Park E, Daghlian G, et al. Organogenesis and distribution of the ocular lymphatic vessels in the anterior eye. JCI Insight. 2020;5: pubmed publisher
Geng X, Yanagida K, Akwii R, Choi D, Chen L, Ho Y, et al. S1PR1 regulates the quiescence of lymphatic vessels by inhibiting laminar shear stress-dependent VEGF-C signaling. JCI Insight. 2020;5: pubmed publisher
Martínez Corral I, Zhang Y, Petkova M, Orts xe4 ter H, Sj xf6 berg S, Castillo S, et al. Blockade of VEGF-C signaling inhibits lymphatic malformations driven by oncogenic PIK3CA mutation. Nat Commun. 2020;11:2869 pubmed publisher
Wang X, Lou N, Eberhardt A, Yang Y, Kusk P, Xu Q, et al. An ocular glymphatic clearance system removes β-amyloid from the rodent eye. Sci Transl Med. 2020;12: pubmed publisher
Szot xe1 k Ajtay K, Sz xf5 ke D, Kov xe1 cs G, Andr xe9 ka J, Brenner G, Giricz Z, et al. Reduced Prenatal Pulmonary Lymphatic Function Is Observed in Clp1 K/K Embryos With Impaired Motor Functions Including Fetal Breathing Movements in Preparation of the Developing Lung for Inflation at Birth. Front Bioeng Biotechnol. 2020;8:136 pubmed publisher
Betterman K, Sutton D, Secker G, Kazenwadel J, Oszmiana A, Lim L, et al. Atypical cadherin FAT4 orchestrates lymphatic endothelial cell polarity in response to flow. J Clin Invest. 2020;130:3315-3328 pubmed publisher
Sivaraj K, Dharmalingam B, Mohanakrishnan V, Jeong H, Kato K, Schröder S, et al. YAP1 and TAZ negatively control bone angiogenesis by limiting hypoxia-inducible factor signaling in endothelial cells. elife. 2020;9: pubmed publisher
Jafree D, Moulding D, Kolatsi Joannou M, Perretta Tejedor N, Price K, Milmoe N, et al. Spatiotemporal dynamics and heterogeneity of renal lymphatics in mammalian development and cystic kidney disease. elife. 2019;8: pubmed publisher
Outtz Reed H, Wang L, Kahn M, Hancock W. Donor-host Lymphatic Anastomosis After Murine Lung Transplantation. Transplantation. 2020;104:511-515 pubmed publisher
Mahamud M, Geng X, Ho Y, Cha B, Kim Y, Ma J, et al. GATA2 controls lymphatic endothelial cell junctional integrity and lymphovenous valve morphogenesis through miR-126. Development. 2019;146: pubmed publisher
Norman T, Gower A, Chen F, Fine A. Transcriptional landscape of pulmonary lymphatic endothelial cells during fetal gestation. PLoS ONE. 2019;14:e0216795 pubmed publisher
Zarjou A, Black L, Bolisetty S, Traylor A, Bowhay S, Zhang M, et al. Dynamic signature of lymphangiogenesis during acute kidney injury and chronic kidney disease. Lab Invest. 2019;: pubmed publisher
Reed H, Wang L, Sonett J, Chen M, Yang J, Li L, et al. Lymphatic impairment leads to pulmonary tertiary lymphoid organ formation and alveolar damage. J Clin Invest. 2019;129:2514-2526 pubmed publisher
Hsu M, Rayasam A, Kijak J, Choi Y, Harding J, Marcus S, et al. Neuroinflammation-induced lymphangiogenesis near the cribriform plate contributes to drainage of CNS-derived antigens and immune cells. Nat Commun. 2019;10:229 pubmed publisher
FARBER G, Parks M, Lustgarten Guahmich N, Zhang Y, Monette S, Blanchard S, et al. ADAM10 controls the differentiation of the coronary arterial endothelium. Angiogenesis. 2019;22:237-250 pubmed publisher
Crona D, Skol A, Leppänen V, Glubb D, Etheridge A, Hilliard E, et al. Genetic Variants of VEGFA and FLT4 Are Determinants of Survival in Renal Cell Carcinoma Patients Treated with Sorafenib. Cancer Res. 2019;79:231-241 pubmed publisher
Cha B, Geng X, Mahamud M, Zhang J, Chen L, Kim W, et al. Complementary Wnt Sources Regulate Lymphatic Vascular Development via PROX1-Dependent Wnt/β-Catenin Signaling. Cell Rep. 2018;25:571-584.e5 pubmed publisher
Ma Q, Dieterich L, Ikenberg K, Bachmann S, Mangana J, Proulx S, et al. Unexpected contribution of lymphatic vessels to promotion of distant metastatic tumor spread. Sci Adv. 2018;4:eaat4758 pubmed publisher
Gauvrit S, Villasenor A, Strilic B, Kitchen P, Collins M, Marín Juez R, et al. HHEX is a transcriptional regulator of the VEGFC/FLT4/PROX1 signaling axis during vascular development. Nat Commun. 2018;9:2704 pubmed publisher
Su T, Stanley G, Sinha R, D Amato G, Das S, Rhee S, et al. Single-cell analysis of early progenitor cells that build coronary arteries. Nature. 2018;559:356-362 pubmed publisher
Thomson C, van de Pavert S, Stakenborg M, Labeeuw E, Matteoli G, Mowat A, et al. Expression of the Atypical Chemokine Receptor ACKR4 Identifies a Novel Population of Intestinal Submucosal Fibroblasts That Preferentially Expresses Endothelial Cell Regulators. J Immunol. 2018;201:215-229 pubmed publisher
Frye M, Taddei A, Dierkes C, Martínez Corral I, Fielden M, Ortsäter H, et al. Matrix stiffness controls lymphatic vessel formation through regulation of a GATA2-dependent transcriptional program. Nat Commun. 2018;9:1511 pubmed publisher
Zhang Y, Ulvmar M, Stanczuk L, Martínez Corral I, Frye M, Alitalo K, et al. Heterogeneity in VEGFR3 levels drives lymphatic vessel hyperplasia through cell-autonomous and non-cell-autonomous mechanisms. Nat Commun. 2018;9:1296 pubmed publisher
Antila S, Karaman S, Nurmi H, Airavaara M, Voutilainen M, Mathivet T, et al. Development and plasticity of meningeal lymphatic vessels. J Exp Med. 2017;214:3645-3667 pubmed publisher
Jha S, Rauniyar K, Karpanen T, Leppänen V, Brouillard P, Vikkula M, et al. Efficient activation of the lymphangiogenic growth factor VEGF-C requires the C-terminal domain of VEGF-C and the N-terminal domain of CCBE1. Sci Rep. 2017;7:4916 pubmed publisher
Tatin F, Renaud Gabardos E, Godet A, Hantelys F, Pujol F, Morfoisse F, et al. Apelin modulates pathological remodeling of lymphatic endothelium after myocardial infarction. JCI Insight. 2017;2: pubmed publisher
Yu P, Wilhelm K, Dubrac A, Tung J, Alves T, Fang J, et al. FGF-dependent metabolic control of vascular development. Nature. 2017;545:224-228 pubmed publisher
Jang J, Choi S, Park I, Park D, Choe K, Kim P, et al. VEGFR2 but not VEGFR3 governs integrity and remodeling of thyroid angiofollicular unit in normal state and during goitrogenesis. EMBO Mol Med. 2017;9:750-769 pubmed publisher
Yazdani S, Poosti F, Toro L, Wedel J, Mencke R, Mirković K, et al. Vitamin D inhibits lymphangiogenesis through VDR-dependent mechanisms. Sci Rep. 2017;7:44403 pubmed publisher
Heinolainen K, Karaman S, D Amico G, Tammela T, Sormunen R, Eklund L, et al. VEGFR3 Modulates Vascular Permeability by Controlling VEGF/VEGFR2 Signaling. Circ Res. 2017;120:1414-1425 pubmed publisher
Langen U, Pitulescu M, Kim J, Enriquez Gasca R, Sivaraj K, Kusumbe A, et al. Cell-matrix signals specify bone endothelial cells during developmental osteogenesis. Nat Cell Biol. 2017;19:189-201 pubmed publisher
Yuk C, Park H, Kwon B, Lah S, Chang J, Kim J, et al. Basophil-derived IL-6 regulates TH17 cell differentiation and CD4 T cell immunity. Sci Rep. 2017;7:41744 pubmed publisher
Majumder S, Zhu G, Xu X, Senchanthisai S, Jiang D, Liu H, et al. G-Protein-Coupled Receptor-2-Interacting Protein-1 Controls Stalk Cell Fate by Inhibiting Delta-like 4-Notch1 Signaling. Cell Rep. 2016;17:2532-2541 pubmed publisher
Munger S, Davis M, Simon A. Defective lymphatic valve development and chylothorax in mice with a lymphatic-specific deletion of Connexin43. Dev Biol. 2017;421:204-218 pubmed publisher
Liu X, Uemura A, Fukushima Y, Yoshida Y, Hirashima M. Semaphorin 3G Provides a Repulsive Guidance Cue to Lymphatic Endothelial Cells via Neuropilin-2/PlexinD1. Cell Rep. 2016;17:2299-2311 pubmed publisher
Cha B, Geng X, Mahamud M, Fu J, Mukherjee A, Kim Y, et al. Mechanotransduction activates canonical Wnt/β-catenin signaling to promote lymphatic vascular patterning and the development of lymphatic and lymphovenous valves. Genes Dev. 2016;30:1454-69 pubmed publisher
Nguyen V, Nassar D, Batteux F, Raymond K, Tharaux P, Aractingi S. Delayed Healing of Sickle Cell Ulcers Is due to Impaired Angiogenesis and CXCL12 Secretion in Skin Wounds. J Invest Dermatol. 2016;136:497-506 pubmed publisher
Zhou Y, Williams J, Smallwood P, Nathans J. Sox7, Sox17, and Sox18 Cooperatively Regulate Vascular Development in the Mouse Retina. PLoS ONE. 2015;10:e0143650 pubmed publisher
Aspelund A, Antila S, Proulx S, Karlsen T, Karaman S, Detmar M, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212:991-9 pubmed publisher
Louveau A, Smirnov I, Keyes T, Eccles J, Rouhani S, Peske J, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337-41 pubmed publisher
Zhang G, Brady J, Liang W, Wu Y, Henkemeyer M, Yan M. EphB4 forward signalling regulates lymphatic valve development. Nat Commun. 2015;6:6625 pubmed publisher
Wälchli T, Mateos J, Weinman O, Babic D, Regli L, Hoerstrup S, et al. Quantitative assessment of angiogenesis, perfused blood vessels and endothelial tip cells in the postnatal mouse brain. Nat Protoc. 2015;10:53-74 pubmed publisher
Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med. 2007;204:2349-62 pubmed
Wirzenius M, Tammela T, Uutela M, He Y, Odorisio T, Zambruno G, et al. Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. J Exp Med. 2007;204:1431-40 pubmed
product information
master code :
AF743
SKU :
AF743
product name :
Mouse VEGFR3/Flt-4 Antibody
unit size :
100 ug (also 25 ug)
description :
The Mouse VEGFR3/Flt-4 Antibody from R&D Systems is a goat polyclonal antibody to VEGFR3/Flt-4. This antibody reacts with equine,human,mouse,rat,transgenic mouse. The Mouse VEGFR3/Flt-4 Antibody has been validated for the following applications: Immunohistochemistry,Immunoprecipitation,Immunocytochemistry,Western Blot,ELISA Development,Flow Cytometry,Immunohistochemistry-Paraffin,Immunohistochemistry-Frozen,CyTOF-ready.
target :
VEGFR3/Flt-4
category :
Primary Antibodies
buffer :
Lyophilized from a 0.2 ╡m filtered solution in PBS with Trehalose. *Small pack size (SP) is supplied either lyophilized or as a 0.2 ╡m filtered solution in PBS.
clonality :
Polyclonal
concentration :
LYOPH
conjugate :
Unconjugated
host :
Goat
immunogen :
S. frugiperda insect ovarian cell line Sf 21-derived recombinant mouse VEGFR3/Flt-4, Tyr25-Asp770, Accession # P35917
isotype :
IgG
purity :
Antigen Affinity-purified
species :
Equine,Mouse,Transgenic Mouse
specificity :
Detects mouse VEGFR3/Flt-4 in direct ELISAs and Western blots. In direct ELISAs, approximately 30% cross-reactivity with recombinant human (rh) VEGFR3 is observed and less than 5% cross-reactivity with recombinant mouse VEGFR2 is observed.
gene symbol :
FLT4
top caption :
Detection of VEGFR3/Flt-4 antibody in bEnd.3 Mouse Cell Line antibody by Flow Cytometry.
accessionNumbers :
P35917
applications :
Immunohistochemistry,Western Blot,ELISA Development,Flow Cytometry,Immunoprecipitation,Immunohistochemistry-Paraffin,Immunohistochemistry-Frozen,Immunocytochemistry,CyTOF-ready
USD :
499 USD
alt names :
EC 2.7.10, EC 2.7.10.1, Flt-4, FLT4, fms-related tyrosine kinase 4, LMPH1A, PCLFLT41, soluble VEGFR3 variant 1, soluble VEGFR3 variant 2, soluble VEGFR3 variant 3, Tyrosine-protein kinase receptor FLT4, vascular endothelial growth factor receptor 3, VEGF R3, VEGFR-3, VEGFR3Fms-like tyrosine kinase 4
storage :
Use a manual defrost freezer and avoid repeated freeze-thaw cycles. 12 months from date of receipt, -20 to -70 ░C as supplied. 1 month, 2 to 8 ░C under sterile conditions after reconstitution. 6 months, -20 to -70 ░C under sterile conditions after reconstitution.
more info or order :
company information
R&D Systems
614 McKinley Place N.E.
Minneapolis, MN 55413
info@RnDSystems.com
https://www.rndsystems.com
800 343-7475
headquarters: USA
R&D Systems develops and manufactures high-quality proteins and serves as a world leader in immunoassays. R&D Systems also produces quality antibodies, antibody arrays, stem cell and cell culture products, and cell selection and detection products, serving the life science and diagnostics industry.