Published Application/Species/Sample/Dilution | Reference |
---|
- western blot knockout validation; rat; fig 5
- western blot knockout validation; mouse; fig s2
- western blot; human; fig 1
| Davies P, Hinkle K, Sukar N, Sepulveda B, Mesias R, Serrano G, et al. Comprehensive characterization and optimization of anti-LRRK2 (leucine-rich repeat kinase 2) monoclonal antibodies. Biochem J. 2013;453:101-13 pubmed publisher
|
- immunoprecipitation; mouse; 1:1000; fig 1
- western blot; mouse; 1:1000; fig 1
- immunoprecipitation; human; 1:1000; fig 1
- western blot; human; 1:1000; fig 1
| Nucifora F, Nucifora L, Ng C, Arbez N, Guo Y, Roby E, et al. Ubiqutination via K27 and K29 chains signals aggregation and neuronal protection of LRRK2 by WSB1. Nat Commun. 2016;7:11792 pubmed publisher
|
| Berwick D, Javaheri B, Wetzel A, Hopkinson M, Nixon Abell J, Grannò S, et al. Pathogenic LRRK2 variants are gain-of-function mutations that enhance LRRK2-mediated repression of β-catenin signaling. Mol Neurodegener. 2017;12:9 pubmed publisher
|
| Cho H, Yu J, Xie C, Rudrabhatla P, Chen X, Wu J, et al. Leucine-rich repeat kinase 2 regulates Sec16A at ER exit sites to allow ER-Golgi export. EMBO J. 2014;33:2314-31 pubmed publisher
|
| Reyniers L, Del Giudice M, Civiero L, Belluzzi E, Lobbestael E, Beilina A, et al. Differential protein-protein interactions of LRRK1 and LRRK2 indicate roles in distinct cellular signaling pathways. J Neurochem. 2014;131:239-50 pubmed publisher
|
| Vancraenenbroeck R, De Raeymaecker J, Lobbestael E, Gao F, De Maeyer M, Voet A, et al. In silico, in vitro and cellular analysis with a kinome-wide inhibitor panel correlates cellular LRRK2 dephosphorylation to inhibitor activity on LRRK2. Front Mol Neurosci. 2014;7:51 pubmed publisher
|
| Martin I, Kim J, Lee B, Kang H, Xu J, Jia H, et al. Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson's disease. Cell. 2014;157:472-485 pubmed publisher
|
| Parisiadou L, Yu J, Sgobio C, Xie C, Liu G, Sun L, et al. LRRK2 regulates synaptogenesis and dopamine receptor activation through modulation of PKA activity. Nat Neurosci. 2014;17:367-76 pubmed publisher
|
| Manzoni C, Mamais A, Dihanich S, Abeti R, Soutar M, Plun Favreau H, et al. Inhibition of LRRK2 kinase activity stimulates macroautophagy. Biochim Biophys Acta. 2013;1833:2900-2910 pubmed publisher
|
| Cho H, Liu G, Jin S, Parisiadou L, Xie C, Yu J, et al. MicroRNA-205 regulates the expression of Parkinson's disease-related leucine-rich repeat kinase 2 protein. Hum Mol Genet. 2013;22:608-20 pubmed publisher
|
| Berwick D, Harvey K. LRRK2 functions as a Wnt signaling scaffold, bridging cytosolic proteins and membrane-localized LRP6. Hum Mol Genet. 2012;21:4966-79 pubmed publisher
|
| Xiong Y, Yuan C, Chen R, Dawson T, Dawson V. ArfGAP1 is a GTPase activating protein for LRRK2: reciprocal regulation of ArfGAP1 by LRRK2. J Neurosci. 2012;32:3877-86 pubmed publisher
|
| Gomez Suaga P, Luzón Toro B, Churamani D, Zhang L, Bloor Young D, Patel S, et al. Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Hum Mol Genet. 2012;21:511-25 pubmed publisher
|
| Doggett E, Zhao J, Mork C, Hu D, Nichols R. Phosphorylation of LRRK2 serines 955 and 973 is disrupted by Parkinson's disease mutations and LRRK2 pharmacological inhibition. J Neurochem. 2012;120:37-45 pubmed publisher
|
| Andres Mateos E, Mejias R, Sasaki M, Li X, Lin B, Biskup S, et al. Unexpected lack of hypersensitivity in LRRK2 knock-out mice to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). J Neurosci. 2009;29:15846-50 pubmed publisher
|