catalog number :
MBS142814
products type :
Recombinant Protein
products full name :
Recombinant Human Glycogen synthase kinase-3 beta
products short name :
Glycogen synthase kinase-3 beta
other names :
protein kinase C gamma type; Protein kinase C gamma type; protein kinase C gamma type; protein kinase C, gamma
products gene name :
GSK3B
other gene names :
PRKCG; PRKCG; PKCC; PKCG; SCA14; PKC-gamma; PKCG; PKC-gamma
uniprot entry name :
KPCG_HUMAN
form :
PKC-g is supplied at a of 0.1mg/ml in 10mM Tris, pH 7.4, 0.1M NaCl, 20% glycerol, 1mM DTT, 0.1mM EDTA, 0.2mM PMSF and 0.03% Brij-35. Physical Appearance: Sterile Filtered clear solution.
products categories :
PROTEIN KINASES
ncbi acc num :
NP_002730.1
ncbi gb acc num :
NM_002739.3
ncbi mol weight :
62,030 Da
ncbi pathways :
African Trypanosomiasis Pathway (194384); African Trypanosomiasis Pathway (194323); Aldosterone-regulated Sodium Reabsorption Pathway (130626); Aldosterone-regulated Sodium Reabsorption Pathway (130590); Amoebiasis Pathway (167324); Amoebiasis Pathway (167191); Amphetamine Addiction Pathway (547607); Amphetamine Addiction Pathway (550546); Ca-dependent Events Pathway (106497); CaM Pathway (106468)
ncbi summary :
Protein kinase C (PKC) is a family of serine- and threonine-specific protein kinases that can be activated by calcium and second messenger diacylglycerol. PKC family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. PKC also serve as major receptors for phorbol esters, a class of tumor promoters. Each member of the PKC family has a specific expression profile and is believed to play distinct roles in cells. The protein encoded by this gene is one of the PKC family members. This protein kinase is expressed solely in the brain and spinal cord and its localization is restricted to neurons. It has been demonstrated that several neuronal functions, including long term potentiation (LTP) and long term depression (LTD), specifically require this kinase. Knockout studies in mice also suggest that this kinase may be involved in neuropathic pain development. Defects in this protein have been associated with neurodegenerative disorder spinocerebellar ataxia-14 (SCA14). [provided by RefSeq, Jul 2008]
uniprot summary :
PKCG: a calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase. Expressed in the brain and spinal cord where its localization is restricted to neurons. Several neuronal functions, including long term potentiation and depression (LTP LTD) specifically require this kinase. Knockout studies in mice also suggest that this kinase may be involved in neuropathic pain development. Defects have been associated with neurodegenerative disorder spinocerebellar ataxia-14. Plays diverse roles in neuronal cells and eye tissues, such as regulation of the neuronal receptors GLUR4 and NMDAR1, modulation of receptors and neuronal functions related to sensitivity to opiates, pain and alcohol, mediation of synaptic function and cell survival after ischemia, and inhibition of gap junction activity after oxidative stress. Binds and phosphorylates GLUR4 glutamate receptor and regulates its function by increasing plasma membrane-associated GRIA4 expression. In primary cerebellar neurons treated with the agonist 3,5-dihyidroxyphenylglycine, functions downstream of the metabotropic glutamate receptor MGLUR5 and phosphorylates NMDAR1 receptor which plays a key role in synaptic plasticity, synaptogenesis, excitotoxicity, memory acquisition and learning. May be involved in the regulation of hippocampal long-term potentiation (LTP), but may be not necessary for the process of synaptic plasticity. May modulate the functionality of mu-type-opioid receptors by participating in a signaling pathway which leads to the phosphorylation and degradation of opioid receptors. May also contributes to chronic morphine-induced changes in nociceptive processing. Plays a role in neuropathic pain mechanisms and contributes to the maintenance of the allodynia pain produced by peripheral inflammation. Plays an important role in initial sensitivity and tolerance to ethanol, by mediating the behavioral effects of ethanol as well as the effects of this drug on the GABA(A) receptors. During and after cerebral ischemia modulate neurotransmission and cell survival in synaptic membranes, and is involved in insulin-induced inhibition of necrosis, an important mechanism for minimizing ischemic injury. Required for the elimination of multiple climbing fibers during innervation of Purkinje cells in developing cerebellum. Is activated in lens epithelial cells upon hydrogen peroxide treatment, and phosphorylates connexin-43, resulting in disassembly of GJA1 gap junction plaques and inhibition of gap junction activity which could provide a protective effect against oxidative stress. Phosphorylates p53 and promotes p53-dependent apoptosis in response to DNA damage. Interacts with GRIA4. Interacts with CDCP1. Interacts with TP53INP1 and p53. Expressed in Purkinje cells of the cerebellar cortex. Protein type: Protein kinase, AGC; EC 2.7.11.13; Protein kinase, Ser/Thr (non-receptor); Kinase, protein; AGC group; PKC family; Alpha subfamily. Chromosomal Location of Human Ortholog: 19q13.4. Cellular Component: perinuclear region of cytoplasm; dendrite; plasma membrane; intercellular junction; nucleus; cytosol. Molecular Function: protein kinase C activity; zinc ion binding; protein serine/threonine/tyrosine kinase activity; calcium-dependent protein kinase C activity; ATP binding; protein kinase activity. Biological Process: epidermal growth factor receptor signaling pathway; platelet activation; positive regulation of mismatch repair; fibroblast growth factor receptor signaling pathway; nerve growth factor receptor signaling pathway; protein amino acid autophosphorylation; rhythmic process; response to morphine; response to pain; regulation of circadian rhythm; signal transduction; protein amino acid phosphorylation; synaptic transmission; learning and/or memory; phospholipase C activation; innate immune response; chemosensory behavior; negative regulation of protein ubiquitination; negative regulation of neuron apoptosis; negative regulation of protein catabolic process; blood coagulation; phosphorylation; regulation of response to food. Disease: Spinocerebellar Ataxia 14