Published Application/Species/Sample/Dilution | Reference |
---|
- immunocytochemistry knockout validation; mouse; fig s3
- western blot knockout validation; mouse; fig 1, s2
- immunoprecipitation; mouse; fig 2
- immunoprecipitation; human; fig 2
- western blot; human; fig 1
- western blot knockout validation; rat; fig 5
- immunohistochemistry; rat; fig 6
| Davies P, Hinkle K, Sukar N, Sepulveda B, Mesias R, Serrano G, et al. Comprehensive characterization and optimization of anti-LRRK2 (leucine-rich repeat kinase 2) monoclonal antibodies. Biochem J. 2013;453:101-13 pubmed publisher
|
- immunohistochemistry knockout validation; mouse; 1:100-1:400; loading ...; fig 3a
- western blot; mouse; 1:1000; loading ...; fig 2a
| Dzamko N, Gysbers A, Bandopadhyay R, Bolliger M, Uchino A, Zhao Y, et al. LRRK2 levels and phosphorylation in Parkinson's disease brain and cases with restricted Lewy bodies. Mov Disord. 2017;32:423-432 pubmed publisher
|
- western blot knockout validation; rat; 1:1000; fig 1
| Boddu R, Hull T, Bolisetty S, Hu X, Moehle M, Daher J, et al. Leucine-rich repeat kinase 2 deficiency is protective in rhabdomyolysis-induced kidney injury. Hum Mol Genet. 2015;24:4078-93 pubmed publisher
|
- western blot; human; 1 ug/ml; fig 1a
| Fan Y, Nirujogi R, Garrido A, Ruiz Martinez J, Bergareche Yarza A, Mondragón Rezola E, et al. R1441G but not G2019S mutation enhances LRRK2 mediated Rab10 phosphorylation in human peripheral blood neutrophils. Acta Neuropathol. 2021;142:475-494 pubmed publisher
|
- proximity ligation assay; rat; 1:500; loading ...; fig 4a
| De Miranda B, Castro S, Rocha E, Bodle C, Johnson K, Greenamyre J. The industrial solvent trichloroethylene induces LRRK2 kinase activity and dopaminergic neurodegeneration in a rat model of Parkinson's disease. Neurobiol Dis. 2021;153:105312 pubmed publisher
|
- western blot; human; 1:1000; loading ...; fig 2d
| Berndsen K, Lis P, Yeshaw W, Wawro P, Nirujogi R, Wightman M, et al. PPM1H phosphatase counteracts LRRK2 signaling by selectively dephosphorylating Rab proteins. elife. 2019;8: pubmed publisher
|
- western blot; mouse; 1:1000; loading ...; fig 4a
| Mir R, Tonelli F, Lis P, MacArtney T, Polinski N, Martinez T, et al. The Parkinson's disease VPS35[D620N] mutation enhances LRRK2-mediated Rab protein phosphorylation in mouse and human. Biochem J. 2018;475:1861-1883 pubmed publisher
|
- western blot; human; loading ...; fig 5a, 6a
| Purlyte E, Dhekne H, Sarhan A, Gomez R, Lis P, Wightman M, et al. Rab29 activation of the Parkinson's disease-associated LRRK2 kinase. EMBO J. 2018;37:1-18 pubmed publisher
|
- western blot; human; 1:1000; loading ...; fig 2b
| Fan Y, Howden A, Sarhan A, Lis P, Ito G, Martinez T, et al. Interrogating Parkinson's disease LRRK2 kinase pathway activity by assessing Rab10 phosphorylation in human neutrophils. Biochem J. 2018;475:23-44 pubmed publisher
|
- western blot; human; fig 5a
| Kim M, Deng H, Wong Y, Siddique T, Krainc D. The Parkinson's disease-linked protein TMEM230 is required for Rab8a-mediated secretory vesicle trafficking and retromer trafficking. Hum Mol Genet. 2017;26:729-741 pubmed publisher
|
- proximity ligation assay; mouse; 1:50; fig 6
- immunocytochemistry; mouse; 1:50; fig s5
| Choi I, Kim B, Byun J, Baik S, Huh Y, Kim J, et al. LRRK2 G2019S mutation attenuates microglial motility by inhibiting focal adhesion kinase. Nat Commun. 2015;6:8255 pubmed publisher
|
- western blot; human; loading ...; fig 1a,1e,1f,2a,2d,3a
| Zhao J, Molitor T, Langston J, Nichols R. LRRK2 dephosphorylation increases its ubiquitination. Biochem J. 2015;469:107-20 pubmed publisher
|
| Nam D, Kim A, Han S, Lee S, Park S, Seol W, et al. Analysis of α-synuclein levels related to LRRK2 kinase activity: from substantia nigra to urine of patients with Parkinson's disease. Anim Cells Syst (Seoul). 2021;25:28-36 pubmed publisher
|
| Whiffin N, Armean I, Kleinman A, Marshall J, Minikel E, Goodrich J, et al. The effect of LRRK2 loss-of-function variants in humans. Nat Med. 2020;26:869-877 pubmed publisher
|
| Jang J, Oh H, Nam D, Seol W, Seo M, Park S, et al. Increase in anti-apoptotic molecules, nucleolin, and heat shock protein 70, against upregulated LRRK2 kinase activity. Anim Cells Syst (Seoul). 2018;22:273-280 pubmed publisher
|
| Schwab A, Ebert A. Neurite Aggregation and Calcium Dysfunction in iPSC-Derived Sensory Neurons with Parkinson's Disease-Related LRRK2 G2019S Mutation. Stem Cell Reports. 2015;5:1039-1052 pubmed publisher
|
| Henry A, Aghamohammadzadeh S, Samaroo H, Chen Y, Mou K, Needle E, et al. Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression. Hum Mol Genet. 2015;24:6013-28 pubmed publisher
|
| Fuji R, Flagella M, Baca M, Baptista M, Brodbeck J, Chan B, et al. Effect of selective LRRK2 kinase inhibition on nonhuman primate lung. Sci Transl Med. 2015;7:273ra15 pubmed publisher
|
| Liu Z, Galemmo R, Fraser K, Moehle M, Sen S, Volpicelli Daley L, et al. Unique functional and structural properties of the LRRK2 protein ATP-binding pocket. J Biol Chem. 2014;289:32937-51 pubmed publisher
|
| Lee J, Tapias V, Di Maio R, Greenamyre J, Cannon J. Behavioral, neurochemical, and pathologic alterations in bacterial artificial chromosome transgenic G2019S leucine-rich repeated kinase 2 rats. Neurobiol Aging. 2015;36:505-18 pubmed publisher
|
| Gomez Suaga P, Rivero Ríos P, Fdez E, Blanca Ramírez M, Ferrer I, Aiastui A, et al. LRRK2 delays degradative receptor trafficking by impeding late endosomal budding through decreasing Rab7 activity. Hum Mol Genet. 2014;23:6779-96 pubmed publisher
|
| Daher J, Volpicelli Daley L, Blackburn J, Moehle M, West A. Abrogation of ?-synuclein-mediated dopaminergic neurodegeneration in LRRK2-deficient rats. Proc Natl Acad Sci U S A. 2014;111:9289-94 pubmed publisher
|
| Schapansky J, Nardozzi J, Felizia F, LaVoie M. Membrane recruitment of endogenous LRRK2 precedes its potent regulation of autophagy. Hum Mol Genet. 2014;23:4201-14 pubmed publisher
|
| West A, Cowell R, Daher J, Moehle M, Hinkle K, Melrose H, et al. Differential LRRK2 expression in the cortex, striatum, and substantia nigra in transgenic and nontransgenic rodents. J Comp Neurol. 2014;522:2465-80 pubmed publisher
|
| Dorval V, Mandemakers W, Jolivette F, Coudert L, Mazroui R, De Strooper B, et al. Gene and MicroRNA transcriptome analysis of Parkinson's related LRRK2 mouse models. PLoS ONE. 2014;9:e85510 pubmed publisher
|
| Stafa K, Tsika E, Moser R, Musso A, Glauser L, Jones A, et al. Functional interaction of Parkinson's disease-associated LRRK2 with members of the dynamin GTPase superfamily. Hum Mol Genet. 2014;23:2055-77 pubmed publisher
|
| Yao C, Johnson W, Gao Y, Wang W, Zhang J, Deak M, et al. Kinase inhibitors arrest neurodegeneration in cell and C. elegans models of LRRK2 toxicity. Hum Mol Genet. 2013;22:328-44 pubmed publisher
|
| Gomez Suaga P, Luzón Toro B, Churamani D, Zhang L, Bloor Young D, Patel S, et al. Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Hum Mol Genet. 2012;21:511-25 pubmed publisher
|