product summary
Loading...
company name :
MyBioSource
product type :
other
product name :
HIF-1-Alpha isoform 1 Antibody Western Blot Positive Control
catalog :
MBS542841
quantity :
5 Applications
price :
290 USD
more info or order :
product information
catalog number :
MBS542841
products type :
Positive Control
products full name :
HIF-1-Alpha isoform 1 Antibody Western Blot Positive Control
products short name :
[HIF-1-Alpha isoform 1]
products name syn :
[ARNT interacting protein; Basic-helix-loop-helix-PAS protein MOP1; bHLHe78; Class E basic helix-loop-helix protein 78; HIF 1A; HIF 1alpha; Hypoxia inducible factor 1 alpha; Member of PAS protein 1; Member of PAS superfamily 1; MOP1; PAS domain-containing protein 8; PASD8 antibody]
other names :
[hypoxia-inducible factor 1-alpha isoform 1; Hypoxia-inducible factor 1-alpha; hypoxia-inducible factor 1-alpha; hypoxia inducible factor 1 alpha subunit; ARNT-interacting protein; Basic-helix-loop-helix-PAS protein MOP1; Class E basic helix-loop-helix protein 78; bHLHe78; Member of PAS protein 1; PAS domain-containing protein 8]
other gene names :
[HIF1A; HIF1A; HIF1; MOP1; PASD8; HIF-1A; bHLHe78; HIF-1alpha; HIF1-ALPHA; HIF-1-alpha; BHLHE78; MOP1; PASD8; HIF-1-alpha; HIF1-alpha; bHLHe78]
uniprot entry name :
HIF1A_HUMAN
sequence length :
826
form :
Western Blot Positive Control
storage stability :
-20°C for long term storage
tested application :
Western Blot (WB)
app notes :
Western Blot: 1:500
products description :
Western Blot Positive Control Hypoxia-inducible factor 1-alpha isoform 1 Antibody. Functions as a master transcriptional regulator of the adaptive response to hypoxia.
ncbi gi num :
4504385
ncbi acc num :
NP_001521.1
ncbi gb acc num :
NM_001530.3
uniprot acc num :
Q16665
ncbi pathways :
AGE/RAGE Pathway (698754); Adipogenesis Pathway (198832); Angiogenesis Pathway (198772); BMAL1:CLOCK,NPAS2 Activates Circadian Gene Expression Pathway (1269872); Cellular Response To Hypoxia Pathway (1270415); Cellular Responses To Stress Pathway (1270414); Central Carbon Metabolism In Cancer Pathway (1059538); Central Carbon Metabolism In Cancer Pathway (1084231); Choline Metabolism In Cancer Pathway (1059539); Choline Metabolism In Cancer Pathway (1084232)
ncbi summary :
This gene encodes the alpha subunit of transcription factor hypoxia-inducible factor-1 (HIF-1), which is a heterodimer composed of an alpha and a beta subunit. HIF-1 functions as a master regulator of cellular and systemic homeostatic response to hypoxia by activating transcription of many genes, including those involved in energy metabolism, angiogenesis, apoptosis, and other genes whose protein products increase oxygen delivery or facilitate metabolic adaptation to hypoxia. HIF-1 thus plays an essential role in embryonic vascularization, tumor angiogenesis and pathophysiology of ischemic disease. Alternatively spliced transcript variants encoding different isoforms have been identified for this gene. [provided by RefSeq, Jul 2011]
uniprot summary :
HIF1A: a master transcriptional regulator of the adaptive response to hypoxia. Under hypoxic conditions, activates the transcription of over 40 genes, including erythropoietin, glucose transporters, glycolytic enzymes, vascular endothelial growth factor, HILPDA, and other genes whose protein products increase oxygen delivery or facilitate metabolic adaptation to hypoxia. Plays an essential role in embryonic vascularization, tumor angiogenesis and pathophysiology of ischemic disease. Binds to core DNA sequence 5'-[AG]CGTG-3' within the hypoxia response element (HRE) of target gene promoters. Activation requires recruitment of transcriptional coactivators such as CREBPB and EP300. Activity is enhanced by interaction with both, NCOA1 or NCOA2. Interaction with redox regulatory protein APEX seems to activate CTAD and potentiates activation by NCOA1 and CREBBP. Involved in the axonal distribution and transport of mitochondria in neurons during hypoxia. Interacts with the HIF1A beta/ARNT subunit; heterodimerization is required for DNA binding. Interacts with COPS5; the interaction increases the transcriptional activity of HIF1A through increased stability. Interacts with EP300 (via TAZ-type 1 domains); the interaction is stimulated in response to hypoxia and inhibited by CITED2. Interacts with CREBBP (via TAZ-type 1 domains). Interacts with NCOA1, NCOA2, APEX and HSP90. Interacts (hydroxylated within the ODD domain) with VHLL (via beta domain); the interaction, leads to polyubiquitination and subsequent HIF1A proteasomal degradation. During hypoxia, sumoylated HIF1A also binds VHL; the interaction promotes the ubiquitination of HIF1A. Interacts with SENP1; the interaction desumoylates HIF1A resulting in stabilization and activation of transcription. Interacts (Via the ODD domain) with ARD1A; the interaction appears not to acetylate HIF1A nor have any affect on protein stability, during hypoxia. Interacts with RWDD3; the interaction enhances HIF1A sumoylation. Interacts with TSGA10. Interacts with RORA (via the DNA binding domain); the interaction enhances HIF1A transcription under hypoxia through increasing protein stability. Interaction with PSMA7 inhibits the transactivation activity of HIF1A under both normoxic and hypoxia- mimicking conditions. Interacts with USP20. Interacts with RACK1; promotes HIF1A ubiquitination and proteasome- mediated degradation. Interacts (via N-terminus) with USP19. Under reduced oxygen tension. Induced also by various receptor-mediated factors such as growth factors, cytokines, and circulatory factors such as PDGF, EGF, FGF2, IGF2, TGFB1, HGF, TNF, IL1B, angiotensin-2 and thrombin. However, this induction is less intense than that stimulated by hypoxia. Repressed by HIPK2 and LIMD1. Expressed in most tissues with highest levels in kidney and heart. Overexpressed in the majority of common human cancers and their metastases, due to the presence of intratumoral hypoxia and as a result of mutations in genes encoding oncoproteins and tumor suppressors. 2 isoforms of the human protein are produced by alternative splicing. Protein type: Autophagy; DNA-binding; Transcription factor. Chromosomal Location of Human Ortholog: 14q23.2. Cellular Component: cytoplasm; cytosol; nuclear speck; nucleoplasm; nucleus; transcription factor complex. Molecular Function: enzyme binding; histone acetyltransferase binding; histone deacetylase binding; Hsp90 protein binding; nuclear hormone receptor binding; protein binding; protein complex binding; protein heterodimerization activity; protein kinase binding; RNA polymerase II transcription factor activity, enhancer binding; sequence-specific DNA binding; transcription factor activity; transcription factor binding; ubiquitin protein ligase binding. Biological Process: acute-phase response; angiogenesis; axon transport of mitochondrion; B-1 B cell homeostasis; cartilage development; cellular iron ion homeostasis; cellular response to insulin stimulus; cerebral cortex development; collagen metabolic process; connective tissue replacement during inflammatory response; digestive tract morphogenesis; elastin metabolic process; embryonic hemopoiesis; embryonic placenta development; epithelial to mesenchymal transition; heart looping; hemoglobin biosynthetic process; lactate metabolic process; lactation; maternal process involved in pregnancy; mRNA transcription from RNA polymerase II promoter; muscle maintenance; negative regulation of bone mineralization; negative regulation of growth; negative regulation of TOR signaling pathway; negative regulation of transcription from RNA polymerase II promoter; negative regulation of vasoconstriction; neural crest cell migration; neural fold elevation formation; oxygen homeostasis; positive regulation of angiogenesis; positive regulation of apoptosis; positive regulation of cell size; positive regulation of chemokine production; positive regulation of endothelial cell proliferation; positive regulation of erythrocyte differentiation; positive regulation of glycolysis; positive regulation of hormone biosynthetic process; positive regulation of neuroblast proliferation; positive regulation of nitric-oxide synthase activity; positive regulation of smooth muscle cell proliferation; positive regulation of transcription from RNA polymerase II promoter; positive regulation of transcription, DNA-dependent; positive regulation of vascular endothelial growth factor receptor signaling pathway; regulation of gene expression; regulation of transcription from RNA polymerase II promoter in response to oxidative stress; regulation of transcription, DNA-dependent; regulation of transforming growth factor-beta2 production; response to alkaloid; response to estradiol stimulus; response to glucocorticoid stimulus; response to hypoxia; response to muscle activity; response to purine; response to salt stress; response to X-ray; signal transduction; transcription from RNA polymerase II promoter; visual learning
size1 :
5 Applications
price1 :
290 USD
more info or order :
company information
MyBioSource
P.O. Box 153308
San Diego, CA 92195-3308
sales@mybiosource.com
https://www.mybiosource.com
1-888-627-0165
headquarters: USA
MyBioSource, LLC was orginally founded in Vancouver by three enthusiastic scientists who are passionate about providing the world with the best reagents available. Together, they form a company with a big vision known as MyBioSource. MyBioSource is now located in San Diego, California, USA.

"MyBioSource's number 1 vision is to be the world's number 1 quality reagents provider."

Our goal is to provide researchers, scientists and customers alike with a one-stop-shop for all of their reagents needs, whether it is monoclonal antibody, polyclonal antibody, recombinant protein, peptide, etc...

"MyBioSource offers the best products at unbeatable prices."

Please spend a few minutes to browse our online catalogs and see the wide range of products available. We ship our products through our shipping/distribution facility in San Diego, California, USA.

Would you like to receive email and e-newsletter from MyBioSource about new products, special offers and events? Please click here to join our Mailing List!