product summary
Loading...
company name :
Novus Biologicals
other brands :
IMGENEX
product type :
antibody
product name :
Stathmin-2/STMN2 Antibody - BSA Free
catalog :
NBP1-49461
quantity :
0.1 mg
price :
479 USD
clonality :
polyclonal
host :
domestic rabbit
conjugate :
nonconjugated
reactivity :
human, mouse, rat, chicken, bovine
application :
western blot, immunohistochemistry, immunocytochemistry, immunohistochemistry - paraffin section, immunohistochemistry - frozen section
more info or order :
citations: 84
Published Application/Species/Sample/DilutionReference
  • immunohistochemistry - frozen section; mouse; 1:5000; loading ...; fig 6b
Grove M, Lee H, Zhao H, Son Y. Axon-dependent expression of YAP/TAZ mediates Schwann cell remyelination but not proliferation after nerve injury. elife. 2020;9: pubmed publisher
  • immunocytochemistry; mouse; 1:500; loading ...; fig 6c
Davies A, Kim H, González Cano R, Choi J, Back S, Roh S, et al. Natural Killer Cells Degenerate Intact Sensory Afferents following Nerve Injury. Cell. 2019;176:716-728.e18 pubmed publisher
  • western blot; human; 1:2000; loading ...; fig 1d
Melamed Z, López Erauskin J, Baughn M, Zhang O, Drenner K, Sun Y, et al. Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat Neurosci. 2019;22:180-190 pubmed publisher
Hertzog N, Duman M, Bochud M, Br xfc gger Verdon V, Gerhards M, Sch xf6 n F, et al. Hypoxia-induced conversion of sensory Schwann cells into repair cells is regulated by HDAC8. Nat Commun. 2025;16:515 pubmed publisher
Deininger S, Schumacher J, Blechschmidt A, Song J, Klugmann C, Antoniadis G, et al. Nerve injury converts Schwann cells in a long-term repair-like state in human neuroma tissue. Exp Neurol. 2024;382:114981 pubmed publisher
Talsma A, Niemi J, Zigmond R. Neither injury induced macrophages within the nerve, nor the environment created by Wallerian degeneration is necessary for enhanced in vivo axon regeneration after peripheral nerve injury. J Neuroinflammation. 2024;21:134 pubmed publisher
Gobrecht P, Gebel J, Leibinger M, Zeitler C, Chen Z, Gr xfc ndemann D, et al. Cnicin promotes functional nerve regeneration. Phytomedicine. 2024;129:155641 pubmed publisher
Lai J, Berlind J, Fricklas G, Lie C, Urenda J, Lam K, et al. KCNJ2 inhibition mitigates mechanical injury in a human brain organoid model of traumatic brain injury. Cell Stem Cell. 2024;31:519-536.e8 pubmed publisher
Grove M, Kim H, Pang S, Amaya J, Hu G, Zhou J, et al. TEAD1 is crucial for developmental myelination, Remak bundles, and functional regeneration of peripheral nerves. elife. 2024;13: pubmed publisher
Gobrecht P, Gebel J, Hilla A, Gisselmann G, Fischer D. Targeting Vasohibins to Promote Axon Regeneration. J Neurosci. 2024;44: pubmed publisher
L xf3 pez Erauskin J, Bravo Hernández M, Presa M, Baughn M, Melamed Z, Beccari M, et al. Stathmin-2 loss leads to neurofilament-dependent axonal collapse driving motor and sensory denervation. Nat Neurosci. 2024;27:34-47 pubmed publisher
Wang Y, Halawani D, Estill M, Ramakrishnan A, Shen L, Friedel R, et al. Aryl hydrocarbon receptor restricts axon regeneration of DRG neurons in response to injury. bioRxiv. 2023;: pubmed publisher
De Virgiliis F, Mueller F, Palmisano I, Chadwick J, Luengo Gutierrez L, Giarrizzo A, et al. The circadian clock time tunes axonal regeneration. Cell Metab. 2023;35:2153-2164.e4 pubmed publisher
Chen Q, Zhang L, Zhang F, Yi S. FOSL1 modulates Schwann cell responses in the wound microenvironment and regulates peripheral nerve regeneration. J Biol Chem. 2023;299:105444 pubmed publisher
Gupta D, Bhusal A, Rahman M, Kim J, Choe Y, Jang J, et al. EBP50 is a key molecule for the Schwann cell-axon interaction in peripheral nerves. Prog Neurobiol. 2023;231:102544 pubmed publisher
Gon xe7 alves T, Stewart C, Baxley S, Xu J, Li D, Gabel H, et al. Towards a comprehensive regulatory map of Mammalian Genomes. Res Sq. 2023;: pubmed publisher
Jeon Y, Shin Y, Kim H, Choi Y, Kang M, Kwon Y, et al. βPix Guanine Nucleotide Exchange Factor Regulates Regeneration of Injured Peripheral Axons. Int J Mol Sci. 2023;24: pubmed publisher
Halawani D, Wang Y, Ramakrishnan A, Estill M, He X, Shen L, et al. Circadian clock regulator Bmal1 gates axon regeneration via Tet3 epigenetics in mouse sensory neurons. Nat Commun. 2023;14:5165 pubmed publisher
Wang D, Zheng T, Zhou S, Liu M, Liu Y, Gu X, et al. Promoting axon regeneration by inhibiting RNA N6-methyladenosine demethylase ALKBH5. elife. 2023;12: pubmed publisher
Alber S, Di Matteo P, Zdradzinski M, Dalla Costa I, Medzihradszky K, Kawaguchi R, et al. PTBP1 regulates injury responses and sensory pathways in adult peripheral neurons. Sci Adv. 2023;9:eadi0286 pubmed publisher
Zhu Y, Luan C, Gong L, Gu Y, Wang X, Sun H, et al. SnRNA-seq reveals the heterogeneity of spinal ventral horn and mechanism of motor neuron axon regeneration. iScience. 2023;26:107264 pubmed publisher
Schaeffer J, Vilallongue N, Decourt C, Blot B, El Bakdouri N, Plissonnier E, et al. Customization of the translational complex regulates mRNA-specific translation to control CNS regeneration. Neuron. 2023;: pubmed publisher
Chen S, Chen Q, Zhang X, Shen Y, Shi X, Dai X, et al. Schwann cell-derived amphiregulin enhances nerve regeneration via supporting the proliferation and migration of Schwann cells and the elongation of axons. J Neurochem. 2023;166:678-691 pubmed publisher
Rybak Wolf A, Wyler E, Pentimalli T, Legnini I, Oliveras Martinez A, Gla x17e ar P, et al. Modelling viral encephalitis caused by herpes simplex virus 1 infection in cerebral organoids. Nat Microbiol. 2023;8:1252-1266 pubmed publisher
Martínez Torres S, Mesquida Veny F, Del Rio J, Hervera A. Injury-induced activation of the endocannabinoid system promotes axon regeneration. iScience. 2023;26:106814 pubmed publisher
Baughn M, Melamed Z, L xf3 pez Erauskin J, Beccari M, Ling K, Zuberi A, et al. Mechanism of STMN2 cryptic splice-polyadenylation and its correction for TDP-43 proteinopathies. Science. 2023;379:1140-1149 pubmed publisher
Jiang C, Lu Y, Zhu R, Zong Y, Huang Y, Wang D, et al. Pyruvate dehydrogenase beta subunit (Pdhb) promotes peripheral axon regeneration by regulating energy supply and gene expression. Exp Neurol. 2023;363:114368 pubmed publisher
Chang Y, Dubnau J. Endogenous retroviruses and TDP-43 proteinopathy form a sustaining feedback driving intercellular spread of Drosophila neurodegeneration. Nat Commun. 2023;14:966 pubmed publisher
Feng R, Muraleedharan Saraswathy V, Mokalled M, Cavalli V. Self-renewing macrophages in dorsal root ganglia contribute to promote nerve regeneration. Proc Natl Acad Sci U S A. 2023;120:e2215906120 pubmed publisher
Linares G, Li Y, Chang W, Rubin Sigler J, Mendonca S, Hong S, et al. SYF2 suppression mitigates neurodegeneration in models of diverse forms of ALS. Cell Stem Cell. 2023;30:171-187.e14 pubmed publisher
Yadav A, Matson K, Li L, Hua I, Petrescu J, Kang K, et al. A cellular taxonomy of the adult human spinal cord. Neuron. 2023;111:328-344.e7 pubmed publisher
Wang X, Yang C, Wang X, Miao J, Chen W, Zhou Y, et al. Driving axon regeneration by orchestrating neuronal and non-neuronal innate immune responses via the IFNγ-cGAS-STING axis. Neuron. 2023;111:236-255.e7 pubmed publisher
Di Pizio A, Marvaldi L, Birling M, Okladnikov N, Dupuis L, Fainzilber M, et al. A conditional null allele of Dync1h1 enables targeted analyses of dynein roles in neuronal length sensing. J Cell Sci. 2023;136: pubmed publisher
Zhao X, Huffman L, Hafner H, Athaiya M, Finneran M, Kalinski A, et al. The injured sciatic nerve atlas (iSNAT), insights into the cellular and molecular basis of neural tissue degeneration and regeneration. elife. 2022;11: pubmed publisher
Avraham O, Le J, Leahy K, Li T, Zhao G, Cavalli V. Analysis of neuronal injury transcriptional response identifies CTCF and YY1 as co-operating factors regulating axon regeneration. Front Mol Neurosci. 2022;15:967472 pubmed publisher
Lee N, Nho B, Ko K, Kim S, Lee J. Gabapentin inhibits the analgesic effects and nerve regeneration process induced by hepatocyte growth factor (HGF) in a peripheral nerve injury model: Implication for the use of VM202 and gabapentinoids for peripheral neuropathy. Mol Cell Neurosci. 2022;122:103767 pubmed publisher
Talsma A, Niemi J, Pachter J, Zigmond R. The primary macrophage chemokine, CCL2, is not necessary after a peripheral nerve injury for macrophage recruitment and activation or for conditioning lesion enhanced peripheral regeneration. J Neuroinflammation. 2022;19:179 pubmed publisher
Serger E, Luengo Gutierrez L, Chadwick J, Kong G, Zhou L, Crawford G, et al. The gut metabolite indole-3 propionate promotes nerve regeneration and repair. Nature. 2022;607:585-592 pubmed publisher
Patel P, Buchanan C, Zdradzinski M, Sahoo P, Kar A, Lee S, et al. Intra-axonal translation of Khsrp mRNA slows axon regeneration by destabilizing localized mRNAs. Nucleic Acids Res. 2022;50:5772-5792 pubmed publisher
Zhang J, Jiang C, Liu X, Jiang C, Cao Q, Yu B, et al. The metabolomic profiling identifies N, N-dimethylglycine as a facilitator of dorsal root ganglia neuron axon regeneration after injury. FASEB J. 2022;36:e22305 pubmed publisher
Guerra San Juan I, Nash L, Smith K, Leyton Jaimes M, Qian M, Klim J, et al. Loss of mouse Stmn2 function causes motor neuropathy. Neuron. 2022;110:1671-1688.e6 pubmed publisher
Wang D, Zheng T, Ge X, Xu J, Feng L, Jiang C, et al. Unfolded protein response-induced expression of long noncoding RNA Ngrl1 supports peripheral axon regeneration by activating the PI3K-Akt pathway. Exp Neurol. 2022;352:114025 pubmed publisher
Niemi J, DeFrancesco Oranburg T, Cox A, Lindborg J, Echevarria F, McCluskey J, et al. The Conditioning Lesion Response in Dorsal Root Ganglion Neurons Is Inhibited in Oncomodulin Knock-Out Mice. Eneuro. 2022;9: pubmed publisher
Lee B, Oh Y, Cho E, DiAntonio A, Cavalli V, Shin J, et al. FK506-binding protein-like and FK506-binding protein 8 regulate dual leucine zipper kinase degradation and neuronal responses to axon injury. J Biol Chem. 2022;298:101647 pubmed publisher
Meng X, Qian X, Ding X, Wang W, Yin X, Zhuang G, et al. Eosinophils regulate intra-adipose axonal plasticity. Proc Natl Acad Sci U S A. 2022;119: pubmed publisher
Nogueira Rodrigues J, Leite S, Pinto Costa R, Sousa S, Luz L, Sintra M, et al. Rewired glycosylation activity promotes scarless regeneration and functional recovery in spiny mice after complete spinal cord transection. Dev Cell. 2022;57:440-450.e7 pubmed publisher
Yin G, Shin T, Ock J, Choi M, Limanjaya A, Kwon M, et al. Pericyte‑derived extracellular vesicles‑mimetic nanovesicles improves peripheral nerve regeneration in mouse models of sciatic nerve transection. Int J Mol Med. 2022;49: pubmed publisher
Shen Y, Cheng Z, Chen S, Zhang Y, Chen Q, Yi S. Dysregulated miR-29a-3p/PMP22 Modulates Schwann Cell Proliferation and Migration During Peripheral Nerve Regeneration. Mol Neurobiol. 2022;59:1058-1072 pubmed publisher
Riemondy K, Venkataraman S, Willard N, Nellan A, Sanford B, Griesinger A, et al. Neoplastic and immune single-cell transcriptomics define subgroup-specific intra-tumoral heterogeneity of childhood medulloblastoma. Neuro Oncol. 2022;24:273-286 pubmed publisher
Eira J, Magalhães J, Macedo N, Pero M, Misgeld T, Sousa M, et al. Transthyretin Promotes Axon Growth via Regulation of Microtubule Dynamics and Tubulin Acetylation. Front Cell Dev Biol. 2021;9:747699 pubmed publisher
Klimas R, Sgodzai M, Motte J, Mohamad N, Renk P, Blusch A, et al. Dose-dependent immunomodulatory effects of bortezomib in experimental autoimmune neuritis. Brain Commun. 2021;3:fcab238 pubmed publisher
Avraham O, Feng R, Ewan E, Rustenhoven J, Zhao G, Cavalli V. Profiling sensory neuron microenvironment after peripheral and central axon injury reveals key pathways for neural repair. elife. 2021;10: pubmed publisher
Jang E, Bae Y, Yang E, Gim Y, Suh H, Kim S, et al. Comparing axon regeneration in male and female mice after peripheral nerve injury. J Neurosci Res. 2021;99:2874-2887 pubmed publisher
Cheng Y, Snavely A, Barrett L, Zhang X, Herman C, Frost D, et al. Topoisomerase I inhibition and peripheral nerve injury induce DNA breaks and ATF3-associated axon regeneration in sensory neurons. Cell Rep. 2021;36:109666 pubmed publisher
Li F, Lo T, Miles L, Wang Q, Noristani H, Li D, et al. The Atr-Chek1 pathway inhibits axon regeneration in response to Piezo-dependent mechanosensation. Nat Commun. 2021;12:3845 pubmed publisher
Chen Q, Liu Q, Zhang Y, Li S, Yi S. Leukemia inhibitory factor regulates Schwann cell proliferation and migration and affects peripheral nerve regeneration. Cell Death Dis. 2021;12:417 pubmed publisher
Wang Y, Zhang F, Zhang Y, Shan Q, Liu W, Zhang F, et al. Betacellulin regulates peripheral nerve regeneration by affecting Schwann cell migration and axon elongation. Mol Med. 2021;27:27 pubmed publisher
Lee N, Lee S, Lee J, Lee M, Lim J, Kim S, et al. Hepatocyte growth factor is necessary for efficient outgrowth of injured peripheral axons in in vitro culture system and in vivo nerve crush mouse model. Biochem Biophys Rep. 2021;26:100973 pubmed publisher
Nadeau J, Arnold B, Johnston J, Muir G, Verge V. Acute intermittent hypoxia enhances regeneration of surgically repaired peripheral nerves in a manner akin to electrical stimulation. Exp Neurol. 2021;341:113671 pubmed publisher
Kim H, Lee J, Cho Y. PDK1 is a negative regulator of axon regeneration. Mol Brain. 2021;14:31 pubmed publisher
Kalinski A, Yoon C, Huffman L, Duncker P, Kohen R, Passino R, et al. Analysis of the immune response to sciatic nerve injury identifies efferocytosis as a key mechanism of nerve debridement. elife. 2020;9: pubmed publisher
Franco A, Dang X, Walton E, Ho J, Zablocka B, Ly C, et al. Burst mitofusin activation reverses neuromuscular dysfunction in murine CMT2A. elife. 2020;9: pubmed publisher
Jeon Y, Shin J, Kwon M, Cho E, Cavalli V, Cho Y. In Vivo Gene Delivery of STC2 Promotes Axon Regeneration in Sciatic Nerves. Mol Neurobiol. 2020;: pubmed publisher
Avraham O, Deng P, Jones S, Kuruvilla R, Semenkovich C, Klyachko V, et al. Satellite glial cells promote regenerative growth in sensory neurons. Nat Commun. 2020;11:4891 pubmed publisher
Smaila B, Holland S, Babaeijandaghi F, Henderson H, Rossi F, Ramer M. Systemic hypoxia mimicry enhances axonal regeneration and functional recovery following peripheral nerve injury. Exp Neurol. 2020;334:113436 pubmed publisher
Kong G, Zhou L, Serger E, Palmisano I, De Virgiliis F, Hutson T, et al. AMPK controls the axonal regenerative ability of dorsal root ganglia sensory neurons after spinal cord injury. Nat Metab. 2020;2:918-933 pubmed publisher
Stratton J, Eaton S, Rosin N, Jawad S, Holmes A, Yoon G, et al. Macrophages and Associated Ligands in the Aged Injured Nerve: A Defective Dynamic That Contributes to Reduced Axonal Regrowth. Front Aging Neurosci. 2020;12:174 pubmed publisher
Massaquoi M, Liguore W, Churchill M, Moore C, Melrose H, Meshul C. Gait Deficits and Loss of Striatal Tyrosine Hydroxlase/Trk-B are Restored Following 7,8-Dihydroxyflavone Treatment in a Progressive MPTP Mouse Model of Parkinson's Disease. Neuroscience. 2020;433:53-71 pubmed publisher
Girouard M, Simas T, Hua L, Morquette B, Khazaei M, Unsain N, et al. Collapsin Response Mediator Protein 4 (CRMP4) Facilitates Wallerian Degeneration and Axon Regeneration following Sciatic Nerve Injury. Eneuro. 2020;7: pubmed publisher
Pinto Costa R, Sousa S, Leite S, Nogueira Rodrigues J, Ferreira da Silva T, Machado D, et al. Profilin 1 delivery tunes cytoskeletal dynamics toward CNS axon regeneration. J Clin Invest. 2020;130:2024-2040 pubmed publisher
Mao S, Huang T, Chen Y, Shen L, Zhou S, Zhang S, et al. Circ-Spidr enhances axon regeneration after peripheral nerve injury. Cell Death Dis. 2019;10:787 pubmed publisher
Carlin D, Halevi A, Ewan E, Moore A, Cavalli V. Nociceptor deletion of Tsc2 enhances axon regeneration by inducing a conditioning injury response in dorsal root ganglia. Eneuro. 2019;: pubmed publisher
Holland S, Ramer L, McMahon S, Denk F, Ramer M. An ATF3-CreERT2 Knock-In Mouse for Axotomy-Induced Genetic Editing: Proof of Principle. Eneuro. 2019;6: pubmed publisher
Hutson T, Kathe C, Palmisano I, Bartholdi K, Hervera A, De Virgiliis F, et al. Cbp-dependent histone acetylation mediates axon regeneration induced by environmental enrichment in rodent spinal cord injury models. Sci Transl Med. 2019;11: pubmed publisher
Klim J, Williams L, Limone F, Guerra San Juan I, Davis Dusenbery B, Mordes D, et al. ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat Neurosci. 2019;22:167-179 pubmed publisher
Kawasaki A, Okada M, Tamada A, Okuda S, Nozumi M, Ito Y, et al. Growth Cone Phosphoproteomics Reveals that GAP-43 Phosphorylated by JNK Is a Marker of Axon Growth and Regeneration. iScience. 2018;4:190-203 pubmed publisher
Frey E, Karney Grobe S, Krolak T, Milbrandt J, DiAntonio A. TRPV1 Agonist, Capsaicin, Induces Axon Outgrowth after Injury via Ca2+/PKA Signaling. Eneuro. 2018;5: pubmed publisher
Cao Y, Wang H, Zeng W. Whole-tissue 3D imaging reveals intra-adipose sympathetic plasticity regulated by NGF-TrkA signal in cold-induced beiging. Protein Cell. 2018;9:527-539 pubmed publisher
Weng Y, Wang X, An R, Cassin J, Vissers C, Liu Y, et al. Epitranscriptomic m6A Regulation of Axon Regeneration in the Adult Mammalian Nervous System. Neuron. 2018;97:313-325.e6 pubmed publisher
Kim K, Namgung U. Facilitating effects of Buyang Huanwu decoction on axonal regeneration after peripheral nerve transection. J Ethnopharmacol. 2018;213:56-64 pubmed publisher
Weng Y, An R, Cassin J, Joseph J, Mi R, Wang C, et al. An Intrinsic Epigenetic Barrier for Functional Axon Regeneration. Neuron. 2017;94:337-346.e6 pubmed publisher
Rouger V, Alchini R, Kazarine A, Gopal A, Girouard M, Fournier A, et al. Low-cost multimodal light sheet microscopy for optically cleared tissues and living specimens. J Biomed Opt. 2016;21:126008 pubmed publisher
Chen L, Liu Z, Zhou B, Wei C, Zhou Y, Rosenfeld M, et al. CELF RNA binding proteins promote axon regeneration in C. elegans and mammals through alternative splicing of Syntaxins. elife. 2016;5: pubmed publisher
Valakh V, Frey E, Babetto E, Walker L, DiAntonio A. Cytoskeletal disruption activates the DLK/JNK pathway, which promotes axonal regeneration and mimics a preconditioning injury. Neurobiol Dis. 2015;77:13-25 pubmed publisher
product information
master code :
NBP1-49461
SKU :
NBP1-49461
product name :
Stathmin-2/STMN2 Antibody - BSA Free
unit size :
0.1 mg
description :
The Stathmin-2/STMN2 Antibody - BSA Free from Novus is a rabbit polyclonal antibody to Stathmin-2/STMN2. This antibody reacts with avian - chicken,bovine,human,mouse,rat. The Stathmin-2/STMN2 Antibody - BSA Free has been validated for the following applications: Immunohistochemistry,Western Blot,Immunohistochemistry-Frozen,Immunocytochemistry/ Immunofluorescence,IF/IHC,Immunohistochemistry-Paraffin,In vivo assay,Immunohistochemistry Whole-Mount,In vitro assay,Knockdown Validated.
target :
Stathmin-2/STMN2
category :
Primary Antibodies
buffer :
PBS
clonality :
Polyclonal
concentration :
1.0 mg/ml
conjugate :
Unconjugated
host :
Rabbit
immunogen :
C-terminal peptide of mouse STMN2. [Swiss-Prot P55821]
isotype :
IgG
purity :
Immunogen affinity purified
species :
Avian - Chicken,Bovine,Human,Mouse,Rat
theoretical molecular weight :
22 kDa
gene symbol :
STMN2
Antibody validation :
Knockout/Knockdown
applications :
Immunohistochemistry,Western Blot,Immunohistochemistry-Frozen,Immunocytochemistry/ Immunofluorescence,IF/IHC,Immunohistochemistry-Paraffin,In vivo assay,Immunohistochemistry Whole-Mount,In vitro assay,Knockdown Validated
USD :
479 USD
alt names :
FLJ34868, FLJ50995, neuron-specific growth-associated protein, Protein SCG10, SCG10, SCG10neuronal growth-associated protein (silencer element), SCGN10stathmin-2, stathmin-like 2, superior cervical ganglia, neural specific 10, Superior cervical ganglion-10 protein
storage :
Store at 4C short term. Aliquot and store at -20C long term. Avoid freeze-thaw cycles.
more info or order :
company information
Novus Biologicals
10771 E Easter Ave
Centennial, CO 80112
novus@novusbio.com
https://www.novusbio.com
3037301950
headquarters: USA
Novus Biologicals licenses, manufactures, and markets antibodies to over 20,000 unique targets to support a wide array of research areas. Novus is built on honesty, collaboration and strong relationships and continues to provide quality tools that accelerate research. Every product is backed by our 100% guarantee.