This webpage contains legacy information. The product is either no longer available from the supplier or has been delisted at Labome.
product summary
company name :
Proteintech Group
product type :
antibody
product name :
TDP-43 (human specific)
catalog :
60019-2-Ig
quantity :
150UL
price :
299 USD
clonality :
monoclonal
host :
mouse
conjugate :
nonconjugated
clone name :
6H6E12
reactivity :
human
application :
western blot, ELISA, immunohistochemistry, immunocytochemistry, immunoprecipitation, flow cytometry
citations: 66
Published Application/Species/Sample/DilutionReference
  • western blot; human; loading ...; fig 14a
Tanaka Y, Suzuki G, Matsuwaki T, Hosokawa M, Serrano G, Beach T, et al. Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes. Hum Mol Genet. 2017;26:969-988 pubmed publisher
  • immunocytochemistry; human; 1:500; loading ...; fig 5c
Smethurst P, Newcombe J, Troakes C, Simone R, Chen Y, Patani R, et al. In vitro prion-like behaviour of TDP-43 in ALS. Neurobiol Dis. 2016;96:236-247 pubmed publisher
  • immunocytochemistry; human; loading ...; fig 3a
Homma S, Beermann M, BOYCE F, Miller J. Expression of FSHD-related DUX4-FL alters proteostasis and induces TDP-43 aggregation. Ann Clin Transl Neurol. 2015;2:151-66 pubmed publisher
  • immunocytochemistry; human; 1:200; fig 3
Herdewyn S, Cirillo C, Van Den Bosch L, Robberecht W, Vanden Berghe P, Van Damme P. Prevention of intestinal obstruction reveals progressive neurodegeneration in mutant TDP-43 (A315T) mice. Mol Neurodegener. 2014;9:24 pubmed publisher
Ho W, Chang J, Lim K, Cazenave Gassiot A, Nguyen A, Foo J, et al. TDP-43 mediates SREBF2-regulated gene expression required for oligodendrocyte myelination. J Cell Biol. 2021;220: pubmed publisher
Collins M, Li Y, Bowser R. RBM45 associates with nuclear stress bodies and forms nuclear inclusions during chronic cellular stress and in neurodegenerative diseases. Acta Neuropathol Commun. 2020;8:91 pubmed publisher
Chan G, Van Hummel A, van der Hoven J, Ittner L, Ke Y. Neurodegeneration and Motor Deficits in the Absence of Astrogliosis upon Transgenic Mutant TDP-43 Expression in Mature Mice. Am J Pathol. 2020;190:1713-1722 pubmed publisher
Romano N, Catalani A, Lattante S, Belardo A, Proietti S, Bertini L, et al. ALS skin fibroblasts reveal oxidative stress and ERK1/2-mediated cytoplasmic localization of TDP-43. Cell Signal. 2020;70:109591 pubmed publisher
Sproviero D, La Salvia S, Colombo F, Zucca S, Pansarasa O, Diamanti L, et al. Leukocyte Derived Microvesicles as Disease Progression Biomarkers in Slow Progressing Amyotrophic Lateral Sclerosis Patients. Front Neurosci. 2019;13:344 pubmed publisher
Jiang T, Handley E, Brizuela M, Dawkins E, Lewis K, Clark R, et al. Amyotrophic lateral sclerosis mutant TDP-43 may cause synaptic dysfunction through altered dendritic spine function. Dis Model Mech. 2019;12: pubmed publisher
Coudert L, Nonaka T, Bernard E, Hasegawa M, Schaeffer L, Leblanc P. Phosphorylated and aggregated TDP-43 with seeding properties are induced upon mutant Huntingtin (mHtt) polyglutamine expression in human cellular models. Cell Mol Life Sci. 2019;76:2615-2632 pubmed publisher
Laferrière F, Maniecka Z, Pérez Berlanga M, Hruska Plochan M, Gilhespy L, Hock E, et al. TDP-43 extracted from frontotemporal lobar degeneration subject brains displays distinct aggregate assemblies and neurotoxic effects reflecting disease progression rates. Nat Neurosci. 2019;22:65-77 pubmed publisher
Gordon D, Dafinca R, Scaber J, Alegre Abarrategui J, Farrimond L, Scott C, et al. Single-copy expression of an amyotrophic lateral sclerosis-linked TDP-43 mutation (M337V) in BAC transgenic mice leads to altered stress granule dynamics and progressive motor dysfunction. Neurobiol Dis. 2019;121:148-162 pubmed publisher
Bain H, Davidson Y, Robinson A, Ryan S, Rollinson S, Richardson A, et al. The role of lysosomes and autophagosomes in frontotemporal lobar degeneration. Neuropathol Appl Neurobiol. 2019;45:244-261 pubmed publisher
Sproviero D, La Salvia S, Giannini M, Crippa V, Gagliardi S, Bernuzzi S, et al. Pathological Proteins Are Transported by Extracellular Vesicles of Sporadic Amyotrophic Lateral Sclerosis Patients. Front Neurosci. 2018;12:487 pubmed publisher
Conlon E, Fagegaltier D, Agius P, Davis Porada J, Gregory J, Hubbard I, et al. Unexpected similarities between C9ORF72 and sporadic forms of ALS/FTD suggest a common disease mechanism. elife. 2018;7: pubmed publisher
Scherz B, Rabl R, Flunkert S, Rohler S, Neddens J, Taub N, et al. mTh1 driven expression of hTDP-43 results in typical ALS/FTLD neuropathological symptoms. PLoS ONE. 2018;13:e0197674 pubmed publisher
Volkening K, Keller B, Leystra Lantz C, Strong M. RNA and Protein Interactors with TDP-43 in Human Spinal-Cord Lysates in Amyotrophic Lateral Sclerosis. J Proteome Res. 2018;17:1712-1729 pubmed publisher
Wang A, Conicella A, Schmidt H, Martin E, Rhoads S, Reeb A, et al. A single N-terminal phosphomimic disrupts TDP-43 polymerization, phase separation, and RNA splicing. EMBO J. 2018;37: pubmed publisher
Liu G, Coyne A, Pei F, Vaughan S, Chaung M, Zarnescu D, et al. Endocytosis regulates TDP-43 toxicity and turnover. Nat Commun. 2017;8:2092 pubmed publisher
Watanabe R, Kawakami I, Onaya M, Higashi S, Arai N, Akiyama H, et al. Frontotemporal dementia with trans-activation response DNA-binding protein 43 presenting with catatonic syndrome. Neuropathology. 2018;38:281-287 pubmed publisher
Foglieni C, Papin S, Salvade A, Afroz T, Pinton S, Pedrioli G, et al. Split GFP technologies to structurally characterize and quantify functional biomolecular interactions of FTD-related proteins. Sci Rep. 2017;7:14013 pubmed publisher
Alfieri J, Silva P, Igaz L. Early Cognitive/Social Deficits and Late Motor Phenotype in Conditional Wild-Type TDP-43 Transgenic Mice. Front Aging Neurosci. 2016;8:310 pubmed publisher
Tan R, Ke Y, Ittner L, Halliday G. ALS/FTLD: experimental models and reality. Acta Neuropathol. 2017;133:177-196 pubmed publisher
Homma S, Beermann M, Yu B, BOYCE F, Miller J. Nuclear bodies reorganize during myogenesis in vitro and are differentially disrupted by expression of FSHD-associated DUX4. Skelet Muscle. 2016;6:42 pubmed
Handley E, Pitman K, Dawkins E, Young K, Clark R, Jiang T, et al. Synapse Dysfunction of Layer V Pyramidal Neurons Precedes Neurodegeneration in a Mouse Model of TDP-43 Proteinopathies. Cereb Cortex. 2017;27:3630-3647 pubmed publisher
Shiihashi G, Ito D, Yagi T, Nihei Y, Ebine T, Suzuki N. Mislocated FUS is sufficient for gain-of-toxic-function amyotrophic lateral sclerosis phenotypes in mice. Brain. 2016;139:2380-94 pubmed publisher
Koyama A, Sugai A, Kato T, Ishihara T, Shiga A, Toyoshima Y, et al. Increased cytoplasmic TARDBP mRNA in affected spinal motor neurons in ALS caused by abnormal autoregulation of TDP-43. Nucleic Acids Res. 2016;44:5820-36 pubmed publisher
Kametani F, Obi T, Shishido T, Akatsu H, Murayama S, Saito Y, et al. Mass spectrometric analysis of accumulated TDP-43 in amyotrophic lateral sclerosis brains. Sci Rep. 2016;6:23281 pubmed publisher
Tanaka Y, Nonaka T, Suzuki G, Kametani F, Hasegawa M. Gain-of-function profilin 1 mutations linked to familial amyotrophic lateral sclerosis cause seed-dependent intracellular TDP-43 aggregation. Hum Mol Genet. 2016;25:1420-33 pubmed publisher
Shimonaka S, Nonaka T, Suzuki G, Hisanaga S, Hasegawa M. Templated Aggregation of TAR DNA-binding Protein of 43 kDa (TDP-43) by Seeding with TDP-43 Peptide Fibrils. J Biol Chem. 2016;291:8896-907 pubmed publisher
Henriques A, Croixmarie V, Priestman D, Rosenbohm A, Dirrig Grosch S, D Ambra E, et al. Amyotrophic lateral sclerosis and denervation alter sphingolipids and up-regulate glucosylceramide synthase. Hum Mol Genet. 2015;24:7390-405 pubmed publisher
Ke Y, Van Hummel A, Stevens C, Gladbach A, Ippati S, Bi M, et al. Short-term suppression of A315T mutant human TDP-43 expression improves functional deficits in a novel inducible transgenic mouse model of FTLD-TDP and ALS. Acta Neuropathol. 2015;130:661-78 pubmed publisher
Bakkar N, Kousari A, Kovalik T, Li Y, Bowser R. RBM45 Modulates the Antioxidant Response in Amyotrophic Lateral Sclerosis through Interactions with KEAP1. Mol Cell Biol. 2015;35:2385-99 pubmed publisher
Goossens J, Vanmechelen E, Trojanowski J, Lee V, Van Broeckhoven C, van der Zee J, et al. TDP-43 as a possible biomarker for frontotemporal lobar degeneration: a systematic review of existing antibodies. Acta Neuropathol Commun. 2015;3:15 pubmed publisher
Cohen T, Hwang A, Restrepo C, Yuan C, Trojanowski J, Lee V. An acetylation switch controls TDP-43 function and aggregation propensity. Nat Commun. 2015;6:5845 pubmed publisher
Mutihac R, Alegre Abarrategui J, Gordon D, Farrimond L, Yamasaki Mann M, Talbot K, et al. TARDBP pathogenic mutations increase cytoplasmic translocation of TDP-43 and cause reduction of endoplasmic reticulum Ca²⁺ signaling in motor neurons. Neurobiol Dis. 2015;75:64-77 pubmed publisher
Yamakawa M, Ito D, Honda T, Kubo K, Noda M, Nakajima K, et al. Characterization of the dipeptide repeat protein in the molecular pathogenesis of c9FTD/ALS. Hum Mol Genet. 2015;24:1630-45 pubmed publisher
Osaka M, Ito D, Yagi T, Nihei Y, Suzuki N. Evidence of a link between ubiquilin 2 and optineurin in amyotrophic lateral sclerosis. Hum Mol Genet. 2015;24:1617-29 pubmed publisher
Alfieri J, Pino N, Igaz L. Reversible behavioral phenotypes in a conditional mouse model of TDP-43 proteinopathies. J Neurosci. 2014;34:15244-59 pubmed publisher
Yamashita M, Nonaka T, Hirai S, Miwa A, Okado H, Arai T, et al. Distinct pathways leading to TDP-43-induced cellular dysfunctions. Hum Mol Genet. 2014;23:4345-56 pubmed publisher
Suarez Calvet M, Dols Icardo O, Lladó A, Sanchez Valle R, Hernandez I, Amer G, et al. Plasma phosphorylated TDP-43 levels are elevated in patients with frontotemporal dementia carrying a C9orf72 repeat expansion or a GRN mutation. J Neurol Neurosurg Psychiatry. 2014;85:684-91 pubmed publisher
Akamatsu M, Takuma H, Yamashita T, Okada T, Keino Masu K, Ishii K, et al. A unique mouse model for investigating the properties of amyotrophic lateral sclerosis-associated protein TDP-43, by in utero electroporation. Neurosci Res. 2013;77:234-41 pubmed publisher
Hosokawa M, Arai T, Yamashita M, Tsuji H, Nonaka T, Masuda Suzukake M, et al. Differential diagnosis of amyotrophic lateral sclerosis from Guillain-Barré syndrome by quantitative determination of TDP-43 in cerebrospinal fluid. Int J Neurosci. 2014;124:344-9 pubmed publisher
Stallings N, Puttaparthi K, Dowling K, Luther C, Burns D, Davis K, et al. TDP-43, an ALS linked protein, regulates fat deposition and glucose homeostasis. PLoS ONE. 2013;8:e71793 pubmed publisher
Nonaka T, Masuda Suzukake M, Arai T, Hasegawa Y, Akatsu H, Obi T, et al. Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep. 2013;4:124-34 pubmed publisher
Nakamura S, Wate R, Kaneko S, Ito H, Oki M, Tsuge A, et al. An autopsy case of sporadic amyotrophic lateral sclerosis associated with the I113T SOD1 mutation. Neuropathology. 2014;34:58-63 pubmed publisher
Larman H, Salajegheh M, Nazareno R, Lam T, Sauld J, Steen H, et al. Cytosolic 5'-nucleotidase 1A autoimmunity in sporadic inclusion body myositis. Ann Neurol. 2013;73:408-18 pubmed publisher
Zhang Y, Caulfield T, Xu Y, Gendron T, Hubbard J, Stetler C, et al. The dual functions of the extreme N-terminus of TDP-43 in regulating its biological activity and inclusion formation. Hum Mol Genet. 2013;22:3112-22 pubmed publisher
Cassel J, Reitz A. Ubiquilin-2 (UBQLN2) binds with high affinity to the C-terminal region of TDP-43 and modulates TDP-43 levels in H4 cells: characterization of inhibition by nucleic acids and 4-aminoquinolines. Biochim Biophys Acta. 2013;1834:964-71 pubmed publisher
Tsuji H, Arai T, Kametani F, Nonaka T, Yamashita M, Suzukake M, et al. Molecular analysis and biochemical classification of TDP-43 proteinopathy. Brain. 2012;135:3380-91 pubmed publisher
González Pérez P, Lu Y, Chian R, Sapp P, Tanzi R, Bertram L, et al. Association of UBQLN1 mutation with Brown-Vialetto-Van Laere syndrome but not typical ALS. Neurobiol Dis. 2012;48:391-8 pubmed publisher
Dammer E, Fallini C, Gozal Y, Duong D, Rossoll W, Xu P, et al. Coaggregation of RNA-binding proteins in a model of TDP-43 proteinopathy with selective RGG motif methylation and a role for RRM1 ubiquitination. PLoS ONE. 2012;7:e38658 pubmed publisher
Inamori Y, Higuchi I, Inoue T, Sakiyama Y, Hashiguchi A, Higashi K, et al. Inclusion body myositis coexisting with hypertrophic cardiomyopathy: an autopsy study. Neuromuscul Disord. 2012;22:747-54 pubmed publisher
Cohen T, Hwang A, Unger T, Trojanowski J, Lee V. Redox signalling directly regulates TDP-43 via cysteine oxidation and disulphide cross-linking. EMBO J. 2012;31:1241-52 pubmed publisher
Tsuji H, Nonaka T, Yamashita M, Masuda Suzukake M, Kametani F, Akiyama H, et al. Epitope mapping of antibodies against TDP-43 and detection of protease-resistant fragments of pathological TDP-43 in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Biochem Biophys Res Commun. 2012;417:116-21 pubmed publisher
Necchi D, Lomoio S, Scherini E. Dysfunction of the ubiquitin-proteasome system in the cerebellum of aging Ts65Dn mice. Exp Neurol. 2011;232:114-8 pubmed publisher
Deng H, Chen W, Hong S, Boycott K, Gorrie G, Siddique N, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature. 2011;477:211-5 pubmed publisher
Suzuki S, Tamai K, Watanabe M, Kyuuma M, Ono M, Sugamura K, et al. AMSH is required to degrade ubiquitinated proteins in the central nervous system. Biochem Biophys Res Commun. 2011;408:582-8 pubmed publisher
Igaz L, Kwong L, Lee E, Chen Plotkin A, Swanson E, Unger T, et al. Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. J Clin Invest. 2011;121:726-38 pubmed publisher
Deng H, Zhai H, Bigio E, Yan J, Fecto F, Ajroud K, et al. FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis. Ann Neurol. 2010;67:739-48 pubmed publisher
Nishimoto Y, Ito D, Yagi T, Nihei Y, Tsunoda Y, Suzuki N. Characterization of alternative isoforms and inclusion body of the TAR DNA-binding protein-43. J Biol Chem. 2010;285:608-19 pubmed publisher
Steinacker P, Hendrich C, Sperfeld A, Jesse S, von Arnim C, Lehnert S, et al. TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Arch Neurol. 2008;65:1481-7 pubmed publisher
Rohn T. Caspase-cleaved TAR DNA-binding protein-43 is a major pathological finding in Alzheimer's disease. Brain Res. 2008;1228:189-98 pubmed publisher
Kim H, Fan X, Gabbi C, Yakimchuk K, Parini P, Warner M, et al. Liver X receptor beta (LXRbeta): a link between beta-sitosterol and amyotrophic lateral sclerosis-Parkinson's dementia. Proc Natl Acad Sci U S A. 2008;105:2094-9 pubmed publisher
Lee E, Lee V, Trojanowski J, Neumann M. TDP-43 immunoreactivity in anoxic, ischemic and neoplastic lesions of the central nervous system. Acta Neuropathol. 2008;115:305-11 pubmed
product information
CatalogNo :
60019-2-Ig
AntigenName :
TDP-43 (human specific)
Package :
150UL
Price :
299 USD
Exsists20ul :
20ul trial size available
FullName :
TAR DNA binding protein
Immunogen :
Recombinant Protein
Species :
human, mouse
Host :
Mouse
IsConjugated :
Unconjugated
AntigenSpecies :
human
CloneNo :
6H6E12
Application :
WB, IP, IHC, FC, CoIP, ELISA
Clonlity :
Monoclonal
IsoType :
IgG1
Synonyms :
ALS10, TAR DNA binding protein, TAR DNA binding protein 43, TARDBP, TDP 43, TDP43
PrimaryOrSecondary :
Primary
AntibodyBuffer :
PBS with 0.1% sodium azide and 50% glycerol pH 7.3.
GenBankNo :
BC001487
Category :
Binding Proteins;Cytoskeleton/Scaffold Proteins;Disease Related;Metabolism;Neurology;
PurifyMethod :
Protein A purification
NewAb :
False
IsSellable :
True
AppTiter :
FC 1:0 ; IHC 1:50000 ; IP 1:1000 ; WB 1:50000 ;
company information
Proteintech Group
2201 W. Campbell Park Dr. STE12
Chicago, IL 60612
Proteintech@ptglab.com
https://www.ptglab.com
1-312-455-8498
headquarters: USA
At Proteintech, we produce every single antibody we sell; we do not rely on or supply to any other antibody providers: our products are unique and we are 100% accountable for each one. We realize this accountability by validating in-house, providing extensive technical support and guaranteeing your success: in addition to helping you troubleshoot your experiment, we will offer you a full cash refund if you are in any way dissatisfied. We can guarantee satisfaction because we have confidence in our products, confidence cultivated by the science behind our antibodies: we make them using as much of the native protein as possible, and purifying them using affinity purification with the original antigen. We carry out antibody production over a 102-day period, which allows for better antigen fitting to MHC molecules and affinity maturation in the host. This approach results in higher affinity antibodies with greater sensitivity, which you can use in any application and in multiple species.
You can only buy Proteintech antibodies directly from Proteintech or via one of its approved distributors — when you receive your antibody and see the Proteintech logo on the vial, know that you hold something that is truly unique.