product summary
Loading...
company name :
MyBioSource
product type :
ELISA/assay
product name :
Human NAD-dependent deacetylase sirtuin-1, SIRT1/SIR2L1 ELISA Kit
catalog :
MBS705558
quantity :
48-Strip-Wells
price :
510 USD
more info or order :
product information
catalog number :
MBS705558
products type :
ELISA Kit
products full name :
Human NAD-dependent deacetylase sirtuin-1, SIRT1/SIR2L1 ELISA Kit
products short name :
sirtuin (silent mating type information regulation 2 homolog) 1 (S. cerevisiae)
products name syn :
Human NAD-dependent deacetylase sirtuin-1 (SIRT1/SIR2L1) ELISA kit; RP11-57G10.3; SIR2L1; SIR2alpha; sir2-like 1; sirtuin 1; sirtuin type 1; sirtuin (silent mating type information regulation 2 homolog) 1 (S. cerevisiae)
other names :
NAD-dependent protein deacetylase sirtuin-1 isoform b; NAD-dependent protein deacetylase sirtuin-1; NAD-dependent protein deacetylase sirtuin-1; hSIR2; hSIRT1; SIR2alpha; sir2-like 1; sirtuin type 1; SIR2-like protein 1; regulatory protein SIR2 homolog 1; NAD-dependent deacetylase sirtuin-1; sirtuin 1; Regulatory protein SIR2 homolog 1; SIR2-like protein 1; hSIR2
products gene name :
SIRT1
other gene names :
SIRT1; SIRT1; SIR2L1; SIR2L1; hSIRT1; hSIR2; 75SirT1
uniprot entry name :
SIR1_HUMAN
reactivity :
Human
sequence length :
452
specificity :
This assay has high sensitivity and excellent specificity for detection of human SIRT1/SIR2L1. No significant cross-reactivity or interference between human SIRT1/SIR2L1 and analogues was observed.
storage stability :
Unopened test kits should be stored at 2 to 8 degree C upon receipt. Please refer to pdf manual for further storage instructions.
other info1 :
Samples: Serum, plasma, cell culture supernates, tissue homogenates. Assay Type: Sandwich. Detection Range: 0.156 ng/ml -10 ng/ml. Sensitivity: 0.039 ng/ml.
other info2 :
Intra-assay Precision: Intra-assay Precision (Precision within an assay): CV%<8%. Three samples of known concentration were tested twenty times on one plate to assess. Inter-assay Precision: Inter-assay Precision (Precision between assays): CV%<10%. Three samples of known concentration were tested in twenty assays to assess.
products description :
Principle of the Assay This assay employs the quantitative sandwich enzyme immunoassay technique. Antibody specific for SIRT1/SIR2L1 has been pre-coated onto a microplate. Standards and samples are pipetted into the wells and any SIRT1/SIR2L1 present is bound by the immobilized antibody. After removing any unbound substances, a biotin-conjugated antibody specific for SIRT1/SIR2L1 is added to the wells. After washing, avidin conjugated Horseradish Peroxidase (HRP) is added to the wells. Following a wash to remove any unbound avidin-enzyme reagent, a substrate solution is added to the wells and color develops in proportion to the amount of SIRT1/SIR2L1 bound in the initial step. The color development is stopped and the intensity of the color is measured.
ncbi gi num :
215982798
ncbi acc num :
NP_001135970.1
ncbi gb acc num :
NM_001142498.1
uniprot acc num :
Q96EB6
ncbi mol weight :
81,681 Da
ncbi pathways :
AMPK Signaling Pathway (989139); AMPK Signaling Pathway (992181); Amphetamine Addiction Pathway (547607); Amphetamine Addiction Pathway (550546); Androgen Receptor Signaling Pathway (198806); Cellular Response To Heat Stress Pathway (980470); Cellular Responses To Stress Pathway (645258); E2F Transcription Factor Network Pathway (137934); Energy Metabolism Pathway (198907); Epigenetic Regulation Of Gene Expression Pathway (980449)
ncbi summary :
This gene encodes a member of the sirtuin family of proteins, homologs to the yeast Sir2 protein. Members of the sirtuin family are characterized by a sirtuin core domain and grouped into four classes. The functions of human sirtuins have not yet been determined; however, yeast sirtuin proteins are known to regulate epigenetic gene silencing and suppress recombination of rDNA. Studies suggest that the human sirtuins may function as intracellular regulatory proteins with mono-ADP-ribosyltransferase activity. The protein encoded by this gene is included in class I of the sirtuin family. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2008]
uniprot summary :
Function: NAD-dependent protein deacetylase that links transcriptional regulation directly to intracellular energetics and participates in the coordination of several separated cellular functions such as cell cycle, response to DNA damage, metobolism, apoptosis and autophagy. Can modulate chromatin function through deacetylation of histones and can promote alterations in the methylation of histones and DNA, leading to transcriptional repression. Deacetylates a broad range of transcription factors and coregulators, thereby regulating target gene expression positively and negatively. Serves as a sensor of the cytosolic ratio of NAD+/NADH which is altered by glucose deprivation and metabolic changes associated with caloric restriction. Is essential in skeletal muscle cell differentiation and in response to low nutrients mediates the inhibitory effect on skeletal myoblast differentiation which also involves 5'-AMP-activated protein kinase (AMPK) and nicotinamide phosphoribosyltransferase (NAMPT). Component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes. The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD+/NADP+ ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus. Deacetylates 'Lys-266' of SUV39H1, leading to its activation. Inhibits skeletal muscle differentiation by deacetylating PCAF and MYOD1. Deacetylates H2A and 'Lys-26' of HIST1H1E. Deacetylates 'Lys-16' of histone H4 (in vitro). Involved in NR0B2/SHP corepression function through chromatin remodeling: Recruited to LRH1 target gene promoters by NR0B2/SHP thereby stimulating histone H3 and H4 deacetylation leading to transcriptional repression. Proposed to contribute to genomic integrity via positive regulation of telomere length; however, reports on localization to pericentromeric heterochromatin are conflicting. Proposed to play a role in constitutive heterochromatin (CH) formation and/or maintenance through regulation of the available pool of nuclear SUV39H1. Upon oxidative/metabolic stress decreases SUV39H1 degradation by inhibiting SUV39H1 polyubiquitination by MDM2. This increase in SUV39H1 levels enhances SUV39H1 turnover in CH, which in turn seems to accelerate renewal of the heterochromatin which correlates with greater genomic integrity during stress response. Deacetylates 'Lys-382' of p53/TP53 and impairs its ability to induce transcription-dependent proapoptotic program and modulate cell senescence. Deacetylates TAF1B and thereby represses rDNA transcription by the RNA polymerase I. Deacetylates MYC, promotes the association of MYC with MAX and decreases MYC stability leading to compromised transformational capability. Deacetylates FOXO3 in response to oxidative stress thereby increasing its ability to induce cell cycle arrest and resistance to oxidative stress but inhibiting FOXO3-mediated induction of apoptosis transcriptional activity; also leading to FOXO3 ubiquitination and protesomal degradation. Appears to have a similar effect on MLLT7/FOXO4 in regulation of transcriptional activity and apoptosis. Deacetylates DNMT1; thereby impairs DNMT1 methyltransferase-independent transcription repressor activity, modulates DNMT1 cell cycle regulatory function and DNMT1-mediated gene silencing. Deacetylates RELA/NF-kappa-B p65 thereby inhibiting its transactivating potential and augments apoptosis in response to TNF-alpha. Deacetylates HIF1A, KAT5/TIP60, RB1 and HIC1. Deacetylates FOXO1 resulting in its nuclear retention and enhancement of its transcriptional activity leading to increased gluconeogenesis in liver. Inhibits E2F1 transcriptional activity and apoptotic function, possibly by deacetylation. Involved in HES1- and HEY2-mediated transcriptional repression. In cooperation with MYCN seems to be involved in transcriptional repression of DUSP6/MAPK3 leading to MYCN stabilization by phosphorylation at 'Ser-62'. Deacetylates MEF2D. Required for antagonist-mediated transcription suppression of AR-dependent genes which may be linked to local deacetylation of histone H3. Represses HNF1A-mediated transcription. Required for the repression of ESRRG by CREBZF. Modulates AP-1 transcription factor activity. Deacetylates NR1H3 AND NR1H2 and deacetylation of NR1H3 at 'Lys-434' positively regulates transcription of NR1H3:RXR target genes, promotes NR1H3 proteosomal degradation and results in cholesterol efflux; a promoter clearing mechanism after reach round of transcription is proposed. Involved in lipid metabolism. Implicated in regulation of adipogenesis and fat mobilization in white adipocytes by repression of PPARG which probably involves association with NCOR1 and SMRT/NCOR2. Deacetylates ACSS2 leading to its activation, and HMGCS1. Involved in liver and muscle metabolism. Through deacteylation and activation of PPARGC1A is required to activate fatty acid oxidation in skeletel muscle under low-glucose conditions and is involved in glucose homeostasis. Involved in regulation of PPARA and fatty acid beta-oxidation in liver. Involved in positive regulation of insulin secretion in pancreatic beta cells in response to glucose; the function seems to imply transcriptional repression of UCP2. Proposed to deacetylate IRS2 thereby facilitating its insulin-induced tyrosine phosphorylation. Deacetylates SREBF1 isoform SREBP-1C thereby decreasing its stability and transactivation in lipogenic gene expression. Involved in DNA damage response by repressing genes which are involved in DNA repair, such as XPC and TP73, deacetylating XRCC6/Ku70, and faciliting recruitment of additional factors to sites of damaged DNA, such as SIRT1-deacetylated NBN can recruit ATM to initiate DNA repair and SIRT1-deacetylated XPA interacts with RPA2. Also involved in DNA repair of DNA double-strand breaks by homologous recombination and specifically single-strand annealing independently of XRCC6/Ku70 and NBN. Transcriptional suppression of XPC probably involves an E2F4:RBL2 suppressor complex and protein kinase B (AKT) signaling. Transcriptional suppression of TP73 probably involves E2F4 and PCAF. Deacetylates WRN thereby regulating its helicase and exonuclease activities and regulates WRN nuclear translocation in response to DNA damage. Deacetylates APEX1 at 'Lys-6' and 'Lys-7' and stimulates cellular AP endonuclease activity by promoting the association of APEX1 to XRCC1. Increases p53/TP53-mediated transcription-independent apoptosis by blocking nuclear translocation of cytoplasmic p53/TP53 and probably redirecting it to mitochondria. Deacetylates XRCC6/Ku70 at 'Lys-539' and 'Lys-542' causing it to sequester BAX away from mitochondria thereby inhibiting stress-induced apoptosis. Is involved in autophagy, presumably by deacetylating ATG5, ATG7 and MAP1LC3B/ATG8. Deacetylates AKT1 which leads to enhanced binding of AKT1 and PDK1 to PIP3 and promotes their activation. Proposed to play role in regulation of STK11/LBK1-dependent AMPK signaling pathways implicated in cellular senescence which seems to involve the regulation of the acetylation status of STK11/LBK1. Can deacetylate STK11/LBK1 and thereby increase its activity, cytoplasmic localization and association with STRAD; however, the relevance of such activity in normal cells is unclear. In endothelial cells is shown to inhibit STK11/LBK1 activity and to promote its degradation. Deacetylates SMAD7 at 'Lys-64' and 'Lys-70' thereby promoting its degradation. Deacetylates CIITA and augments its MHC class II transactivation and contributes to its stability. Deacteylates MECOM/EVI1. Isoform 2 is shown to deacetylate 'Lys-382' of p53/TP53, however with lower activity than isoform 1. In combination, the two isoforms exert an additive effect. Isoform 2 regulates p53/TP53 expression and cellular stress response and is in turn repressed by p53/TP53 presenting a SIRT1 isoform-dependent auto-regulatory loop. In case of HIV-1 infection, interacts with and deacetylates the viral Tat protein. The viral Tat protein inhibits SIRT1 deacetylation activity toward RELA/NF-kappa-B p65, thereby potentiates its transcriptional activity and SIRT1 is proposed to contribute to T-cell hyperactivation during infection. Deacetylates PML at 'Lys-487' and this deacetylation promotes PML control of PER2 nuclear localization. During the neurogenic transition, repress selective NOTCH1-target genes through histone deacetylation in a BCL6-dependent manner and leading to neuronal differentiation.50 PublicationsManual assertion based on experiment in:Ref.6. Catalytic activity: NAD+ + an acetylprotein = nicotinamide + O-acetyl-ADP-ribose + a protein.1 PublicationManual assertion based on experiment in:Ref.7. Cofactor: Binds 1 zinc ion per subunit . Enzyme regulation: Inhibited by nicotinamide. Activated by resveratrol (3,5,4'-trihydroxy-trans-stilbene), butein (3,4,2',4'-tetrahydroxychalcone), piceatannol (3,5,3',4'-tetrahydroxy-trans-stilbene), Isoliquiritigenin (4,2',4'-trihydroxychalcone), fisetin (3,7,3',4'-tetrahydroxyflavone) and quercetin (3,5,7,3',4'-pentahydroxyflavone). MAPK8/JNK1 and RPS19BP1/AROS act as positive regulators of deacetylation activity. Negatively regulated by CCAR2.4 PublicationsManual assertion based on experiment in:Ref.8
size1 :
48-Strip-Wells
price1 :
510 USD
size2 :
96-Strip-Wells
price2 :
725
size3 :
5x96-Strip-Wells
price3 :
2565
size4 :
10x96-Strip-Wells
price4 :
4800
more info or order :
company information
MyBioSource
P.O. Box 153308
San Diego, CA 92195-3308
sales@mybiosource.com
https://www.mybiosource.com
1-888-627-0165
headquarters: USA
MyBioSource, LLC was orginally founded in Vancouver by three enthusiastic scientists who are passionate about providing the world with the best reagents available. Together, they form a company with a big vision known as MyBioSource. MyBioSource is now located in San Diego, California, USA.

"MyBioSource's number 1 vision is to be the world's number 1 quality reagents provider."

Our goal is to provide researchers, scientists and customers alike with a one-stop-shop for all of their reagents needs, whether it is monoclonal antibody, polyclonal antibody, recombinant protein, peptide, etc...

"MyBioSource offers the best products at unbeatable prices."

Please spend a few minutes to browse our online catalogs and see the wide range of products available. We ship our products through our shipping/distribution facility in San Diego, California, USA.

Would you like to receive email and e-newsletter from MyBioSource about new products, special offers and events? Please click here to join our Mailing List!