This webpage contains legacy information. The product is either no longer available from the supplier or has been delisted at Labome.
product summary
company name :
Novus Biologicals
other brands :
IMGENEX
product type :
antibody
product name :
Jumonji/JARID2 Antibody
catalog :
NB100-2214
quantity :
0.1 ml (also 0.025 ml)
price :
409 USD
clonality :
polyclonal
host :
domestic rabbit
conjugate :
nonconjugated
clone name :
929F3.01
reactivity :
human, mouse
application :
western blot, immunohistochemistry, immunocytochemistry, immunoprecipitation, chromatin immunoprecipitation, immunohistochemistry - paraffin section, immunohistochemistry - frozen section, western blot knockout validation
citations: 86
Published Application/Species/Sample/DilutionReference
  • western blot knockout validation; mouse; 1:1000; fig 4
Cooper S, Grijzenhout A, Underwood E, Ancelin K, Zhang T, Nesterova T, et al. Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nat Commun. 2016;7:13661 pubmed publisher
  • western blot; human; loading ...; fig 1c
Fantini D, Huang S, Asara J, Bagchi S, Raychaudhuri P. Chromatin association of XRCC5/6 in the absence of DNA damage depends on the XPE gene product DDB2. Mol Biol Cell. 2017;28:192-200 pubmed publisher
Skehan K, Richardson M, O Connor L, Dickson S, Martin K, Govindarajulu G, et al. Viscous Aqueous Gel Illustrating Natural Anatomy: The VAGINA method in gynaecological MRI simulation. J Med Radiat Sci. 2024;71:150-155 pubmed publisher
Liu W, Zeng Y, Hao X, Wang X, Liu J, Gao T, et al. JARID2 coordinates with the NuRD complex to facilitate breast tumorigenesis through response to adipocyte-derived leptin. Cancer Commun (Lond). 2023;43:1117-1142 pubmed publisher
Kadomatsu T, Hara C, Kurahashi R, Horiguchi H, Morinaga J, Miyata K, et al. ANGPTL2-mediated epigenetic repression of MHC-I in tumor cells accelerates tumor immune evasion. Mol Oncol. 2023;: pubmed publisher
Hickey G, Wike C, Nie X, Guo Y, Tan M, Murphy P, et al. Establishment of developmental gene silencing by ordered polycomb complex recruitment in early zebrafish embryos. elife. 2022;11: pubmed publisher
Sun Z, Tang Y, Zhang Y, Fang Y, Jia J, Zeng W, et al. Joint single-cell multiomic analysis in Wnt3a induced asymmetric stem cell division. Nat Commun. 2021;12:5941 pubmed publisher
Perino M, van Mierlo G, Loh C, Wardle S, Zijlmans D, Marks H, et al. Two Functional Axes of Feedback-Enforced PRC2 Recruitment in Mouse Embryonic Stem Cells. Stem Cell Reports. 2020;15:1287-1300 pubmed publisher
Jain P, Ballaré C, Blanco E, Vizan P, Di Croce L. PHF19 mediated regulation of proliferation and invasiveness in prostate cancer cells. elife. 2020;9: pubmed publisher
Hasegawa T, Feng Z, Yan Z, Ngo K, Hosoi J, Demehri S. Reduction in Human Epidermal Langerhans Cells with Age Is Associated with Decline in CXCL14-Mediated Recruitment of CD14+ Monocytes. J Invest Dermatol. 2020;140:1327-1334 pubmed publisher
Schulz A, Jiang L, de Vor L, Ehrström M, Wermeling F, Eidsmo L, et al. Neutrophil Recruitment to Noninvasive MRSA at the Stratum Corneum of Human Skin Mediates Transient Colonization. Cell Rep. 2019;29:1074-1081.e5 pubmed publisher
Bonnardel J, T Jonck W, Gaublomme D, Browaeys R, Scott C, Martens L, et al. Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche. Immunity. 2019;51:638-654.e9 pubmed publisher
Nelson D, Marano R, Joo Y, Tian S, Patel B, Kaplan D, et al. BRAF V600E and Pten deletion in mice produces a histiocytic disorder with features of Langerhans cell histiocytosis. PLoS ONE. 2019;14:e0222400 pubmed publisher
Yang Y, Zenke Y, Hirai T, Kaplan D. Keratinocyte-derived TGFβ is not required to maintain skin immune homeostasis. J Dermatol Sci. 2019;94:290-297 pubmed publisher
Kumar R, Evans T. Activation-Induced Cytidine Deaminase Regulates Fibroblast Growth Factor/Extracellular Signal-Regulated Kinases Signaling to Achieve the Naïve Pluripotent State During Reprogramming. Stem Cells. 2019;37:1003-1017 pubmed publisher
Yen Y, Hsieh W, Tsai Y, Lü Y, Liau E, Hsu H, et al. Dlk1-Dio3 locus-derived lncRNAs perpetuate postmitotic motor neuron cell fate and subtype identity. elife. 2018;7: pubmed publisher
Perino M, van Mierlo G, Karemaker I, van Genesen S, Vermeulen M, Marks H, et al. MTF2 recruits Polycomb Repressive Complex 2 by helical-shape-selective DNA binding. Nat Genet. 2018;50:1002-1010 pubmed publisher
Artym J, Kocieba M, Zaczynska E, Kochanowska I, Zimecki M, Kałas W, et al. Topically applied azaphenothiazines inhibit experimental psoriasis in mice. Int Immunopharmacol. 2018;59:276-286 pubmed publisher
Capucha T, Koren N, Nassar M, Heyman O, Nir T, Levy M, et al. Sequential BMP7/TGF-β1 signaling and microbiota instruct mucosal Langerhans cell differentiation. J Exp Med. 2018;215:481-500 pubmed publisher
Schneider E, Staffas A, Röhner L, Malmberg E, Ashouri A, Krowiorz K, et al. Micro-ribonucleic acid-155 is a direct target of Meis1, but not a driver in acute myeloid leukemia. Haematologica. 2018;103:246-255 pubmed publisher
Basu M, Zhu J, Lahaye S, Majumdar U, Jiao K, Han Z, et al. Epigenetic mechanisms underlying maternal diabetes-associated risk of congenital heart disease. JCI Insight. 2017;2: pubmed publisher
Artym J, Kocieba M, Zaczynska E, Zimecki M, Jeleń M, Morak Młodawska B, et al. Topically applied azaphenothiazines inhibit contact sensitivity to oxazolone in mice. Histol Histopathol. 2018;33:223-236 pubmed publisher
Qu Y, Yang Q, Liu J, Shi B, Ji M, Li G, et al. c-Myc is Required for BRAFV600E-Induced Epigenetic Silencing by H3K27me3 in Tumorigenesis. Theranostics. 2017;7:2092-2107 pubmed publisher
Jin H, Oda H, Chen P, Yang C, Zhou X, Kang S, et al. Differential Sensitivity of Target Genes to Translational Repression by miR-17~92. PLoS Genet. 2017;13:e1006623 pubmed publisher
Baptista M, Keszei M, Oliveira M, Sunahara K, Andersson J, Dahlberg C, et al. Deletion of Wiskott-Aldrich syndrome protein triggers Rac2 activity and increased cross-presentation by dendritic cells. Nat Commun. 2016;7:12175 pubmed publisher
Gibbs A, Leeansyah E, Introini A, Paquin Proulx D, Hasselrot K, Andersson E, et al. MAIT cells reside in the female genital mucosa and are biased towards IL-17 and IL-22 production in response to bacterial stimulation. Mucosal Immunol. 2017;10:35-45 pubmed publisher
Chandra J, Miao Y, Romoff N, Frazer I. Epithelium Expressing the E7 Oncoprotein of HPV16 Attracts Immune-Modulatory Dendritic Cells to the Skin and Suppresses Their Antigen-Processing Capacity. PLoS ONE. 2016;11:e0152886 pubmed publisher
Quispel W, Stegehuis Kamp J, Santos S, Egeler R, van Halteren A. Activated Conventional T-Cells Are Present in Langerhans Cell Histiocytosis Lesions Despite the Presence of Immune Suppressive Cytokines. J Interferon Cytokine Res. 2015;35:831-9 pubmed publisher
Haid B, Schlögl D, Hermann M, Tripp C, Stoitzner P, Romani N, et al. Langerhans cells in the sebaceous gland of the murine skin. Exp Dermatol. 2015;24:899-901 pubmed publisher
Weber C, Hainz K, Deressa T, Strandt H, Florindo Pinheiro D, Mittermair R, et al. Immune Reactions against Gene Gun Vaccines Are Differentially Modulated by Distinct Dendritic Cell Subsets in the Skin. PLoS ONE. 2015;10:e0128722 pubmed publisher
Abd Warif N, Stoitzner P, Leggatt G, Mattarollo S, Frazer I, Hibma M. Langerhans cell homeostasis and activation is altered in hyperplastic human papillomavirus type 16 E7 expressing epidermis. PLoS ONE. 2015;10:e0127155 pubmed publisher
Yoon S, Foley J, Baker J. HEB associates with PRC2 and SMAD2/3 to regulate developmental fates. Nat Commun. 2015;6:6546 pubmed publisher
Naik S, Bouladoux N, Linehan J, Han S, Harrison O, Wilhelm C, et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature. 2015;520:104-8 pubmed publisher
Flacher V, Tripp C, Mairhofer D, Steinman R, Stoitzner P, Idoyaga J, et al. Murine Langerin+ dermal dendritic cells prime CD8+ T cells while Langerhans cells induce cross-tolerance. EMBO Mol Med. 2014;6:1191-204 pubmed publisher
Sparber F, Tripp C, Komenda K, Scheffler J, Clausen B, Huber L, et al. The late endosomal adaptor molecule p14 (LAMTOR2) regulates TGF?1-mediated homeostasis of Langerhans cells. J Invest Dermatol. 2015;135:119-129 pubmed publisher
Hobday P, Auger J, Schuneman G, Haasken S, Verbeek J, Binstadt B. Fc? receptor III and Fc? receptor IV on macrophages drive autoimmune valvular carditis in mice. Arthritis Rheumatol. 2014;66:852-62 pubmed publisher
Voisin B, Mairhofer D, Chen S, Stoitzner P, Mueller C, Flacher V. Anatomical distribution analysis reveals lack of Langerin+ dermal dendritic cells in footpads and tail of C57BL/6 mice. Exp Dermatol. 2014;23:354-6 pubmed publisher
Knickelbein J, Buela K, Hendricks R. Antigen-presenting cells are stratified within normal human corneas and are rapidly mobilized during ex vivo viral infection. Invest Ophthalmol Vis Sci. 2014;55:1118-23 pubmed publisher
Muto J, Morioka Y, Yamasaki K, Kim M, Garcia A, Carlin A, et al. Hyaluronan digestion controls DC migration from the skin. J Clin Invest. 2014;124:1309-19 pubmed
Elnekave M, Furmanov K, Shaul Y, Capucha T, Eli Berchoer L, Zelentsova K, et al. Second-generation Langerhans cells originating from epidermal precursors are essential for CD8+ T cell priming. J Immunol. 2014;192:1395-403 pubmed publisher
Mollah S, Dobrin J, Feder R, Tse S, Matos I, Cheong C, et al. Flt3L dependence helps define an uncharacterized subset of murine cutaneous dendritic cells. J Invest Dermatol. 2014;134:1265-1275 pubmed publisher
Debeer S, Le Luduec J, Kaiserlian D, Laurent P, Nicolas J, Dubois B, et al. Comparative histology and immunohistochemistry of porcine versus human skin. Eur J Dermatol. 2013;23:456-66 pubmed publisher
Mizraji G, Segev H, Wilensky A, Hovav A. Isolation, processing and analysis of murine gingival cells. J Vis Exp. 2013;:e50388 pubmed publisher
Bachy V, Hervouet C, Becker P, Chorro L, Carlin L, Herath S, et al. Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays. Proc Natl Acad Sci U S A. 2013;110:3041-6 pubmed publisher
Kellersch B, Brocker T. Langerhans cell homeostasis in mice is dependent on mTORC1 but not mTORC2 function. Blood. 2013;121:298-307 pubmed publisher
Luckashenak N, Wähe A, Breit K, Brakebusch C, Brocker T. Rho-family GTPase Cdc42 controls migration of Langerhans cells in vivo. J Immunol. 2013;190:27-35 pubmed publisher
Xu Y, Qi R, Chen W, Shi Y, Cui Z, Gao X, et al. Aging affects epidermal Langerhans cell development and function and alters their miRNA gene expression profile. Aging (Albany NY). 2012;4:742-54 pubmed
Mi Q, Xu Y, Wang H, Qi R, Dong Z, Zhou L. Deletion of microRNA miR-223 increases Langerhans cell cross-presentation. Int J Biochem Cell Biol. 2013;45:395-400 pubmed publisher
Hitzler M, Majdic O, Heine G, Worm M, Ebert G, Luch A, et al. Human Langerhans cells control Th cells via programmed death-ligand 1 in response to bacterial stimuli and nickel-induced contact allergy. PLoS ONE. 2012;7:e46776 pubmed publisher
Iram N, Mildner M, Prior M, Petzelbauer P, Fiala C, Hacker S, et al. Age-related changes in expression and function of Toll-like receptors in human skin. Development. 2012;139:4210-9 pubmed publisher
Sperling T, Ołdak M, Walch Rückheim B, Wickenhauser C, Doorbar J, Pfister H, et al. Human papillomavirus type 8 interferes with a novel C/EBP?-mediated mechanism of keratinocyte CCL20 chemokine expression and Langerhans cell migration. PLoS Pathog. 2012;8:e1002833 pubmed publisher
Arizon M, Nudel I, Segev H, Mizraji G, Elnekave M, Furmanov K, et al. Langerhans cells down-regulate inflammation-driven alveolar bone loss. Proc Natl Acad Sci U S A. 2012;109:7043-8 pubmed publisher
Haley K, Igyarto B, Ortner D, Bobr A, Kashem S, Schenten D, et al. Langerhans cells require MyD88-dependent signals for Candida albicans response but not for contact hypersensitivity or migration. J Immunol. 2012;188:4334-9 pubmed publisher
Segura E, Valladeau Guilemond J, Donnadieu M, Sastre Garau X, Soumelis V, Amigorena S. Characterization of resident and migratory dendritic cells in human lymph nodes. J Exp Med. 2012;209:653-60 pubmed publisher
Flacher V, Tripp C, Haid B, Kissenpfennig A, Malissen B, Stoitzner P, et al. Skin langerin+ dendritic cells transport intradermally injected anti-DEC-205 antibodies but are not essential for subsequent cytotoxic CD8+ T cell responses. J Immunol. 2012;188:2146-55 pubmed publisher
Langlet C, Tamoutounour S, Henri S, Luche H, Ardouin L, Gregoire C, et al. CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization. J Immunol. 2012;188:1751-60 pubmed publisher
Edelson B, Bradstreet T, Kc W, Hildner K, Herzog J, Sim J, et al. Batf3-dependent CD11b(low/-) peripheral dendritic cells are GM-CSF-independent and are not required for Th cell priming after subcutaneous immunization. PLoS ONE. 2011;6:e25660 pubmed publisher
Luche H, Ardouin L, Teo P, See P, Henri S, Merad M, et al. The earliest intrathymic precursors of CD8?(+) thymic dendritic cells correspond to myeloid-type double-negative 1c cells. Eur J Immunol. 2011;41:2165-75 pubmed publisher
Mikami N, Matsushita H, Kato T, Kawasaki R, Sawazaki T, Kishimoto T, et al. Calcitonin gene-related peptide is an important regulator of cutaneous immunity: effect on dendritic cell and T cell functions. J Immunol. 2011;186:6886-93 pubmed publisher
Kastenmüller K, Wille Reece U, Lindsay R, Trager L, Darrah P, Flynn B, et al. Protective T cell immunity in mice following protein-TLR7/8 agonist-conjugate immunization requires aggregation, type I IFN, and multiple DC subsets. J Clin Invest. 2011;121:1782-96 pubmed publisher
Rochereau N, Verrier B, Pin J, Genin C, Paul S. Phenotypic localization of distinct DC subsets in mouse Peyer Patch. Vaccine. 2011;29:3655-61 pubmed publisher
Marquet F, Bonneau M, Pascale F, Urien C, Kang C, Schwartz Cornil I, et al. Characterization of dendritic cells subpopulations in skin and afferent lymph in the swine model. PLoS ONE. 2011;6:e16320 pubmed publisher
Stoecklinger A, Eticha T, Mesdaghi M, Kissenpfennig A, Malissen B, Thalhamer J, et al. Langerin+ dermal dendritic cells are critical for CD8+ T cell activation and IgH ?-1 class switching in response to gene gun vaccines. J Immunol. 2011;186:1377-83 pubmed publisher
Bobr A, Olvera Gomez I, Igyarto B, Haley K, Hogquist K, Kaplan D. Acute ablation of Langerhans cells enhances skin immune responses. J Immunol. 2010;185:4724-8 pubmed publisher
Noordegraaf M, Flacher V, Stoitzner P, Clausen B. Functional redundancy of Langerhans cells and Langerin+ dermal dendritic cells in contact hypersensitivity. J Invest Dermatol. 2010;130:2752-9 pubmed publisher
de Jong M, de Witte L, Taylor M, Geijtenbeek T. Herpes simplex virus type 2 enhances HIV-1 susceptibility by affecting Langerhans cell function. J Immunol. 2010;185:1633-41 pubmed publisher
Poulin L, Salio M, Griessinger E, Anjos Afonso F, Craciun L, Chen J, et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J Exp Med. 2010;207:1261-71 pubmed publisher
Henri S, Poulin L, Tamoutounour S, Ardouin L, Guilliams M, de Bovis B, et al. CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J Exp Med. 2010;207:189-206 pubmed publisher
Chorro L, Sarde A, Li M, Woollard K, Chambon P, Malissen B, et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J Exp Med. 2009;206:3089-100 pubmed publisher
Tripp C, Haid B, Flacher V, Sixt M, Peter H, Farkas J, et al. The lymph vessel network in mouse skin visualised with antibodies against the hyaluronan receptor LYVE-1. Immunobiology. 2008;213:715-28 pubmed publisher
Nfon C, Dawson H, Toka F, Golde W. Langerhans cells in porcine skin. Vet Immunol Immunopathol. 2008;126:236-47 pubmed publisher
Shklovskaya E, Roediger B, Fazekas de St Groth B. Epidermal and dermal dendritic cells display differential activation and migratory behavior while sharing the ability to stimulate CD4+ T cell proliferation in vivo. J Immunol. 2008;181:418-30 pubmed
Stoitzner P, Green L, Jung J, Price K, Atarea H, Kivell B, et al. Inefficient presentation of tumor-derived antigen by tumor-infiltrating dendritic cells. Cancer Immunol Immunother. 2008;57:1665-73 pubmed publisher
Flacher V, Douillard P, Ait Yahia S, Stoitzner P, Clair Moninot V, Romani N, et al. Expression of langerin/CD207 reveals dendritic cell heterogeneity between inbred mouse strains. Immunology. 2008;123:339-47 pubmed publisher
Bursch L, Wang L, Igyarto B, Kissenpfennig A, Malissen B, Kaplan D, et al. Identification of a novel population of Langerin+ dendritic cells. J Exp Med. 2007;204:3147-56 pubmed
Poulin L, Henri S, de Bovis B, Devilard E, Kissenpfennig A, Malissen B. The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells. J Exp Med. 2007;204:3119-31 pubmed
Kaplan D, Li M, Jenison M, Shlomchik W, Flavell R, Shlomchik M. Autocrine/paracrine TGFbeta1 is required for the development of epidermal Langerhans cells. J Exp Med. 2007;204:2545-52 pubmed
Stoecklinger A, Grieshuber I, Scheiblhofer S, Weiss R, Ritter U, Kissenpfennig A, et al. Epidermal langerhans cells are dispensable for humoral and cell-mediated immunity elicited by gene gun immunization. J Immunol. 2007;179:886-93 pubmed
Zimmerli S, Hauser C. Langerhans cells and lymph node dendritic cells express the tight junction component claudin-1. J Invest Dermatol. 2007;127:2381-90 pubmed
Dubrac S, Stoitzner P, Pirkebner D, Elentner A, Schoonjans K, Auwerx J, et al. Peroxisome proliferator-activated receptor-alpha activation inhibits Langerhans cell function. J Immunol. 2007;178:4362-72 pubmed
Kaplan D, Jenison M, Saeland S, Shlomchik W, Shlomchik M. Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity. 2005;23:611-20 pubmed
Douillard P, Stoitzner P, Tripp C, Clair Moninot V, Ait Yahia S, McLellan A, et al. Mouse lymphoid tissue contains distinct subsets of langerin/CD207 dendritic cells, only one of which represents epidermal-derived Langerhans cells. J Invest Dermatol. 2005;125:983-94 pubmed
Abadie V, Badell E, Douillard P, Ensergueix D, Leenen P, Tanguy M, et al. Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes. Blood. 2005;106:1843-50 pubmed
Kissenpfennig A, Ait Yahia S, Clair Moninot V, Stössel H, Badell E, Bordat Y, et al. Disruption of the langerin/CD207 gene abolishes Birbeck granules without a marked loss of Langerhans cell function. Mol Cell Biol. 2005;25:88-99 pubmed
Movassagh M, Spatz A, Davoust J, Lebecque S, Romero P, Pittet M, et al. Selective accumulation of mature DC-Lamp+ dendritic cells in tumor sites is associated with efficient T-cell-mediated antitumor response and control of metastatic dissemination in melanoma. Cancer Res. 2004;64:2192-8 pubmed
Valladeau J, Clair Moninot V, Dezutter Dambuyant C, Pin J, Kissenpfennig A, Mattei M, et al. Identification of mouse langerin/CD207 in Langerhans cells and some dendritic cells of lymphoid tissues. J Immunol. 2002;168:782-92 pubmed
product information
brand :
Novus
master code :
NB100-2214
SKU :
NB100-2214
product name :
Jumonji/JARID2 Antibody
unit size :
0.1 ml (also 0.025 ml)
seo description :
The Jumonji/JARID2 Antibody - BSA Free from Novus is a rabbit polyclonal antibody to Jumonji/JARID2. This antibody reacts with human,mouse,rabbit. The Jumonji/JARID2 Antibody - BSA Free has been validated for the following applications: Chemotaxis,Immunoprecipitation,Western Blot,Immunohistochemistry-Paraffin,Immunohistochemistry-Frozen,Chromatin Immunoprecipitation (ChIP),Immunocytochemistry/ Immunofluorescence,Chromatin Immunoprecipitation,Immunohistochemistry,Simple Western,Knockout Validated.
target :
Jumonji/JARID2
category :
Primary Antibodies
buffer :
Tris-Glycine and 0.15M NaCl
clonality :
Polyclonal
concentration :
1.0 mg/ml
conjugate :
Unconjugated
dilution :
Western Blot 1:500, Simple Western 1:10, Chromatin Immunoprecipitation 1:10-1:500. Use reported in scientific literature (PMID 22396653), Immunohistochemistry 1:200, Immunocytochemistry/ Immunofluorescence 1:1000, Immunoprecipitation 1:10-1:500. Use reported in scientific literature, Immunohistochemistry-Paraffin 1:200, Chromatin Immunoprecipitation (ChIP) 1:10-1:500, Knockout Validated
host :
Rabbit
immunogen :
A synthetic peptide made to an N-terminal portion of the human JARID2 protein sequence (between residues 1-100). [UniProt# Q92833]
isotype :
IgG
purity :
Immunogen affinity purified
species :
Human,Mouse,Rabbit
gene symbol :
JARID2
Antibody validation :
Knockout/Knockdown
accessionNumbers :
Q92833
applications :
Chromatin Immunoprecipitation,Immunohistochemistry,Simple Western,Knockout Validated,Chemotaxis,Immunoprecipitation,Western Blot,Immunohistochemistry-Paraffin,Immunohistochemistry-Frozen,Chromatin Immunoprecipitation (ChIP),Immunocytochemistry/ Immunofluorescence
USD :
409 USD
alt names :
JMJjumonji-like protein, jumonji (mouse) homolog, jumonji homolog, jumonji, AT rich interactive domain 2, Jumonji/ARID domain-containing protein 2, protein Jumonji
storage :
Store at 4C short term. Aliquot and store at -20C long term. Avoid freeze-thaw cycles.
company information
Novus Biologicals
10771 E Easter Ave
Centennial, CO 80112
novus@novusbio.com
https://www.novusbio.com
3037301950
headquarters: USA
Novus Biologicals licenses, manufactures, and markets antibodies to over 20,000 unique targets to support a wide array of research areas. Novus is built on honesty, collaboration and strong relationships and continues to provide quality tools that accelerate research. Every product is backed by our 100% guarantee.