Published Application/Species/Sample/Dilution | Reference |
---|
- immunohistochemistry - frozen section; mouse; 1:500; fig 8
| Alshammari M, Alshammari T, Laezza F. Improved Methods for Fluorescence Microscopy Detection of Macromolecules at the Axon Initial Segment. Front Cell Neurosci. 2016;10:5 pubmed publisher
|
- western blot; mouse; 1:1000; fig 4
| Bosch M, Nerbonne J, Townsend R, Miyazaki H, Nukina N, Ornitz D, et al. Proteomic analysis of native cerebellar iFGF14 complexes. Channels (Austin). 2016;10:297-312 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; 1:200
| Wimmer V, Harty R, Richards K, Phillips A, Miyazaki H, Nukina N, et al. Sodium channel β1 subunit localizes to axon initial segments of excitatory and inhibitory neurons and shows regional heterogeneity in mouse brain. J Comp Neurol. 2015;523:814-30 pubmed publisher
|
| Zhou L, Zhou L, Su L, Cao S, Xie Y, Wang N, et al. Celecoxib Ameliorates Seizure Susceptibility in Autosomal Dominant Lateral Temporal Epilepsy. J Neurosci. 2018;38:3346-3357 pubmed publisher
|
| Kim K, Rutherford M. Maturation of NaV and KV Channel Topographies in the Auditory Nerve Spike Initiator before and after Developmental Onset of Hearing Function. J Neurosci. 2016;36:2111-8 pubmed publisher
|
| Freeman S, Desmazières A, Simonnet J, Gatta M, Pfeiffer F, Aigrot M, et al. Acceleration of conduction velocity linked to clustering of nodal components precedes myelination. Proc Natl Acad Sci U S A. 2015;112:E321-8 pubmed publisher
|
| Tian C, Wang K, Ke W, Guo H, Shu Y. Molecular identity of axonal sodium channels in human cortical pyramidal cells. Front Cell Neurosci. 2014;8:297 pubmed publisher
|
| Li T, Tian C, Scalmani P, Frassoni C, Mantegazza M, Wang Y, et al. Action potential initiation in neocortical inhibitory interneurons. PLoS Biol. 2014;12:e1001944 pubmed publisher
|
| Puthussery T, Venkataramani S, Gayet Primo J, Smith R, Taylor W. NaV1.1 channels in axon initial segments of bipolar cells augment input to magnocellular visual pathways in the primate retina. J Neurosci. 2013;33:16045-59 pubmed publisher
|
| Vega A, Avila G, Matthews G. Interaction between the transcriptional corepressor Sin3B and voltage-gated sodium channels modulates functional channel expression. Sci Rep. 2013;3:2809 pubmed publisher
|
| Xiao M, Bosch M, Nerbonne J, Ornitz D. FGF14 localization and organization of the axon initial segment. Mol Cell Neurosci. 2013;56:393-403 pubmed publisher
|
| Papale L, Makinson C, Christopher Ehlen J, Tufik S, Decker M, Paul K, et al. Altered sleep regulation in a mouse model of SCN1A-derived genetic epilepsy with febrile seizures plus (GEFS+). Epilepsia. 2013;54:625-34 pubmed publisher
|
| Kaphzan H, Buffington S, Jung J, Rasband M, Klann E. Alterations in intrinsic membrane properties and the axon initial segment in a mouse model of Angelman syndrome. J Neurosci. 2011;31:17637-48 pubmed publisher
|
| Wu C, Ivanova E, Cui J, Lu Q, Pan Z. Action potential generation at an axon initial segment-like process in the axonless retinal AII amacrine cell. J Neurosci. 2011;31:14654-9 pubmed publisher
|
| Lysakowski A, Gaboyard Niay S, Calin Jageman I, Chatlani S, Price S, Eatock R. Molecular microdomains in a sensory terminal, the vestibular calyx ending. J Neurosci. 2011;31:10101-14 pubmed publisher
|
| Wykes R, Kalmbach A, Eliava M, Waters J. Changes in the physiology of CA1 hippocampal pyramidal neurons in preplaque CRND8 mice. Neurobiol Aging. 2012;33:1609-23 pubmed publisher
|
| Ahn H, Black J, Zhao P, Tyrrell L, Waxman S, Dib Hajj S. Nav1.7 is the predominant sodium channel in rodent olfactory sensory neurons. Mol Pain. 2011;7:32 pubmed publisher
|
| Kim D, Gersbacher M, Inquimbert P, Kovacs D. Reduced sodium channel Na(v)1.1 levels in BACE1-null mice. J Biol Chem. 2011;286:8106-16 pubmed publisher
|
| Persson A, Black J, Gasser A, Cheng X, Fischer T, Waxman S. Sodium-calcium exchanger and multiple sodium channel isoforms in intra-epidermal nerve terminals. Mol Pain. 2010;6:84 pubmed publisher
|
| Wimmer V, Reid C, Mitchell S, Richards K, Scaf B, Leaw B, et al. Axon initial segment dysfunction in a mouse model of genetic epilepsy with febrile seizures plus. J Clin Invest. 2010;120:2661-71 pubmed publisher
|
| Lorincz A, Nusser Z. Molecular identity of dendritic voltage-gated sodium channels. Science. 2010;328:906-9 pubmed publisher
|
| Wimmer V, Reid C, So E, Berkovic S, Petrou S. Axon initial segment dysfunction in epilepsy. J Physiol. 2010;588:1829-40 pubmed publisher
|
| Black J, Newcombe J, Waxman S. Astrocytes within multiple sclerosis lesions upregulate sodium channel Nav1.5. Brain. 2010;133:835-46 pubmed publisher
|
| Brackenbury W, Calhoun J, Chen C, Miyazaki H, Nukina N, Oyama F, et al. Functional reciprocity between Na+ channel Nav1.6 and beta1 subunits in the coordinated regulation of excitability and neurite outgrowth. Proc Natl Acad Sci U S A. 2010;107:2283-8 pubmed publisher
|
| von Reyn C, Spaethling J, Mesfin M, Ma M, Neumar R, Smith D, et al. Calpain mediates proteolysis of the voltage-gated sodium channel alpha-subunit. J Neurosci. 2009;29:10350-6 pubmed publisher
|
| Tobin A, Joseph B, Al Kindi H, Albarwani S, Madden J, Nemetz L, et al. Loss of cerebrovascular Shaker-type K(+) channels: a shared vasodilator defect of genetic and renal hypertensive rats. Am J Physiol Heart Circ Physiol. 2009;297:H293-303 pubmed publisher
|
| Lorincz A, Nusser Z. Cell-type-dependent molecular composition of the axon initial segment. J Neurosci. 2008;28:14329-40 pubmed publisher
|
| O Malley H, Shreiner A, Chen G, Huffnagle G, Isom L. Loss of Na+ channel beta2 subunits is neuroprotective in a mouse model of multiple sclerosis. Mol Cell Neurosci. 2009;40:143-55 pubmed publisher
|
| Mojumder D, Wensel T, Frishman L. Subcellular compartmentalization of two calcium binding proteins, calretinin and calbindin-28 kDa, in ganglion and amacrine cells of the rat retina. Mol Vis. 2008;14:1600-13 pubmed
|
| Duflocq A, Le Bras B, Bullier E, Couraud F, Davenne M. Nav1.1 is predominantly expressed in nodes of Ranvier and axon initial segments. Mol Cell Neurosci. 2008;39:180-92 pubmed publisher
|
| Vega A, Henry D, Matthews G. Reduced expression of Na(v)1.6 sodium channels and compensation by Na(v)1.2 channels in mice heterozygous for a null mutation in Scn8a. Neurosci Lett. 2008;442:69-73 pubmed publisher
|
| Zhao P, Barr T, Hou Q, Dib Hajj S, Black J, Albrecht P, et al. Voltage-gated sodium channel expression in rat and human epidermal keratinocytes: evidence for a role in pain. Pain. 2008;139:90-105 pubmed publisher
|
| Mojumder D, Frishman L, Otteson D, Sherry D. Voltage-gated sodium channel alpha-subunits Na(v)1.1, Na(v)1.2, and Na(v)1.6 in the distal mammalian retina. Mol Vis. 2007;13:2163-82 pubmed
|
| Lopez Santiago L, Meadows L, Ernst S, Chen C, Malhotra J, McEwen D, et al. Sodium channel Scn1b null mice exhibit prolonged QT and RR intervals. J Mol Cell Cardiol. 2007;43:636-47 pubmed
|
| Van Wart A, Trimmer J, Matthews G. Polarized distribution of ion channels within microdomains of the axon initial segment. J Comp Neurol. 2007;500:339-52 pubmed
|