product summary
company name :
Neuromab
product type :
antibody
product name :
LRRK2/Dardarin, C-terminus
catalog :
75-253
quantity :
100 ug
clonality :
monoclonal
host :
mouse
conjugate :
nonconjugated
clone name :
N241A/34
reactivity :
human, mouse, rat
application :
western blot, immunohistochemistry, immunocytochemistry, immunoprecipitation, proximity ligation assay, western blot knockout validation, immunohistochemistry knockout validation, immunocytochemistry knockout validation
more info or order :
citations: 28
Published Application/Species/Sample/DilutionReference
  • immunocytochemistry knockout validation; mouse; fig s3
  • western blot knockout validation; mouse; fig 1, s2
  • immunoprecipitation; mouse; fig 2
  • immunoprecipitation; human; fig 2
  • western blot; human; fig 1
  • western blot knockout validation; rat; fig 5
  • immunohistochemistry; rat; fig 6
Davies P, Hinkle K, Sukar N, Sepulveda B, Mesias R, Serrano G, et al. Comprehensive characterization and optimization of anti-LRRK2 (leucine-rich repeat kinase 2) monoclonal antibodies. Biochem J. 2013;453:101-13 pubmed publisher
  • immunohistochemistry knockout validation; mouse; 1:100-1:400; loading ...; fig 3a
  • western blot; mouse; 1:1000; loading ...; fig 2a
Dzamko N, Gysbers A, Bandopadhyay R, Bolliger M, Uchino A, Zhao Y, et al. LRRK2 levels and phosphorylation in Parkinson's disease brain and cases with restricted Lewy bodies. Mov Disord. 2017;32:423-432 pubmed publisher
  • western blot knockout validation; rat; 1:1000; fig 1
Boddu R, Hull T, Bolisetty S, Hu X, Moehle M, Daher J, et al. Leucine-rich repeat kinase 2 deficiency is protective in rhabdomyolysis-induced kidney injury. Hum Mol Genet. 2015;24:4078-93 pubmed publisher
  • western blot; human; 1 ug/ml; fig 1a
Fan Y, Nirujogi R, Garrido A, Ruiz Martinez J, Bergareche Yarza A, Mondragón Rezola E, et al. R1441G but not G2019S mutation enhances LRRK2 mediated Rab10 phosphorylation in human peripheral blood neutrophils. Acta Neuropathol. 2021;142:475-494 pubmed publisher
  • proximity ligation assay; rat; 1:500; loading ...; fig 4a
De Miranda B, Castro S, Rocha E, Bodle C, Johnson K, Greenamyre J. The industrial solvent trichloroethylene induces LRRK2 kinase activity and dopaminergic neurodegeneration in a rat model of Parkinson's disease. Neurobiol Dis. 2021;153:105312 pubmed publisher
  • western blot; human; 1:1000; loading ...; fig 2d
Berndsen K, Lis P, Yeshaw W, Wawro P, Nirujogi R, Wightman M, et al. PPM1H phosphatase counteracts LRRK2 signaling by selectively dephosphorylating Rab proteins. elife. 2019;8: pubmed publisher
  • western blot; mouse; 1:1000; loading ...; fig 4a
Mir R, Tonelli F, Lis P, MacArtney T, Polinski N, Martinez T, et al. The Parkinson's disease VPS35[D620N] mutation enhances LRRK2-mediated Rab protein phosphorylation in mouse and human. Biochem J. 2018;475:1861-1883 pubmed publisher
  • western blot; human; loading ...; fig 5a, 6a
Purlyte E, Dhekne H, Sarhan A, Gomez R, Lis P, Wightman M, et al. Rab29 activation of the Parkinson's disease-associated LRRK2 kinase. EMBO J. 2018;37:1-18 pubmed publisher
  • western blot; human; 1:1000; loading ...; fig 2b
Fan Y, Howden A, Sarhan A, Lis P, Ito G, Martinez T, et al. Interrogating Parkinson's disease LRRK2 kinase pathway activity by assessing Rab10 phosphorylation in human neutrophils. Biochem J. 2018;475:23-44 pubmed publisher
  • western blot; human; fig 5a
Kim M, Deng H, Wong Y, Siddique T, Krainc D. The Parkinson's disease-linked protein TMEM230 is required for Rab8a-mediated secretory vesicle trafficking and retromer trafficking. Hum Mol Genet. 2017;26:729-741 pubmed publisher
  • proximity ligation assay; mouse; 1:50; fig 6
  • immunocytochemistry; mouse; 1:50; fig s5
Choi I, Kim B, Byun J, Baik S, Huh Y, Kim J, et al. LRRK2 G2019S mutation attenuates microglial motility by inhibiting focal adhesion kinase. Nat Commun. 2015;6:8255 pubmed publisher
  • western blot; human; loading ...; fig 1a,1e,1f,2a,2d,3a
Zhao J, Molitor T, Langston J, Nichols R. LRRK2 dephosphorylation increases its ubiquitination. Biochem J. 2015;469:107-20 pubmed publisher
Nam D, Kim A, Han S, Lee S, Park S, Seol W, et al. Analysis of α-synuclein levels related to LRRK2 kinase activity: from substantia nigra to urine of patients with Parkinson's disease. Anim Cells Syst (Seoul). 2021;25:28-36 pubmed publisher
Whiffin N, Armean I, Kleinman A, Marshall J, Minikel E, Goodrich J, et al. The effect of LRRK2 loss-of-function variants in humans. Nat Med. 2020;26:869-877 pubmed publisher
Jang J, Oh H, Nam D, Seol W, Seo M, Park S, et al. Increase in anti-apoptotic molecules, nucleolin, and heat shock protein 70, against upregulated LRRK2 kinase activity. Anim Cells Syst (Seoul). 2018;22:273-280 pubmed publisher
Schwab A, Ebert A. Neurite Aggregation and Calcium Dysfunction in iPSC-Derived Sensory Neurons with Parkinson's Disease-Related LRRK2 G2019S Mutation. Stem Cell Reports. 2015;5:1039-1052 pubmed publisher
Henry A, Aghamohammadzadeh S, Samaroo H, Chen Y, Mou K, Needle E, et al. Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression. Hum Mol Genet. 2015;24:6013-28 pubmed publisher
Fuji R, Flagella M, Baca M, Baptista M, Brodbeck J, Chan B, et al. Effect of selective LRRK2 kinase inhibition on nonhuman primate lung. Sci Transl Med. 2015;7:273ra15 pubmed publisher
Liu Z, Galemmo R, Fraser K, Moehle M, Sen S, Volpicelli Daley L, et al. Unique functional and structural properties of the LRRK2 protein ATP-binding pocket. J Biol Chem. 2014;289:32937-51 pubmed publisher
Lee J, Tapias V, Di Maio R, Greenamyre J, Cannon J. Behavioral, neurochemical, and pathologic alterations in bacterial artificial chromosome transgenic G2019S leucine-rich repeated kinase 2 rats. Neurobiol Aging. 2015;36:505-18 pubmed publisher
Gomez Suaga P, Rivero Ríos P, Fdez E, Blanca Ramírez M, Ferrer I, Aiastui A, et al. LRRK2 delays degradative receptor trafficking by impeding late endosomal budding through decreasing Rab7 activity. Hum Mol Genet. 2014;23:6779-96 pubmed publisher
Daher J, Volpicelli Daley L, Blackburn J, Moehle M, West A. Abrogation of ?-synuclein-mediated dopaminergic neurodegeneration in LRRK2-deficient rats. Proc Natl Acad Sci U S A. 2014;111:9289-94 pubmed publisher
Schapansky J, Nardozzi J, Felizia F, LaVoie M. Membrane recruitment of endogenous LRRK2 precedes its potent regulation of autophagy. Hum Mol Genet. 2014;23:4201-14 pubmed publisher
West A, Cowell R, Daher J, Moehle M, Hinkle K, Melrose H, et al. Differential LRRK2 expression in the cortex, striatum, and substantia nigra in transgenic and nontransgenic rodents. J Comp Neurol. 2014;522:2465-80 pubmed publisher
Dorval V, Mandemakers W, Jolivette F, Coudert L, Mazroui R, De Strooper B, et al. Gene and MicroRNA transcriptome analysis of Parkinson's related LRRK2 mouse models. PLoS ONE. 2014;9:e85510 pubmed publisher
Stafa K, Tsika E, Moser R, Musso A, Glauser L, Jones A, et al. Functional interaction of Parkinson's disease-associated LRRK2 with members of the dynamin GTPase superfamily. Hum Mol Genet. 2014;23:2055-77 pubmed publisher
Yao C, Johnson W, Gao Y, Wang W, Zhang J, Deak M, et al. Kinase inhibitors arrest neurodegeneration in cell and C. elegans models of LRRK2 toxicity. Hum Mol Genet. 2013;22:328-44 pubmed publisher
Gomez Suaga P, Luzón Toro B, Churamani D, Zhang L, Bloor Young D, Patel S, et al. Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Hum Mol Genet. 2012;21:511-25 pubmed publisher
product information
TargetType :
Other
Target :
LRRK2/Dardarin, C-terminus
AccessionNum :
Q5S007
Clone :
N241A/34
HumanGeneName :
LRRK2
DataSheetFileName :
neuromab.ucdavis.edu/datasheet/N241A_34.pdf
IsoType :
IgG2a
ValidationT :
Pass
ValidationBrIB :
Pass
ValidationBrIHC :
Pass
ValidationKO :
Pass
Catalog :
75-253
more info or order :
company information
Neuromab
PO Box 1560 Davis, CA 95617-1560
http://neuromab.ucdavis.edu
headquarters: United States