catalog number :
MBS2533384
products type :
ELISA Kit
products full name :
Human CRY2 (Cryptochrome 2) ELISA Kit
products short name :
[Cryptochrome 2]
other names :
[cryptochrome 2; Cryptochrome-2; cryptochrome 2; Blue light photoreceptor]
products gene name :
[CRY2]
other gene names :
[CRY2; CRY2; AT-PHH1; ATCRY2; CRY2; cryptochrome 2; CRYPTOCHROME 2 APOPROTEIN; F19P19.14; F19P19_14; FHA; PHH1; PHH1]
uniprot entry name :
CRY2_ARATH
specificity :
This kit recognizes natural and recombinantHumanCRY2. No significant cross-reactivity or interference between HumanCRY2 and analogues was observed.
storage stability :
Store at 4 degree C.
image1 heading :
Typical Testing Data/Standard Curve (for reference only)
other info1 :
Samples: Serum, Plasma, Biological Fluids. Assay Type: Sandwich. Detection Range: 78.125-5000pg/mL. Sensitivity: Min: 46.875pg/mL; Max: 5000pg/mL
products description :
Intended Uses: This ELISA kit applies to the invitro quantitative determination of HumanCRY2concentrations in serum, plasma and other biological fluids. Principle of the Assay: This ELISA kit uses Sandwich-ELISA as the method. The micro ELISA plate provided in this kit has been pre-coated with an antibody specific to CRY2. Standards or samples are added to the appropriate micro ELISA plate wells and combined with the specific antibody. Then a biotinylated detection antibody specific for CRY2and Avidin-Horseradish Peroxidase (HRP) conjugate is added to each micro plate well successively and incubated. Free components are washed away. The substrate solution is added to each well. Only those wells that contain CRY2, biotinylated detection antibody and Avidin-HRP conjugate will appear blue in color. The enzyme-substrate reaction is terminated by the addition of a sulphuric acid solution and the color turns yellow. The optical density (OD) is measured spectrophotometrically at a wavelength of 450 nm +/- 2 nm. The OD value is proportional to the concentration of CRY2.You can calculate the concentration of CRY2in the samples by comparing the OD of the samples to the standard curve.
ncbi acc num :
NP_849588.1
ncbi gb acc num :
NM_179257.1
ncbi mol weight :
69,457 Da
ncbi pathways :
Circadian Rhythm - Plant Pathway (95649); Circadian Rhythm - Plant Pathway (95644); Flowering Time Pathway (760638)
ncbi summary :
Blue light receptor mediating blue-light regulated cotyledon expansion and flowering time. Positive regulator of the flowering-time gene CONSTANS. This gene possesses a light-induced CNT2 N-terminal homodimerisation domain.Involved in blue-light induced stomatal opening. Involved in triggering chromatin decondensation. An 80-residue motif (NC80) is sufficient to confer CRY2's physiological function. It is proposed that the PHR domain and the C-terminal tail of the unphosphorylated CRY2 form a "closed" conformation to suppress the NC80 motif in the absence of light. In response to blue light, the C-terminal tail of CRY2 is phosphorylated and electrostatically repelled from the surface of the PHR domain to form an "open" conformation, resulting in derepression of the NC80 motif and signal transduction to trigger photomorphogenic responses. Cry2 phosphorylation and degradation both occur in the nucleus.
uniprot summary :
Photoreceptor that mediates primarily blue light inhibition of hypocotyl elongation and photoperiodic control of floral initiation, and regulates other light responses, including circadian rhythms, tropic growth, stomata opening, guard cell development, root development, bacterial and viral pathogen responses, abiotic stress responses, cell cycles, programmed cell death, apical dominance, fruit and ovule development, seed dormancy, and magnetoreception. Photoexcited cryptochromes interact with signaling partner proteins to alter gene expression at both transcriptional and post-translational levels and, consequently, regulate the corresponding metabolic and developmental programs (PubMed:21841916). Blue-light absorbing flavoprotein that activates reversible flavin photoreduction via an electron transport chain comprising a tryptophan triad (W-321, W-374 and W-397), or via an alternative electron transport that involves small metabolites, including NADPH, NADH, and ATP. The half-life of the activated signaling state is about 16 minutes (PubMed:25428980, PubMed:23398192). Perceives low blue light (LBL) and responds by directly contacting two bHLH transcription factors, PIF4 and PIF5, at chromatin on E-box variant 5'-CA[CT]GTG-3' to promote their activity and stimulate specific gene expression to adapt global physiology (e.g. hypocotyl elongation and hyponastic growth in low blue light) (PubMed:26724867, PubMed:19558423). In response to blue light, binds to CIB proteins (e.g. BHLH63/CIB1 and BHLH76/CIB5) to activates transcription and floral initiation (PubMed:24130508). Mediates blue light-induced gene expression, floral initiation and hypocotyl elongation through the interaction with SPA1 that prevents formation of SPA1/COP1 complex but stimulates COP1 binding, and thus inhibits COP1-mediated degradation of transcription factors (e.g. CO and HY5) (PubMed:21514160, PubMed:21511872, PubMed:16093319). Promotes flowering time in continuous light (LL) (PubMed:21296763). Involved in shortening the circadian clock period, especially at 27 degrees Celsius, in blue light (BL). Required to maintain clock genes expression rhythm (PubMed:23511208). Triggers nuclear accumulation of ROS in response to blue light illumination (PubMed:26179959). Involved in blue light-dependent stomatal opening, transpiration and inhibition of stem and root growth, probably by regulating abscisic acid (ABA) (PubMed:22147516, PubMed:16093319, PubMed:16703358, PubMed:9482948, PubMed:9565033). Regulates the timing of flowering by promoting the expression of 'FLOWERING LOCUS T' (FT) in vascular bundles. Negatively regulated by 'FLOWERING LOCUS C' (FLC) (PubMed:14605222, PubMed:17259260). General positive regulator of reversible low light-induced chromatin decompaction (PubMed:20935177). Involved in triggering chromatin decondensation during floral transition (PubMed:17470059). Together with phototropins, involved in phototropism regulation by various blue light fluence; blue light attenuates phototropism in high fluence rates (100 µmol.m-2.s-1) but enhances phototropism in low fluence rates ( 1.0 µmol.m-2.s-1) (PubMed:12857830). The effect of near-null magnetic field on flowering is altered by changes of blue light cycle and intensity in a CRY1/CRY2-dependent manner (PubMed:26095447). Involved in the strigolactone signaling that regulates hypocotyl growth in response to blue light (PubMed:24126495).
size5 :
10x96-Strip-Wells