product summary
company name :
Neuromab
product type :
antibody
product name :
GABA(A)R, Alpha1
catalog :
75-136
quantity :
100 ug
price :
269 USD
clonality :
monoclonal
host :
mouse
conjugate :
nonconjugated
clone name :
N95/35
reactivity :
human, mouse, rat
application :
western blot, immunohistochemistry, immunocytochemistry, immunohistochemistry - free floating section, western blot knockout validation
more info or order :
citations: 38
Published Application/Species/Sample/DilutionReference
  • western blot; mouse; loading ...; fig 2e
Awasthi A, Ramachandran B, Ahmed S, Benito E, Shinoda Y, Nitzan N, et al. Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting. Science. 2019;363: pubmed publisher
  • western blot; mouse; loading ...; fig 2d
Martenson J, Yamasaki T, Chaudhury N, Albrecht D, Tomita S. Assembly rules for GABAA receptor complexes in the brain. elife. 2017;6: pubmed publisher
  • western blot; mouse; 1:500; fig s7e
Sterky F, Trotter J, Lee S, Recktenwald C, Du X, Zhou B, et al. Carbonic anhydrase-related protein CA10 is an evolutionarily conserved pan-neurexin ligand. Proc Natl Acad Sci U S A. 2017;114:E1253-E1262 pubmed publisher
  • western blot; mouse; 1:250
Zhou C, Ding L, Deel M, Ferrick E, Emeson R, Gallagher M. Altered intrathalamic GABAA neurotransmission in a mouse model of a human genetic absence epilepsy syndrome. Neurobiol Dis. 2015;73:407-17 pubmed publisher
  • western blot; rat; 1:1000
Almeida Suhett C, Prager E, Pidoplichko V, Figueiredo T, Marini A, Li Z, et al. Reduced GABAergic inhibition in the basolateral amygdala and the development of anxiety-like behaviors after mild traumatic brain injury. PLoS ONE. 2014;9:e102627 pubmed publisher
  • immunocytochemistry; human
  • western blot; human
Ohkawa T, Satake S, Yokoi N, Miyazaki Y, Ohshita T, Sobue G, et al. Identification and characterization of GABA(A) receptor autoantibodies in autoimmune encephalitis. J Neurosci. 2014;34:8151-63 pubmed publisher
  • immunohistochemistry - free floating section; rat; 1:5
King A, Manning C, Trimmer J. A unique ion channel clustering domain on the axon initial segment of mammalian neurons. J Comp Neurol. 2014;522:2594-608 pubmed publisher
  • immunocytochemistry; mouse; 1:100
Busse B, Smith S. Automated analysis of a diverse synapse population. PLoS Comput Biol. 2013;9:e1002976 pubmed publisher
Heise C, Preuss J, Schroeder J, Battaglia C, Kolibius J, Schmid R, et al. Heterogeneity of Cell Surface Glutamate and GABA Receptor Expression in Shank and CNTN4 Autism Mouse Models. Front Mol Neurosci. 2018;11:212 pubmed publisher
Everington E, Gibbard A, Swinny J, Seifi M. Molecular Characterization of GABA-A Receptor Subunit Diversity within Major Peripheral Organs and Their Plasticity in Response to Early Life Psychosocial Stress. Front Mol Neurosci. 2018;11:18 pubmed publisher
Hiu T, Farzampour Z, Paz J, Wang E, Badgely C, Olson A, et al. Enhanced phasic GABA inhibition during the repair phase of stroke: a novel therapeutic target. Brain. 2016;139:468-80 pubmed publisher
Dolnik A, Kanwal N, Mackert S, Halbedl S, Proepper C, Bockmann J, et al. Sipa1l3/SPAR3 is targeted to postsynaptic specializations and interacts with the Fezzin ProSAPiP1/Lzts3. J Neurochem. 2016;136:28-35 pubmed publisher
Vien T, Modgil A, Abramian A, Jurd R, Walker J, Brandon N, et al. Compromising the phosphodependent regulation of the GABAAR β3 subunit reproduces the core phenotypes of autism spectrum disorders. Proc Natl Acad Sci U S A. 2015;112:14805-10 pubmed publisher
Lin W, Tsai M, Davenport C, Smith C, Veit J, Wilson N, et al. A Comprehensive Optogenetic Pharmacology Toolkit for In Vivo Control of GABA(A) Receptors and Synaptic Inhibition. Neuron. 2015;88:879-891 pubmed publisher
Almeida Suhett C, Prager E, Pidoplichko V, Figueiredo T, Marini A, Li Z, et al. GABAergic interneuronal loss and reduced inhibitory synaptic transmission in the hippocampal CA1 region after mild traumatic brain injury. Exp Neurol. 2015;273:11-23 pubmed publisher
Arain F, Zhou C, Ding L, Zaidi S, Gallagher M. The developmental evolution of the seizure phenotype and cortical inhibition in mouse models of juvenile myoclonic epilepsy. Neurobiol Dis. 2015;82:164-175 pubmed publisher
Kang J, Shen W, Zhou C, Xu D, Macdonald R. The human epilepsy mutation GABRG2(Q390X) causes chronic subunit accumulation and neurodegeneration. Nat Neurosci. 2015;18:988-96 pubmed publisher
González M, Grabenstatter H, Cea del Rio C, Cruz Del Angel Y, Carlsen J, Laoprasert R, et al. Seizure-related regulation of GABAA receptors in spontaneously epileptic rats. Neurobiol Dis. 2015;77:246-56 pubmed publisher
Pettingill P, Kramer H, Coebergh J, Pettingill R, Maxwell S, Nibber A, et al. Antibodies to GABAA receptor α1 and γ2 subunits: clinical and serologic characterization. Neurology. 2015;84:1233-41 pubmed publisher
Centanni S, Teppen T, Risher M, Fleming R, Moss J, Acheson S, et al. Adolescent alcohol exposure alters GABAA receptor subunit expression in adult hippocampus. Alcohol Clin Exp Res. 2014;38:2800-8 pubmed publisher
Karayannis T, Au E, Patel J, Kruglikov I, Markx S, Delorme R, et al. Cntnap4 differentially contributes to GABAergic and dopaminergic synaptic transmission. Nature. 2014;511:236-40 pubmed
Mele M, Ribeiro L, Inácio A, Wieloch T, Duarte C. GABA(A) receptor dephosphorylation followed by internalization is coupled to neuronal death in in vitro ischemia. Neurobiol Dis. 2014;65:220-32 pubmed publisher
Levenga J, Krishnamurthy P, Rajamohamedsait H, Wong H, Franke T, Cain P, et al. Tau pathology induces loss of GABAergic interneurons leading to altered synaptic plasticity and behavioral impairments. Acta Neuropathol Commun. 2013;1:34 pubmed publisher
Mihalas A, Araki Y, Huganir R, Meffert M. Opposing action of nuclear factor ?B and Polo-like kinases determines a homeostatic end point for excitatory synaptic adaptation. J Neurosci. 2013;33:16490-501 pubmed publisher
Milenkovic I, Vasiljevic M, Maurer D, Hoger H, Klausberger T, Sieghart W. The parvalbumin-positive interneurons in the mouse dentate gyrus express GABAA receptor subunits ?1, ?2, and ? along their extrasynaptic cell membrane. Neuroscience. 2013;254:80-96 pubmed publisher
Chaumont S, Andre C, Perrais D, Boué Grabot E, Taly A, Garret M. Agonist-dependent endocytosis of ?-aminobutyric acid type A (GABAA) receptors revealed by a ?2(R43Q) epilepsy mutation. J Biol Chem. 2013;288:28254-65 pubmed publisher
Zhou C, Huang Z, Ding L, Deel M, Arain F, Murray C, et al. Altered cortical GABAA receptor composition, physiology, and endocytosis in a mouse model of a human genetic absence epilepsy syndrome. J Biol Chem. 2013;288:21458-72 pubmed publisher
Hanson J, Deng L, Hackos D, Lo S, Lauffer B, Steiner P, et al. Histone deacetylase 2 cell autonomously suppresses excitatory and enhances inhibitory synaptic function in CA1 pyramidal neurons. J Neurosci. 2013;33:5924-9 pubmed publisher
Gonzalez M, Cruz Del Angel Y, Brooks Kayal A. Down-regulation of gephyrin and GABAA receptor subunits during epileptogenesis in the CA1 region of hippocampus. Epilepsia. 2013;54:616-24 pubmed publisher
Henderson A, Pittman Q, Teskey G. High frequency stimulation alters motor maps, impairs skilled reaching performance and is accompanied by an upregulation of specific GABA, glutamate and NMDA receptor subunits. Neuroscience. 2012;215:98-113 pubmed publisher
Eyre M, Renzi M, Farrant M, Nusser Z. Setting the time course of inhibitory synaptic currents by mixing multiple GABA(A) receptor α subunit isoforms. J Neurosci. 2012;32:5853-67 pubmed publisher
Smith K, Muir J, Rao Y, Browarski M, Gruenig M, Sheehan D, et al. Stabilization of GABA(A) receptors at endocytic zones is mediated by an AP2 binding motif within the GABA(A) receptor ?3 subunit. J Neurosci. 2012;32:2485-98 pubmed publisher
Antflick J, Hampson D. Modulation of glutamate release from parallel fibers by mGlu4 and pre-synaptic GABA(A) receptors. J Neurochem. 2012;120:552-63 pubmed publisher
Reid A, Pittman Q, Teskey G. A prolonged experimental febrile seizure results in motor map reorganization in adulthood. Neurobiol Dis. 2012;45:692-700 pubmed publisher
Mukherjee J, Kretschmannova K, Gouzer G, Maric H, Ramsden S, Tretter V, et al. The residence time of GABA(A)Rs at inhibitory synapses is determined by direct binding of the receptor ?1 subunit to gephyrin. J Neurosci. 2011;31:14677-87 pubmed publisher
Peters C, Muñoz B, Sepulveda F, URRUTIA J, Quiroz M, Luza S, et al. Biphasic effects of copper on neurotransmission in rat hippocampal neurons. J Neurochem. 2011;119:78-88 pubmed publisher
Micheva K, Busse B, Weiler N, O Rourke N, Smith S. Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers. Neuron. 2010;68:639-53 pubmed publisher
Ding L, Feng H, Macdonald R, Botzolakis E, Hu N, Gallagher M. GABA(A) receptor alpha1 subunit mutation A322D associated with autosomal dominant juvenile myoclonic epilepsy reduces the expression and alters the composition of wild type GABA(A) receptors. J Biol Chem. 2010;285:26390-405 pubmed publisher
product information
TargetType :
Receptors
Target :
GABA(A)R, Alpha1
AccessionNum :
P14867
Clone :
N95/35
HumanGeneName :
GABRA1
DataSheetFileName :
neuromab.ucdavis.edu/datasheet/N95_35.pdf
IsoType :
IgG2a
ValidationT :
Pass
ValidationBrIB :
Pass
ValidationBrIHC :
Pass
ValidationKO :
Pass
Catalog :
75-136
more info or order :
company information
Neuromab
PO Box 1560 Davis, CA 95617-1560
http://neuromab.ucdavis.edu
headquarters: United States