Published Application/Species/Sample/Dilution | Reference |
---|
- western blot knockout validation; mouse; loading ...; fig s4d
| Schlein C, Fischer A, Sass F, Worthmann A, Tödter K, Jaeckstein M, et al. Endogenous Fatty Acid Synthesis Drives Brown Adipose Tissue Involution. Cell Rep. 2021;34:108624 pubmed publisher
|
- western blot; mouse; fig 6a
| Carroll P, Freie B, Cheng P, Kasinathan S, Gu H, Hedrich T, et al. The glucose-sensing transcription factor MLX balances metabolism and stress to suppress apoptosis and maintain spermatogenesis. PLoS Biol. 2021;19:e3001085 pubmed publisher
|
- western blot; human; loading ...; fig 2b
- immunohistochemistry - paraffin section; mouse; loading ...; fig 6b
| Na T, Kim G, Oh H, Lee M, Han Y, Kim K, et al. The trisaccharide raffinose modulates epidermal differentiation through activation of liver X receptor. Sci Rep. 2017;7:43823 pubmed publisher
|
| Min K, Yenilmez B, Kelly M, Echeverria D, Elleby M, Lifshitz L, et al. Lactate transporter MCT1 in hepatic stellate cells promotes fibrotic collagen expression in nonalcoholic steatohepatitis. elife. 2024;12: pubmed publisher
|
| Singh C, Jin B, Shrestha N, Markhard A, Panda A, Calvo S, et al. ChREBP is activated by reductive stress and mediates GCKR-associated metabolic traits. Cell Metab. 2024;36:144-158.e7 pubmed publisher
|
| Nikolaou K, Godbersen S, Manoharan M, Wieland S, Heim M, Stoffel M. Inflammation-induced TRIM21 represses hepatic steatosis by promoting the ubiquitination of lipogenic regulators. JCI Insight. 2023;8: pubmed publisher
|
| Li L, Long J, Mise K, Poungavrin N, Lorenzi P, Mahmud I, et al. The transcription factor ChREBP links mitochondrial lipidomes to mitochondrial morphology and progression of diabetic kidney disease. J Biol Chem. 2023;299:105185 pubmed publisher
|
| van den Berg L, Kokki K, Wowro S, Petricek K, Deniz O, Stegmann C, et al. Sugar-responsive inhibition of Myc-dependent ribosome biogenesis by Clockwork orange. Cell Rep. 2023;42:112739 pubmed publisher
|
| Gu L, Zhu Y, Watari K, Lee M, Liu J, Pérez S, et al. Fructose-1,6-bisphosphatase is a nonenzymatic safety valve that curtails AKT activation to prevent insulin hyperresponsiveness. Cell Metab. 2023;35:1009-1021.e9 pubmed publisher
|
| Yao L, Wang M, Zhang J, Luo X, Yuan C, Bai R, et al. Oleanolic Acid Inhibits SCD1 Gene Expression to Ameliorate Fructose-Induced Hepatosteatosis through SREBP1c-Dependent and -Independent Mechanisms. Mol Nutr Food Res. 2023;67:e2200533 pubmed publisher
|
| Senatus L, Ega xf1 a Gorro xf1 o L, L xf3 pez D xed ez R, Bergaya S, Aranda J, Amengual J, et al. DIAPH1 mediates progression of atherosclerosis and regulates hepatic lipid metabolism in mice. Commun Biol. 2023;6:280 pubmed publisher
|
| Ma Y, Shen S, Yan Y, Zhang S, Liu S, Tang Z, et al. Adipocyte Thyroid Hormone β Receptor-Mediated Hormone Action Fine-tunes Intracellular Glucose and Lipid Metabolism and Systemic Homeostasis. Diabetes. 2023;72:562-574 pubmed publisher
|
| Sargsyan A, Doridot L, Hannou S, Tong W, Srinivasan H, Ivison R, et al. HGFAC is a ChREBP-regulated hepatokine that enhances glucose and lipid homeostasis. JCI Insight. 2023;8: pubmed publisher
|
| Oh A, Jeong Y, Yu J, Minh Tam D, Kang J, Jung Y, et al. Hepatocyte Kctd17 Inhibition Ameliorates Glucose Intolerance and Hepatic Steatosis Caused by Obesity-induced Chrebp Stabilization. Gastroenterology. 2023;164:439-453 pubmed publisher
|
| Ladraa S, Zerbib L, Bayard C, Fraissenon A, Venot Q, Morin G, et al. PIK3CA gain-of-function mutation in adipose tissue induces metabolic reprogramming with Warburg-like effect and severe endocrine disruption. Sci Adv. 2022;8:eade7823 pubmed publisher
|
| Katz L, Argmann C, Lambertini L, Scott D. T3 and glucose increase expression of phosphoenolpyruvate carboxykinase (PCK1) leading to increased β-cell proliferation. Mol Metab. 2022;66:101646 pubmed publisher
|
| Stephenson E, Stayton A, Sethuraman A, Rao P, Meyer A, Gomes C, et al. Chronic intake of high dietary sucrose induces sexually dimorphic metabolic adaptations in mouse liver and adipose tissue. Nat Commun. 2022;13:6062 pubmed publisher
|
| Thevkar Nagesh P, Habault J, Voisin M, Ruff S, Ha S, Ruoff R, et al. Transcriptional regulation of Acsl1 by CHREBP and NF-kappa B in macrophages during hyperglycemia and inflammation. PLoS ONE. 2022;17:e0272986 pubmed publisher
|
| Bae J, Lee J, Shin E, Lee M, Lee Y, Lee B, et al. The effects of the voglibose on non-alcoholic fatty liver disease in mice model. Sci Rep. 2022;12:13595 pubmed publisher
|
| Katz L, Brill G, Zhang P, Kumar A, Baumel Alterzon S, Honig L, et al. Maladaptive positive feedback production of ChREBPβ underlies glucotoxic β-cell failure. Nat Commun. 2022;13:4423 pubmed publisher
|
| Zhang J, Zhang J, Fu Z, Zhang Y, Luo Z, Zhang P, et al. CHREBP suppresses gastric cancer progression via the cyclin D1-Rb-E2F1 pathway. Cell Death Discov. 2022;8:300 pubmed publisher
|
| Wu H, Lin C, Pai H, Chen Y, Cheng K, Kuo H, et al. Sucralose, a Non-nutritive Artificial Sweetener Exacerbates High Fat Diet-Induced Hepatic Steatosis Through Taste Receptor Type 1 Member 3. Front Nutr. 2022;9:823723 pubmed publisher
|
| Kim D, Nam G, Seo E, Jun H. Inhibition of ChREBP ubiquitination via the ROS/Akt-dependent downregulation of Smurf2 contributes to lysophosphatidic acid-induced fibrosis in renal mesangial cells. J Biomed Sci. 2022;29:31 pubmed publisher
|
| Shibuya K, Ebihara K, Ebihara C, Sawayama N, Isoda M, Yamamuro D, et al. AAA-ATPase valosin-containing protein binds the transcription factor SREBP1 and promotes its proteolytic activation by rhomboid protease RHBDL4. J Biol Chem. 2022;298:101936 pubmed publisher
|
| Balamurugan K, Medishetti R, Kotha J, Behera P, Chandra K, Mavuduru V, et al. PHLPP1 promotes neutral lipid accumulation through AMPK/ChREBP-dependent lipid uptake and fatty acid synthesis pathways. iScience. 2022;25:103766 pubmed publisher
|
| Gu W, Wang X, Zhao H, Geng J, Li X, Zheng K, et al. Resveratrol ameliorates diabetic kidney injury by reducing lipotoxicity and modulates expression of components of the junctional adhesion molecule-like/sirtuin 1 lipid metabolism pathway. Eur J Pharmacol. 2022;918:174776 pubmed publisher
|
| Recazens E, Tavernier G, Dufau J, Bergoglio C, Benhamed F, Cassant Sourdy S, et al. ChREBPβ is dispensable for the control of glucose homeostasis and energy balance. JCI Insight. 2022;7: pubmed publisher
|
| Yenilmez B, Wetoska N, Kelly M, Echeverria D, Min K, Lifshitz L, et al. An RNAi therapeutic targeting hepatic DGAT2 in a genetically obese mouse model of nonalcoholic steatohepatitis. Mol Ther. 2022;30:1329-1342 pubmed publisher
|
| Mendoza A, Tang C, Choi J, Acuña M, Logan M, Martin A, et al. Thyroid hormone signaling promotes hepatic lipogenesis through the transcription factor ChREBP. Sci Signal. 2021;14:eabh3839 pubmed publisher
|
| Chen N, Song S, Yang Z, Wu M, Mu L, Zhou T, et al. ChREBP deficiency alleviates apoptosis by inhibiting TXNIP/oxidative stress in diabetic nephropathy. J Diabetes Complications. 2021;35:108050 pubmed publisher
|
| Liu Y, Zienkiewicz J, Boyd K, Smith T, Xu Z, Hawiger J. Hyperlipidemic hypersensitivity to lethal microbial inflammation and its reversal by selective targeting of nuclear transport shuttles. Sci Rep. 2021;11:11907 pubmed publisher
|
| Li L, Sakiyama H, Eguchi H, Yoshihara D, Fujiwara N, Suzuki K. Activation of the mitogen-activated protein kinase ERK1/2 signaling pathway suppresses the expression of ChREBPα and β in HepG2 cells. FEBS Open Bio. 2021;11:2008-2018 pubmed publisher
|
| Mori H, Dugan C, Nishii A, Benchamana A, Li Z, Cadenhead T, et al. The molecular and metabolic program by which white adipocytes adapt to cool physiologic temperatures. PLoS Biol. 2021;19:e3000988 pubmed publisher
|
| Youn D, Xiaoli A, Zong H, Okada J, Liu L, Pessin J, et al. The Mediator complex kinase module is necessary for fructose regulation of liver glycogen levels through induction of glucose-6-phosphatase catalytic subunit (G6pc). Mol Metab. 2021;48:101227 pubmed publisher
|
| Gutierrez J, Liu W, Perez S, Xing G, SONNENBERG G, Kou K, et al. Pharmacologic inhibition of ketohexokinase prevents fructose-induced metabolic dysfunction. Mol Metab. 2021;48:101196 pubmed publisher
|
| Lu Y, Tian N, Hu L, Meng J, Feng M, Zhu Y, et al. ERα down-regulates carbohydrate responsive element binding protein and decreases aerobic glycolysis in liver cancer cells. J Cell Mol Med. 2021;25:3427-3436 pubmed publisher
|
| Takao K, Iizuka K, Liu Y, Sakurai T, Kubota S, Kubota Okamoto S, et al. Effects of ChREBP deficiency on adrenal lipogenesis and steroidogenesis. J Endocrinol. 2021;248:317-324 pubmed publisher
|
| Velázquez Villegas L, Noriega L, López Barradas A, Tobon Cornejo S, Méndez García A, Tovar A, et al. ChREBP downregulates SNAT2 amino acid transporter expression through interactions with SMRT in response to a high-carbohydrate diet. Am J Physiol Endocrinol Metab. 2021;320:E102-E112 pubmed publisher
|
| Hsiao W, Jung S, Tang Y, Haley J, Li R, Li H, et al. The Lipid Handling Capacity of Subcutaneous Fat Is Programmed by mTORC2 during Development. Cell Rep. 2020;33:108223 pubmed publisher
|
| Heidenreich S, WEBER P, Stephanowitz H, Petricek K, Schütte T, Oster M, et al. The glucose-sensing transcription factor ChREBP is targeted by proline hydroxylation. J Biol Chem. 2020;295:17158-17168 pubmed publisher
|
| Morigny P, Houssier M, Mairal A, Ghilain C, Mouisel E, Benhamed F, et al. Interaction between hormone-sensitive lipase and ChREBP in fat cells controls insulin sensitivity. Nat Metab. 2019;1:133-146 pubmed publisher
|
| Long J, Galvan D, Mise K, Kanwar Y, Li L, Poungvarin N, et al. Role for carbohydrate response element-binding protein (ChREBP) in high glucose-mediated repression of long noncoding RNA Tug1. J Biol Chem. 2020;: pubmed publisher
|
| Fan Q, Nørgaard R, Grytten I, Ness C, Lucas C, Vekterud K, et al. LXRα Regulates ChREBPα Transactivity in a Target Gene-Specific Manner through an Agonist-Modulated LBD-LID Interaction. Cells. 2020;9: pubmed publisher
|
| Milutinović D, Brkljacic J, Teofilović A, Bursać B, Nikolic M, Gligorovska L, et al. Chronic Stress Potentiates High Fructose-Induced Lipogenesis in Rat Liver and Kidney. Mol Nutr Food Res. 2020;64:e1901141 pubmed publisher
|
| Bagchi D, Li Z, Corsa C, Hardij J, Mori H, Learman B, et al. Wntless regulates lipogenic gene expression in adipocytes and protects against diet-induced metabolic dysfunction. Mol Metab. 2020;39:100992 pubmed publisher
|
| Tong X, Zhang D, Shabandri O, Oh J, Jin E, Stamper K, et al. DDB1 E3 ligase controls dietary fructose-induced ChREBPα stabilization and liver steatosis via CRY1. Metabolism. 2020;107:154222 pubmed publisher
|
| Zhao S, Jang C, Liu J, Uehara K, Gilbert M, Izzo L, et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature. 2020;579:586-591 pubmed publisher
|
| Wei C, Ma X, Su K, Qi S, Zhu Y, Lin J, et al. ChREBP-β regulates thermogenesis in brown adipose tissue. J Endocrinol. 2020;245:343-356 pubmed publisher
|
| Lei Y, Zhou S, Hu Q, Chen X, Gu J. Carbohydrate response element binding protein (ChREBP) correlates with colon cancer progression and contributes to cell proliferation. Sci Rep. 2020;10:4233 pubmed publisher
|
| Zhao C, Liu L, Liu Q, Li F, Zhang L, Zhu F, et al. Fibroblast growth factor 21 is required for the therapeutic effects of Lactobacillus rhamnosus GG against fructose-induced fatty liver in mice. Mol Metab. 2019;29:145-157 pubmed publisher
|
| Lei Y, Hu Q, Gu J. Expressions of Carbohydrate Response Element Binding Protein and Glucose Transporters in Liver Cancer and Clinical Significance. Pathol Oncol Res. 2019;: pubmed publisher
|
| Lane E, Choi D, Garcia Haro L, Levine Z, Tedoldi M, Walker S, et al. HCF-1 Regulates De Novo Lipogenesis through a Nutrient-Sensitive Complex with ChREBP. Mol Cell. 2019;: pubmed publisher
|
| Sanchez Gurmaches J, Martinez Calejman C, Jung S, Li H, Guertin D. Brown fat organogenesis and maintenance requires AKT1 and AKT2. Mol Metab. 2019;23:60-74 pubmed publisher
|
| Van Der Werf R, Walter C, Bietiger W, Seyfritz E, Mura C, Péronet C, et al. Beneficial effects of cherry consumption as a dietary intervention for metabolic, hepatic and vascular complications in type 2 diabetic rats. Cardiovasc Diabetol. 2018;17:104 pubmed publisher
|
| Bricambert J, Alves Guerra M, Esteves P, Prip Buus C, Bertrand Michel J, Guillou H, et al. The histone demethylase Phf2 acts as a molecular checkpoint to prevent NAFLD progression during obesity. Nat Commun. 2018;9:2092 pubmed publisher
|
| Kumar A, Katz L, Schulz A, Kim M, Honig L, Li L, et al. Activation of Nrf2 Is Required for Normal and ChREBPα-Augmented Glucose-Stimulated β-Cell Proliferation. Diabetes. 2018;67:1561-1575 pubmed publisher
|
| Singh K, Kim S, Hahm E, Pore S, Jacobs B, Singh S. Prostate cancer chemoprevention by sulforaphane in a preclinical mouse model is associated with inhibition of fatty acid metabolism. Carcinogenesis. 2018;39:826-837 pubmed publisher
|
| Linden A, Li S, Choi H, Fang F, Fukasawa M, Uyeda K, et al. Interplay between ChREBP and SREBP-1c coordinates postprandial glycolysis and lipogenesis in livers of mice. J Lipid Res. 2018;59:475-487 pubmed publisher
|
| Kim M, Astapova I, Flier S, Hannou S, Doridot L, Sargsyan A, et al. Intestinal, but not hepatic, ChREBP is required for fructose tolerance. JCI Insight. 2017;2: pubmed publisher
|
| Sanchez Gurmaches J, Tang Y, Jespersen N, Wallace M, Martinez Calejman C, Gujja S, et al. Brown Fat AKT2 Is a Cold-Induced Kinase that Stimulates ChREBP-Mediated De Novo Lipogenesis to Optimize Fuel Storage and Thermogenesis. Cell Metab. 2018;27:195-209.e6 pubmed publisher
|
| Katz L, Xu S, Ge K, Scott D, Gershengorn M. T3 and Glucose Coordinately Stimulate ChREBP-Mediated Ucp1 Expression in Brown Adipocytes From Male Mice. Endocrinology. 2018;159:557-569 pubmed publisher
|
| Kim Y, Kim M, Choi M, Lee D, Roh G, Kim H, et al. Aralia elata (Miq) Seem Extract Decreases O-GlcNAc Transferase Expression and Retinal Cell Death in Diabetic Mice. J Med Food. 2017;20:989-1001 pubmed publisher
|
| Iroz A, Montagner A, Benhamed F, Levavasseur F, Polizzi A, Anthony E, et al. A Specific ChREBP and PPARα Cross-Talk Is Required for the Glucose-Mediated FGF21 Response. Cell Rep. 2017;21:403-416 pubmed publisher
|
| Kwon J, Lee Y, Cho J, Kim G, Anduaga J, Starost M, et al. Liver-directed gene therapy for murine glycogen storage disease type Ib. Hum Mol Genet. 2017;26:4395-4405 pubmed publisher
|
| Softic S, Gupta M, Wang G, Fujisaka S, O Neill B, Rao T, et al. Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling. J Clin Invest. 2017;127:4059-4074 pubmed publisher
|
| Heidenreich S, Witte N, WEBER P, Goehring I, Tolkachov A, von Loeffelholz C, et al. Retinol saturase coordinates liver metabolism by regulating ChREBP activity. Nat Commun. 2017;8:384 pubmed publisher
|
| Kim Y, Kim M, Choi M, Lee D, Roh G, Kim H, et al. Metformin protects against retinal cell death in diabetic mice. Biochem Biophys Res Commun. 2017;492:397-403 pubmed publisher
|
| Ducheix S, Montagner A, Polizzi A, Lasserre F, Régnier M, Marmugi A, et al. Dietary oleic acid regulates hepatic lipogenesis through a liver X receptor-dependent signaling. PLoS ONE. 2017;12:e0181393 pubmed publisher
|
| Fan Q, Nørgaard R, Bindesbøll C, Lucas C, Dalen K, Babaie E, et al. LXRα Regulates Hepatic ChREBPα Activity and Lipogenesis upon Glucose, but Not Fructose Feeding in Mice. Nutrients. 2017;9: pubmed publisher
|
| Cho J, Kim G, Pan C, Anduaga J, Choi E, Mansfield B, et al. Downregulation of SIRT1 signaling underlies hepatic autophagy impairment in glycogen storage disease type Ia. PLoS Genet. 2017;13:e1006819 pubmed publisher
|
| Janssens S, Ciapaite J, Wolters J, van Riel N, Nicolay K, Prompers J. An In Vivo Magnetic Resonance Spectroscopy Study of the Effects of Caloric and Non-Caloric Sweeteners on Liver Lipid Metabolism in Rats. Nutrients. 2017;9: pubmed publisher
|
| Irimia J, Meyer C, Segvich D, Surendran S, DePaoli Roach A, Morral N, et al. Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice. J Biol Chem. 2017;292:10455-10464 pubmed publisher
|
| Kim G, Kwon J, Cho J, Zhang L, Mansfield B, Chou J. Downregulation of pathways implicated in liver inflammation and tumorigenesis of glycogen storage disease type Ia mice receiving gene therapy. Hum Mol Genet. 2017;26:1890-1899 pubmed publisher
|
| Al Oanzi Z, Fountana S, Moonira T, Tudhope S, Petrie J, Alshawi A, et al. Opposite effects of a glucokinase activator and metformin on glucose-regulated gene expression in hepatocytes. Diabetes Obes Metab. 2017;19:1078-1087 pubmed publisher
|
| Cao W, Chang T, Li X, Wang R, Wu L. Dual effects of fructose on ChREBP and FoxO1/3α are responsible for AldoB up-regulation and vascular remodelling. Clin Sci (Lond). 2017;131:309-325 pubmed publisher
|
| McMurphy T, Huang W, Xiao R, Liu X, Dhurandhar N, Cao L. Hepatic Expression of Adenovirus 36 E4ORF1 Improves Glycemic Control and Promotes Glucose Metabolism Through AKT Activation. Diabetes. 2017;66:358-371 pubmed publisher
|
| Kim M, Krawczyk S, Doridot L, Fowler A, Wang J, Trauger S, et al. ChREBP regulates fructose-induced glucose production independently of insulin signaling. J Clin Invest. 2016;126:4372-4386 pubmed publisher
|
| Harris K, Desai N, Gupta M, Xue X, Chatterjee P, Rochelson B, et al. The effects of prenatal metformin on obesogenic diet-induced alterations in maternal and fetal fatty acid metabolism. Nutr Metab (Lond). 2016;13:55 pubmed publisher
|
| Schmidt S, Madsen J, Frafjord K, Poulsen L, Salö S, Boergesen M, et al. Integrative Genomics Outlines a Biphasic Glucose Response and a ChREBP-ROR? Axis Regulating Proliferation in ? Cells. Cell Rep. 2016;16:2359-72 pubmed publisher
|
| Marmugi A, Lukowicz C, Lasserre F, Montagner A, Polizzi A, Ducheix S, et al. Activation of the Constitutive Androstane Receptor induces hepatic lipogenesis and regulates Pnpla3 gene expression in a LXR-independent way. Toxicol Appl Pharmacol. 2016;303:90-100 pubmed publisher
|
| Tang Y, Wallace M, Sanchez Gurmaches J, Hsiao W, Li H, Lee P, et al. Adipose tissue mTORC2 regulates ChREBP-driven de novo lipogenesis and hepatic glucose metabolism. Nat Commun. 2016;7:11365 pubmed publisher
|
| Kitsunai H, Makino Y, Sakagami H, Mizumoto K, Yanagimachi T, Atageldiyeva K, et al. High glucose induces platelet-derived growth factor-C via carbohydrate response element-binding protein in glomerular mesangial cells. Physiol Rep. 2016;4: pubmed publisher
|
| Zhang Z, Li B, Meng X, Yao S, Jin L, Yang J, et al. Berberine prevents progression from hepatic steatosis to steatohepatitis and fibrosis by reducing endoplasmic reticulum stress. Sci Rep. 2016;6:20848 pubmed publisher
|
| Nuotio Antar A, Poungvarin N, Li M, Schupp M, Mohammad M, Gerard S, et al. FABP4-Cre Mediated Expression of Constitutively Active ChREBP Protects Against Obesity, Fatty Liver, and Insulin Resistance. Endocrinology. 2015;156:4020-32 pubmed publisher
|
| Witte N, Muenzner M, Rietscher J, Knauer M, Heidenreich S, Nuotio Antar A, et al. The Glucose Sensor ChREBP Links De Novo Lipogenesis to PPARγ Activity and Adipocyte Differentiation. Endocrinology. 2015;156:4008-19 pubmed publisher
|
| Li X, Kover K, Heruth D, Watkins D, Moore W, Jackson K, et al. New Insight Into Metformin Action: Regulation of ChREBP and FOXO1 Activities in Endothelial Cells. Mol Endocrinol. 2015;29:1184-94 pubmed publisher
|
| Trabelsi M, Daoudi M, Prawitt J, Ducastel S, Touche V, Sayin S, et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat Commun. 2015;6:7629 pubmed publisher
|
| Marmier S, Dentin R, Daujat Chavanieu M, Guillou H, Bertrand Michel J, Gerbal Chaloin S, et al. Novel role for carbohydrate responsive element binding protein in the control of ethanol metabolism and susceptibility to binge drinking. Hepatology. 2015;62:1086-100 pubmed publisher
|
| Poungvarin N, Chang B, Imamura M, Chen J, Moolsuwan K, Sae Lee C, et al. Genome-Wide Analysis of ChREBP Binding Sites on Male Mouse Liver and White Adipose Chromatin. Endocrinology. 2015;156:1982-94 pubmed publisher
|
| Bindesbøll C, Fan Q, Nørgaard R, MacPherson L, Ruan H, Wu J, et al. Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity. J Lipid Res. 2015;56:771-85 pubmed publisher
|
| Kaadige M, Yang J, Wilde B, Ayer D. MondoA-Mlx transcriptional activity is limited by mTOR-MondoA interaction. Mol Cell Biol. 2015;35:101-10 pubmed publisher
|