product summary
Loading...
company name :
Novus Biologicals
other brands :
IMGENEX
product type :
antibody
product name :
CHREBP Antibody - BSA Free
catalog :
NB400-135
quantity :
0.1 ml (also 0.025 ml)
price :
469 USD
clonality :
polyclonal
host :
domestic rabbit
conjugate :
nonconjugated
reactivity :
human, mouse, rat
application :
western blot, immunohistochemistry, immunocytochemistry, immunoprecipitation, EMSA, chromatin immunoprecipitation, immunohistochemistry - paraffin section, western blot knockout validation
more info or order :
citations: 91
Published Application/Species/Sample/DilutionReference
  • western blot knockout validation; mouse; loading ...; fig s4d
Schlein C, Fischer A, Sass F, Worthmann A, Tödter K, Jaeckstein M, et al. Endogenous Fatty Acid Synthesis Drives Brown Adipose Tissue Involution. Cell Rep. 2021;34:108624 pubmed publisher
  • western blot; mouse; fig 6a
Carroll P, Freie B, Cheng P, Kasinathan S, Gu H, Hedrich T, et al. The glucose-sensing transcription factor MLX balances metabolism and stress to suppress apoptosis and maintain spermatogenesis. PLoS Biol. 2021;19:e3001085 pubmed publisher
  • western blot; human; loading ...; fig 2b
  • immunohistochemistry - paraffin section; mouse; loading ...; fig 6b
Na T, Kim G, Oh H, Lee M, Han Y, Kim K, et al. The trisaccharide raffinose modulates epidermal differentiation through activation of liver X receptor. Sci Rep. 2017;7:43823 pubmed publisher
Min K, Yenilmez B, Kelly M, Echeverria D, Elleby M, Lifshitz L, et al. Lactate transporter MCT1 in hepatic stellate cells promotes fibrotic collagen expression in nonalcoholic steatohepatitis. elife. 2024;12: pubmed publisher
Singh C, Jin B, Shrestha N, Markhard A, Panda A, Calvo S, et al. ChREBP is activated by reductive stress and mediates GCKR-associated metabolic traits. Cell Metab. 2024;36:144-158.e7 pubmed publisher
Nikolaou K, Godbersen S, Manoharan M, Wieland S, Heim M, Stoffel M. Inflammation-induced TRIM21 represses hepatic steatosis by promoting the ubiquitination of lipogenic regulators. JCI Insight. 2023;8: pubmed publisher
Li L, Long J, Mise K, Poungavrin N, Lorenzi P, Mahmud I, et al. The transcription factor ChREBP links mitochondrial lipidomes to mitochondrial morphology and progression of diabetic kidney disease. J Biol Chem. 2023;299:105185 pubmed publisher
van den Berg L, Kokki K, Wowro S, Petricek K, Deniz O, Stegmann C, et al. Sugar-responsive inhibition of Myc-dependent ribosome biogenesis by Clockwork orange. Cell Rep. 2023;42:112739 pubmed publisher
Gu L, Zhu Y, Watari K, Lee M, Liu J, Pérez S, et al. Fructose-1,6-bisphosphatase is a nonenzymatic safety valve that curtails AKT activation to prevent insulin hyperresponsiveness. Cell Metab. 2023;35:1009-1021.e9 pubmed publisher
Yao L, Wang M, Zhang J, Luo X, Yuan C, Bai R, et al. Oleanolic Acid Inhibits SCD1 Gene Expression to Ameliorate Fructose-Induced Hepatosteatosis through SREBP1c-Dependent and -Independent Mechanisms. Mol Nutr Food Res. 2023;67:e2200533 pubmed publisher
Senatus L, Ega xf1 a Gorro xf1 o L, L xf3 pez D xed ez R, Bergaya S, Aranda J, Amengual J, et al. DIAPH1 mediates progression of atherosclerosis and regulates hepatic lipid metabolism in mice. Commun Biol. 2023;6:280 pubmed publisher
Ma Y, Shen S, Yan Y, Zhang S, Liu S, Tang Z, et al. Adipocyte Thyroid Hormone β Receptor-Mediated Hormone Action Fine-tunes Intracellular Glucose and Lipid Metabolism and Systemic Homeostasis. Diabetes. 2023;72:562-574 pubmed publisher
Sargsyan A, Doridot L, Hannou S, Tong W, Srinivasan H, Ivison R, et al. HGFAC is a ChREBP-regulated hepatokine that enhances glucose and lipid homeostasis. JCI Insight. 2023;8: pubmed publisher
Oh A, Jeong Y, Yu J, Minh Tam D, Kang J, Jung Y, et al. Hepatocyte Kctd17 Inhibition Ameliorates Glucose Intolerance and Hepatic Steatosis Caused by Obesity-induced Chrebp Stabilization. Gastroenterology. 2023;164:439-453 pubmed publisher
Ladraa S, Zerbib L, Bayard C, Fraissenon A, Venot Q, Morin G, et al. PIK3CA gain-of-function mutation in adipose tissue induces metabolic reprogramming with Warburg-like effect and severe endocrine disruption. Sci Adv. 2022;8:eade7823 pubmed publisher
Katz L, Argmann C, Lambertini L, Scott D. T3 and glucose increase expression of phosphoenolpyruvate carboxykinase (PCK1) leading to increased β-cell proliferation. Mol Metab. 2022;66:101646 pubmed publisher
Stephenson E, Stayton A, Sethuraman A, Rao P, Meyer A, Gomes C, et al. Chronic intake of high dietary sucrose induces sexually dimorphic metabolic adaptations in mouse liver and adipose tissue. Nat Commun. 2022;13:6062 pubmed publisher
Thevkar Nagesh P, Habault J, Voisin M, Ruff S, Ha S, Ruoff R, et al. Transcriptional regulation of Acsl1 by CHREBP and NF-kappa B in macrophages during hyperglycemia and inflammation. PLoS ONE. 2022;17:e0272986 pubmed publisher
Bae J, Lee J, Shin E, Lee M, Lee Y, Lee B, et al. The effects of the voglibose on non-alcoholic fatty liver disease in mice model. Sci Rep. 2022;12:13595 pubmed publisher
Katz L, Brill G, Zhang P, Kumar A, Baumel Alterzon S, Honig L, et al. Maladaptive positive feedback production of ChREBPβ underlies glucotoxic β-cell failure. Nat Commun. 2022;13:4423 pubmed publisher
Zhang J, Zhang J, Fu Z, Zhang Y, Luo Z, Zhang P, et al. CHREBP suppresses gastric cancer progression via the cyclin D1-Rb-E2F1 pathway. Cell Death Discov. 2022;8:300 pubmed publisher
Wu H, Lin C, Pai H, Chen Y, Cheng K, Kuo H, et al. Sucralose, a Non-nutritive Artificial Sweetener Exacerbates High Fat Diet-Induced Hepatic Steatosis Through Taste Receptor Type 1 Member 3. Front Nutr. 2022;9:823723 pubmed publisher
Kim D, Nam G, Seo E, Jun H. Inhibition of ChREBP ubiquitination via the ROS/Akt-dependent downregulation of Smurf2 contributes to lysophosphatidic acid-induced fibrosis in renal mesangial cells. J Biomed Sci. 2022;29:31 pubmed publisher
Shibuya K, Ebihara K, Ebihara C, Sawayama N, Isoda M, Yamamuro D, et al. AAA-ATPase valosin-containing protein binds the transcription factor SREBP1 and promotes its proteolytic activation by rhomboid protease RHBDL4. J Biol Chem. 2022;298:101936 pubmed publisher
Balamurugan K, Medishetti R, Kotha J, Behera P, Chandra K, Mavuduru V, et al. PHLPP1 promotes neutral lipid accumulation through AMPK/ChREBP-dependent lipid uptake and fatty acid synthesis pathways. iScience. 2022;25:103766 pubmed publisher
Gu W, Wang X, Zhao H, Geng J, Li X, Zheng K, et al. Resveratrol ameliorates diabetic kidney injury by reducing lipotoxicity and modulates expression of components of the junctional adhesion molecule-like/sirtuin 1 lipid metabolism pathway. Eur J Pharmacol. 2022;918:174776 pubmed publisher
Recazens E, Tavernier G, Dufau J, Bergoglio C, Benhamed F, Cassant Sourdy S, et al. ChREBPβ is dispensable for the control of glucose homeostasis and energy balance. JCI Insight. 2022;7: pubmed publisher
Yenilmez B, Wetoska N, Kelly M, Echeverria D, Min K, Lifshitz L, et al. An RNAi therapeutic targeting hepatic DGAT2 in a genetically obese mouse model of nonalcoholic steatohepatitis. Mol Ther. 2022;30:1329-1342 pubmed publisher
Mendoza A, Tang C, Choi J, Acuña M, Logan M, Martin A, et al. Thyroid hormone signaling promotes hepatic lipogenesis through the transcription factor ChREBP. Sci Signal. 2021;14:eabh3839 pubmed publisher
Chen N, Song S, Yang Z, Wu M, Mu L, Zhou T, et al. ChREBP deficiency alleviates apoptosis by inhibiting TXNIP/oxidative stress in diabetic nephropathy. J Diabetes Complications. 2021;35:108050 pubmed publisher
Liu Y, Zienkiewicz J, Boyd K, Smith T, Xu Z, Hawiger J. Hyperlipidemic hypersensitivity to lethal microbial inflammation and its reversal by selective targeting of nuclear transport shuttles. Sci Rep. 2021;11:11907 pubmed publisher
Li L, Sakiyama H, Eguchi H, Yoshihara D, Fujiwara N, Suzuki K. Activation of the mitogen-activated protein kinase ERK1/2 signaling pathway suppresses the expression of ChREBPα and β in HepG2 cells. FEBS Open Bio. 2021;11:2008-2018 pubmed publisher
Mori H, Dugan C, Nishii A, Benchamana A, Li Z, Cadenhead T, et al. The molecular and metabolic program by which white adipocytes adapt to cool physiologic temperatures. PLoS Biol. 2021;19:e3000988 pubmed publisher
Youn D, Xiaoli A, Zong H, Okada J, Liu L, Pessin J, et al. The Mediator complex kinase module is necessary for fructose regulation of liver glycogen levels through induction of glucose-6-phosphatase catalytic subunit (G6pc). Mol Metab. 2021;48:101227 pubmed publisher
Gutierrez J, Liu W, Perez S, Xing G, SONNENBERG G, Kou K, et al. Pharmacologic inhibition of ketohexokinase prevents fructose-induced metabolic dysfunction. Mol Metab. 2021;48:101196 pubmed publisher
Lu Y, Tian N, Hu L, Meng J, Feng M, Zhu Y, et al. ERα down-regulates carbohydrate responsive element binding protein and decreases aerobic glycolysis in liver cancer cells. J Cell Mol Med. 2021;25:3427-3436 pubmed publisher
Takao K, Iizuka K, Liu Y, Sakurai T, Kubota S, Kubota Okamoto S, et al. Effects of ChREBP deficiency on adrenal lipogenesis and steroidogenesis. J Endocrinol. 2021;248:317-324 pubmed publisher
Velázquez Villegas L, Noriega L, López Barradas A, Tobon Cornejo S, Méndez García A, Tovar A, et al. ChREBP downregulates SNAT2 amino acid transporter expression through interactions with SMRT in response to a high-carbohydrate diet. Am J Physiol Endocrinol Metab. 2021;320:E102-E112 pubmed publisher
Hsiao W, Jung S, Tang Y, Haley J, Li R, Li H, et al. The Lipid Handling Capacity of Subcutaneous Fat Is Programmed by mTORC2 during Development. Cell Rep. 2020;33:108223 pubmed publisher
Heidenreich S, WEBER P, Stephanowitz H, Petricek K, Schütte T, Oster M, et al. The glucose-sensing transcription factor ChREBP is targeted by proline hydroxylation. J Biol Chem. 2020;295:17158-17168 pubmed publisher
Morigny P, Houssier M, Mairal A, Ghilain C, Mouisel E, Benhamed F, et al. Interaction between hormone-sensitive lipase and ChREBP in fat cells controls insulin sensitivity. Nat Metab. 2019;1:133-146 pubmed publisher
Long J, Galvan D, Mise K, Kanwar Y, Li L, Poungvarin N, et al. Role for carbohydrate response element-binding protein (ChREBP) in high glucose-mediated repression of long noncoding RNA Tug1. J Biol Chem. 2020;: pubmed publisher
Fan Q, Nørgaard R, Grytten I, Ness C, Lucas C, Vekterud K, et al. LXRα Regulates ChREBPα Transactivity in a Target Gene-Specific Manner through an Agonist-Modulated LBD-LID Interaction. Cells. 2020;9: pubmed publisher
Milutinović D, Brkljacic J, Teofilović A, Bursać B, Nikolic M, Gligorovska L, et al. Chronic Stress Potentiates High Fructose-Induced Lipogenesis in Rat Liver and Kidney. Mol Nutr Food Res. 2020;64:e1901141 pubmed publisher
Bagchi D, Li Z, Corsa C, Hardij J, Mori H, Learman B, et al. Wntless regulates lipogenic gene expression in adipocytes and protects against diet-induced metabolic dysfunction. Mol Metab. 2020;39:100992 pubmed publisher
Tong X, Zhang D, Shabandri O, Oh J, Jin E, Stamper K, et al. DDB1 E3 ligase controls dietary fructose-induced ChREBPα stabilization and liver steatosis via CRY1. Metabolism. 2020;107:154222 pubmed publisher
Zhao S, Jang C, Liu J, Uehara K, Gilbert M, Izzo L, et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature. 2020;579:586-591 pubmed publisher
Wei C, Ma X, Su K, Qi S, Zhu Y, Lin J, et al. ChREBP-β regulates thermogenesis in brown adipose tissue. J Endocrinol. 2020;245:343-356 pubmed publisher
Lei Y, Zhou S, Hu Q, Chen X, Gu J. Carbohydrate response element binding protein (ChREBP) correlates with colon cancer progression and contributes to cell proliferation. Sci Rep. 2020;10:4233 pubmed publisher
Zhao C, Liu L, Liu Q, Li F, Zhang L, Zhu F, et al. Fibroblast growth factor 21 is required for the therapeutic effects of Lactobacillus rhamnosus GG against fructose-induced fatty liver in mice. Mol Metab. 2019;29:145-157 pubmed publisher
Lei Y, Hu Q, Gu J. Expressions of Carbohydrate Response Element Binding Protein and Glucose Transporters in Liver Cancer and Clinical Significance. Pathol Oncol Res. 2019;: pubmed publisher
Lane E, Choi D, Garcia Haro L, Levine Z, Tedoldi M, Walker S, et al. HCF-1 Regulates De Novo Lipogenesis through a Nutrient-Sensitive Complex with ChREBP. Mol Cell. 2019;: pubmed publisher
Sanchez Gurmaches J, Martinez Calejman C, Jung S, Li H, Guertin D. Brown fat organogenesis and maintenance requires AKT1 and AKT2. Mol Metab. 2019;23:60-74 pubmed publisher
Van Der Werf R, Walter C, Bietiger W, Seyfritz E, Mura C, Péronet C, et al. Beneficial effects of cherry consumption as a dietary intervention for metabolic, hepatic and vascular complications in type 2 diabetic rats. Cardiovasc Diabetol. 2018;17:104 pubmed publisher
Bricambert J, Alves Guerra M, Esteves P, Prip Buus C, Bertrand Michel J, Guillou H, et al. The histone demethylase Phf2 acts as a molecular checkpoint to prevent NAFLD progression during obesity. Nat Commun. 2018;9:2092 pubmed publisher
Kumar A, Katz L, Schulz A, Kim M, Honig L, Li L, et al. Activation of Nrf2 Is Required for Normal and ChREBPα-Augmented Glucose-Stimulated β-Cell Proliferation. Diabetes. 2018;67:1561-1575 pubmed publisher
Singh K, Kim S, Hahm E, Pore S, Jacobs B, Singh S. Prostate cancer chemoprevention by sulforaphane in a preclinical mouse model is associated with inhibition of fatty acid metabolism. Carcinogenesis. 2018;39:826-837 pubmed publisher
Linden A, Li S, Choi H, Fang F, Fukasawa M, Uyeda K, et al. Interplay between ChREBP and SREBP-1c coordinates postprandial glycolysis and lipogenesis in livers of mice. J Lipid Res. 2018;59:475-487 pubmed publisher
Kim M, Astapova I, Flier S, Hannou S, Doridot L, Sargsyan A, et al. Intestinal, but not hepatic, ChREBP is required for fructose tolerance. JCI Insight. 2017;2: pubmed publisher
Sanchez Gurmaches J, Tang Y, Jespersen N, Wallace M, Martinez Calejman C, Gujja S, et al. Brown Fat AKT2 Is a Cold-Induced Kinase that Stimulates ChREBP-Mediated De Novo Lipogenesis to Optimize Fuel Storage and Thermogenesis. Cell Metab. 2018;27:195-209.e6 pubmed publisher
Katz L, Xu S, Ge K, Scott D, Gershengorn M. T3 and Glucose Coordinately Stimulate ChREBP-Mediated Ucp1 Expression in Brown Adipocytes From Male Mice. Endocrinology. 2018;159:557-569 pubmed publisher
Kim Y, Kim M, Choi M, Lee D, Roh G, Kim H, et al. Aralia elata (Miq) Seem Extract Decreases O-GlcNAc Transferase Expression and Retinal Cell Death in Diabetic Mice. J Med Food. 2017;20:989-1001 pubmed publisher
Iroz A, Montagner A, Benhamed F, Levavasseur F, Polizzi A, Anthony E, et al. A Specific ChREBP and PPARα Cross-Talk Is Required for the Glucose-Mediated FGF21 Response. Cell Rep. 2017;21:403-416 pubmed publisher
Kwon J, Lee Y, Cho J, Kim G, Anduaga J, Starost M, et al. Liver-directed gene therapy for murine glycogen storage disease type Ib. Hum Mol Genet. 2017;26:4395-4405 pubmed publisher
Softic S, Gupta M, Wang G, Fujisaka S, O Neill B, Rao T, et al. Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling. J Clin Invest. 2017;127:4059-4074 pubmed publisher
Heidenreich S, Witte N, WEBER P, Goehring I, Tolkachov A, von Loeffelholz C, et al. Retinol saturase coordinates liver metabolism by regulating ChREBP activity. Nat Commun. 2017;8:384 pubmed publisher
Kim Y, Kim M, Choi M, Lee D, Roh G, Kim H, et al. Metformin protects against retinal cell death in diabetic mice. Biochem Biophys Res Commun. 2017;492:397-403 pubmed publisher
Ducheix S, Montagner A, Polizzi A, Lasserre F, Régnier M, Marmugi A, et al. Dietary oleic acid regulates hepatic lipogenesis through a liver X receptor-dependent signaling. PLoS ONE. 2017;12:e0181393 pubmed publisher
Fan Q, Nørgaard R, Bindesbøll C, Lucas C, Dalen K, Babaie E, et al. LXRα Regulates Hepatic ChREBPα Activity and Lipogenesis upon Glucose, but Not Fructose Feeding in Mice. Nutrients. 2017;9: pubmed publisher
Cho J, Kim G, Pan C, Anduaga J, Choi E, Mansfield B, et al. Downregulation of SIRT1 signaling underlies hepatic autophagy impairment in glycogen storage disease type Ia. PLoS Genet. 2017;13:e1006819 pubmed publisher
Janssens S, Ciapaite J, Wolters J, van Riel N, Nicolay K, Prompers J. An In Vivo Magnetic Resonance Spectroscopy Study of the Effects of Caloric and Non-Caloric Sweeteners on Liver Lipid Metabolism in Rats. Nutrients. 2017;9: pubmed publisher
Irimia J, Meyer C, Segvich D, Surendran S, DePaoli Roach A, Morral N, et al. Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice. J Biol Chem. 2017;292:10455-10464 pubmed publisher
Kim G, Kwon J, Cho J, Zhang L, Mansfield B, Chou J. Downregulation of pathways implicated in liver inflammation and tumorigenesis of glycogen storage disease type Ia mice receiving gene therapy. Hum Mol Genet. 2017;26:1890-1899 pubmed publisher
Al Oanzi Z, Fountana S, Moonira T, Tudhope S, Petrie J, Alshawi A, et al. Opposite effects of a glucokinase activator and metformin on glucose-regulated gene expression in hepatocytes. Diabetes Obes Metab. 2017;19:1078-1087 pubmed publisher
Cao W, Chang T, Li X, Wang R, Wu L. Dual effects of fructose on ChREBP and FoxO1/3α are responsible for AldoB up-regulation and vascular remodelling. Clin Sci (Lond). 2017;131:309-325 pubmed publisher
McMurphy T, Huang W, Xiao R, Liu X, Dhurandhar N, Cao L. Hepatic Expression of Adenovirus 36 E4ORF1 Improves Glycemic Control and Promotes Glucose Metabolism Through AKT Activation. Diabetes. 2017;66:358-371 pubmed publisher
Kim M, Krawczyk S, Doridot L, Fowler A, Wang J, Trauger S, et al. ChREBP regulates fructose-induced glucose production independently of insulin signaling. J Clin Invest. 2016;126:4372-4386 pubmed publisher
Harris K, Desai N, Gupta M, Xue X, Chatterjee P, Rochelson B, et al. The effects of prenatal metformin on obesogenic diet-induced alterations in maternal and fetal fatty acid metabolism. Nutr Metab (Lond). 2016;13:55 pubmed publisher
Schmidt S, Madsen J, Frafjord K, Poulsen L, Salö S, Boergesen M, et al. Integrative Genomics Outlines a Biphasic Glucose Response and a ChREBP-ROR? Axis Regulating Proliferation in ? Cells. Cell Rep. 2016;16:2359-72 pubmed publisher
Marmugi A, Lukowicz C, Lasserre F, Montagner A, Polizzi A, Ducheix S, et al. Activation of the Constitutive Androstane Receptor induces hepatic lipogenesis and regulates Pnpla3 gene expression in a LXR-independent way. Toxicol Appl Pharmacol. 2016;303:90-100 pubmed publisher
Tang Y, Wallace M, Sanchez Gurmaches J, Hsiao W, Li H, Lee P, et al. Adipose tissue mTORC2 regulates ChREBP-driven de novo lipogenesis and hepatic glucose metabolism. Nat Commun. 2016;7:11365 pubmed publisher
Kitsunai H, Makino Y, Sakagami H, Mizumoto K, Yanagimachi T, Atageldiyeva K, et al. High glucose induces platelet-derived growth factor-C via carbohydrate response element-binding protein in glomerular mesangial cells. Physiol Rep. 2016;4: pubmed publisher
Zhang Z, Li B, Meng X, Yao S, Jin L, Yang J, et al. Berberine prevents progression from hepatic steatosis to steatohepatitis and fibrosis by reducing endoplasmic reticulum stress. Sci Rep. 2016;6:20848 pubmed publisher
Nuotio Antar A, Poungvarin N, Li M, Schupp M, Mohammad M, Gerard S, et al. FABP4-Cre Mediated Expression of Constitutively Active ChREBP Protects Against Obesity, Fatty Liver, and Insulin Resistance. Endocrinology. 2015;156:4020-32 pubmed publisher
Witte N, Muenzner M, Rietscher J, Knauer M, Heidenreich S, Nuotio Antar A, et al. The Glucose Sensor ChREBP Links De Novo Lipogenesis to PPARγ Activity and Adipocyte Differentiation. Endocrinology. 2015;156:4008-19 pubmed publisher
Li X, Kover K, Heruth D, Watkins D, Moore W, Jackson K, et al. New Insight Into Metformin Action: Regulation of ChREBP and FOXO1 Activities in Endothelial Cells. Mol Endocrinol. 2015;29:1184-94 pubmed publisher
Trabelsi M, Daoudi M, Prawitt J, Ducastel S, Touche V, Sayin S, et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat Commun. 2015;6:7629 pubmed publisher
Marmier S, Dentin R, Daujat Chavanieu M, Guillou H, Bertrand Michel J, Gerbal Chaloin S, et al. Novel role for carbohydrate responsive element binding protein in the control of ethanol metabolism and susceptibility to binge drinking. Hepatology. 2015;62:1086-100 pubmed publisher
Poungvarin N, Chang B, Imamura M, Chen J, Moolsuwan K, Sae Lee C, et al. Genome-Wide Analysis of ChREBP Binding Sites on Male Mouse Liver and White Adipose Chromatin. Endocrinology. 2015;156:1982-94 pubmed publisher
Bindesbøll C, Fan Q, Nørgaard R, MacPherson L, Ruan H, Wu J, et al. Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity. J Lipid Res. 2015;56:771-85 pubmed publisher
Kaadige M, Yang J, Wilde B, Ayer D. MondoA-Mlx transcriptional activity is limited by mTOR-MondoA interaction. Mol Cell Biol. 2015;35:101-10 pubmed publisher
product information
master code :
NB400-135
SKU :
NB400-135
product name :
CHREBP Antibody - BSA Free
unit size :
0.1 ml (also 0.025 ml)
description :
The CHREBP Antibody - BSA Free from Novus is a rabbit polyclonal antibody to CHREBP. This antibody reacts with human,mouse,rat. The CHREBP Antibody - BSA Free has been validated for the following applications: Chemotaxis,Western Blot,Knockdown Validated,EMSA,IF/IHC,SDS-Page,Immunoprecipitation,Immunohistochemistry-Paraffin,Chromatin Immunoprecipitation (ChIP),Knockout Validated,Immunocytochemistry/ Immunofluorescence,Chromatin Immunoprecipitation,Immunohistochemistry,Immunoblotting,Gel Super Shift Assays.
target :
CHREBP
category :
Primary Antibodies
buffer :
PBS
clonality :
Polyclonal
concentration :
1 mg/ml
conjugate :
Unconjugated
host :
Rabbit
immunogen :
A C-terminal synthetic peptide made to the human CHREBP protein sequence (between residues 800-852). [UniProt# Q9NP71, Isoform 1/Alpha]
isotype :
IgG
purity :
Immunogen affinity purified
species :
Human,Mouse,Rat
theoretical molecular weight :
95 kDa
gene symbol :
MLXIPL
Antibody validation :
Knockout/Knockdown
applications :
Western Blot,Knockdown Validated,Chemotaxis,EMSA,IF/IHC,SDS-Page,Immunoprecipitation,Immunohistochemistry-Paraffin,Chromatin Immunoprecipitation (ChIP),Knockout Validated,Immunocytochemistry/ Immunofluorescence,Chromatin Immunoprecipitation,Immunohistochemistry,Immunoblotting,Gel Super Shift Assays
USD :
469 USD
alt names :
BHLHD14, CHREBPcarbohydrate-responsive element-binding protein, Class D basic helix-loop-helix protein 14, MIOWS basic-helix-loop-helix leucine zipper protein, MLX interacting protein-like, MLX interactor, MLX-interacting protein-like, MONDOBWilliams-Beuren syndrome chromosomal region 14 protein, WBSCR14Williams-Beuren syndrome chromosome region 14 protein 1, Williams Beuren syndrome chromosome region 14, Williams-Beuren syndrome chromosome region 14 protein 2, WS-bHLHbHLHd14carbohydrate response element binding protein
storage :
Store at 4C short term. Aliquot and store at -20C long term. Avoid freeze-thaw cycles.
more info or order :
company information
Novus Biologicals
10771 E Easter Ave
Centennial, CO 80112
novus@novusbio.com
https://www.novusbio.com
3037301950
headquarters: USA
Novus Biologicals licenses, manufactures, and markets antibodies to over 20,000 unique targets to support a wide array of research areas. Novus is built on honesty, collaboration and strong relationships and continues to provide quality tools that accelerate research. Every product is backed by our 100% guarantee.