Reference |
---|
Huang H, Huang Y, Chen Y, Wu H, Hsu C, Kao H, et al. The branched N-glycan of PD-L1 predicts immunotherapy responses in patients with recurrent/metastatic HNSCC. Oncogenesis. 2024;13:36 pubmed publisher
|
Robinson M, Kennedy A, Orozco C, Chen H, Waters E, Giovacchini D, et al. Rigid, bivalent CTLA-4 binding to CD80 is required to disrupt the cis CD80/PD-L1 interaction. Cell Rep. 2024;43:114768 pubmed publisher
|
Pereira Ribeiro S, Strongin Z, Soudeyns H, Ten Caten F, Ghneim K, Pacheco Sanchez G, et al. Dual blockade of IL-10 and PD-1 leads to control of SIV viral rebound following analytical treatment interruption. Nat Immunol. 2024;25:1900-1912 pubmed publisher
|
Li Y, Wang Z, Gao P, Cao D, Dong R, Zhu M, et al. CircRHBDD1 promotes immune escape via IGF2BP2/PD-L1 signaling and acts as a nanotherapeutic target in gastric cancer. J Transl Med. 2024;22:704 pubmed publisher
|
Jeong H, Koh J, Kim S, Song S, Lee S, Jeon Y, et al. Epithelial-mesenchymal transition induced by tumor cell-intrinsic PD-L1 signaling predicts a poor response to immune checkpoint inhibitors in PD-L1-high lung cancer. Br J Cancer. 2024;131:23-36 pubmed publisher
|
Manna L, Rapuano Lembo R, Yoshioka A, Nakamura K, Passariello M, De Lorenzo C. A Comparison of the Antitumor Efficacy of Novel Multi-Specific Tribodies with Combinations of Approved Immunomodulatory Antibodies. Cancers (Basel). 2023;15: pubmed publisher
|
Erlichman N, Meshel T, Baram T, Abu Raiya A, Horvitz T, Ben Yaakov H, et al. The Cell-Autonomous Pro-Metastatic Activities of PD-L1 in Breast Cancer Are Regulated by N-Linked Glycosylation-Dependent Activation of STAT3 and STAT1. Cells. 2023;12: pubmed publisher
|
Mellergaard M, Skovbakke S, Jepsen S, Panagiotopoulou N, Hansen A, Tian W, et al. Clinical Staphylococcus aureus inhibits human T-cell activity through interaction with the PD-1 receptor. MBio. 2023;14:e0134923 pubmed publisher
|
Li X, Li J, Zheng Y, Lee S, Zhou J, Giobbie Hurder A, et al. Granulocyte-Macrophage Colony-Stimulating Factor Influence on Soluble and Membrane-Bound ICOS in Combination with Immune Checkpoint Blockade. Cancer Immunol Res. 2023;11:1100-1113 pubmed publisher
|
Phakham T, Boonkrai C, Wongtangprasert T, Audomsun T, Attakitbancha C, Saelao P, et al. Highly efficient hybridoma generation and screening strategy for anti-PD-1 monoclonal antibody development. Sci Rep. 2022;12:17792 pubmed publisher
|
Wang Q, Cao Y, Shen L, Xiao T, Cao R, Wei S, et al. Regulation of PD-L1 through direct binding of cholesterol to CRAC motifs. Sci Adv. 2022;8:eabq4722 pubmed publisher
|
Ghaderi S, Riazi Rad F, Qamsari E, Bagheri S, Rahimi Jamnani F, Sharifzadeh Z. Development of a human phage display-derived anti-PD-1 scFv antibody: an attractive tool for immune checkpoint therapy. BMC Biotechnol. 2022;22:22 pubmed publisher
|
Erlichman N, Baram T, Meshel T, Morein D, Da adoosh B, Ben Baruch A. Tumor Cell-Autonomous Pro-Metastatic Activities of PD-L1 in Human Breast Cancer Are Mediated by PD-L1-S283 and Chemokine Axes. Cancers (Basel). 2022;14: pubmed publisher
|
Zhang R, Yang Y, Dong W, Lin M, He J, Zhang X, et al. D-mannose facilitates immunotherapy and radiotherapy of triple-negative breast cancer via degradation of PD-L1. Proc Natl Acad Sci U S A. 2022;119: pubmed publisher
|
Edwards C, Sette A, Cox C, Di Fiore B, Wyre C, Sydoruk D, et al. The multi-specific VH-based Humabody CB213 co-targets PD1 and LAG3 on T cells to promote anti-tumour activity. Br J Cancer. 2021;: pubmed publisher
|
Ren Y, Qian Y, Ai L, Xie Y, Gao Y, Zhuang Z, et al. TRAPPC4 regulates the intracellular trafficking of PD-L1 and antitumor immunity. Nat Commun. 2021;12:5405 pubmed publisher
|
Vetrei C, Passariello M, Froechlich G, Rapuano Lembo R, Zambrano N, De Lorenzo C. Immunomodulatory mAbs as Tools to Investigate on Cis-Interaction of PD-1/PD-L1 on Tumor Cells and to Set Up Methods for Early Screening of Safe and Potent Combinatorial Treatments. Cancers (Basel). 2021;13: pubmed publisher
|
Park J, Thi E, Carpio V, Bi Y, Cole A, Dorsey B, et al. Checkpoint inhibition through small molecule-induced internalization of programmed death-ligand 1. Nat Commun. 2021;12:1222 pubmed publisher
|
Zhu D, Xu R, Huang X, Tang Z, Tian Y, Zhang J, et al. Deubiquitinating enzyme OTUB1 promotes cancer cell immunosuppression via preventing ER-associated degradation of immune checkpoint protein PD-L1. Cell Death Differ. 2021;28:1773-1789 pubmed publisher
|
Li C, Yao H, Wang H, Fang J, Xu J. Repurposing screen identifies Amlodipine as an inducer of PD-L1 degradation and antitumor immunity. Oncogene. 2021;40:1128-1146 pubmed publisher
|
Silva Pilipich N, Martisova E, Ballesteros Briones M, Hervas Stubbs S, Casares N, Gonzalez Sapienza G, et al. Long-Term Systemic Expression of a Novel PD-1 Blocking Nanobody from an AAV Vector Provides Antitumor Activity without Toxicity. Biomedicines. 2020;8: pubmed publisher
|
Liberelle M, Magnez R, Thuru X, Bencheikh Y, Ravez S, Quenon C, et al. MUC4-ErbB2 Oncogenic Complex: Binding studies using Microscale Thermophoresis. Sci Rep. 2019;9:16678 pubmed publisher
|
Passariello M, D Alise A, Esposito A, Vetrei C, Froechlich G, Scarselli E, et al. Novel Human Anti-PD-L1 mAbs Inhibit Immune-Independent Tumor Cell Growth and PD-L1 Associated Intracellular Signalling. Sci Rep. 2019;9:13125 pubmed publisher
|
Wang W, Chapman N, Zhang B, Li M, Fan M, Laribee R, et al. Upregulation of PD-L1 via HMGB1-Activated IRF3 and NF-κB Contributes to UV Radiation-Induced Immune Suppression. Cancer Res. 2019;79:2909-2922 pubmed publisher
|
Zhang N, Dou Y, Liu L, Zhang X, Liu X, Zeng Q, et al. SA-49, a novel aloperine derivative, induces MITF-dependent lysosomal degradation of PD-L1. EBioMedicine. 2019;40:151-162 pubmed publisher
|
Wang H, Yao H, Li C, Shi H, Lan J, Li Z, et al. HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity. Nat Chem Biol. 2019;15:42-50 pubmed publisher
|
Shao B, Li C, Lim S, Sun L, Lai Y, Hou J, et al. Deglycosylation of PD-L1 by 2-deoxyglucose reverses PARP inhibitor-induced immunosuppression in triple-negative breast cancer. Am J Cancer Res. 2018;8:1837-1846 pubmed
|
Osa A, Uenami T, Koyama S, Fujimoto K, Okuzaki D, Takimoto T, et al. Clinical implications of monitoring nivolumab immunokinetics in non-small cell lung cancer patients. JCI Insight. 2018;3: pubmed publisher
|
Li C, Lim S, Chung E, Kim Y, Park A, Yao J, et al. Eradication of Triple-Negative Breast Cancer Cells by Targeting Glycosylated PD-L1. Cancer Cell. 2018;33:187-201.e10 pubmed publisher
|
Chatterjee S, Lesniak W, Miller M, Lisok A, Sikorska E, Wharram B, et al. Rapid PD-L1 detection in tumors with PET using a highly specific peptide. Biochem Biophys Res Commun. 2017;483:258-263 pubmed publisher
|
Li C, Lim S, Xia W, Lee H, Chan L, Kuo C, et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 2016;7:12632 pubmed publisher
|
Kataoka K, Shiraishi Y, Takeda Y, Sakata S, Matsumoto M, Nagano S, et al. Aberrant PD-L1 expression through 3'-UTR disruption in multiple cancers. Nature. 2016;534:402-6 pubmed publisher
|
Yang Y, Wu K, Zhao E, Li W, Shi L, Xie G, et al. B7-H1 enhances proliferation ability of gastric cancer stem-like cells as a receptor. Oncol Lett. 2015;9:1833-1838 pubmed
|
Melendreras S, MartÃnez Camblor P, Menéndez A, Bravo Mendoza C, González Vidal A, Coto E, et al. Soluble co-signaling molecules predict long-term graft outcome in kidney-transplanted patients. PLoS ONE. 2014;9:e113396 pubmed publisher
|
Steidl C, Shah S, Woolcock B, Rui L, Kawahara M, Farinha P, et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature. 2011;471:377-81 pubmed publisher
|
Brahmer J, Drake C, Wollner I, Powderly J, Picus J, Sharfman W, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28:3167-75 pubmed publisher
|
Kim Y, Park G, Lee H, Song H, Choi I, Lee W, et al. Cross-linking of B7-H1 on EBV-transformed B cells induces apoptosis through reactive oxygen species production, JNK signaling activation, and fasL expression. J Immunol. 2008;181:6158-69 pubmed
|
Sakthivel P, Ramanujam R, Wang X, Pirskanen R, Lefvert A. Programmed Death-1: from gene to protein in autoimmune human myasthenia gravis. J Neuroimmunol. 2008;193:149-55 pubmed
|
Wan B, Nie H, Liu A, Feng G, He D, Xu R, et al. Aberrant regulation of synovial T cell activation by soluble costimulatory molecules in rheumatoid arthritis. J Immunol. 2006;177:8844-50 pubmed
|