Published Application/Species/Sample/Dilution | Reference |
---|
- immunohistochemistry - free floating section; mouse; 1:500; loading ...; fig 3s2a
| Mancia Leon W, Spatazza J, Rakela B, Chatterjee A, Pande V, Maniatis T, et al. Clustered gamma-protocadherins regulate cortical interneuron programmed cell death. elife. 2020;9: pubmed publisher
|
- immunohistochemistry - frozen section; mouse; 1:500; loading ...; fig 1e
| Rice H, Marcassa G, Chrysidou I, Horré K, Young Pearse T, Müller U, et al. Contribution of GABAergic interneurons to amyloid-β plaque pathology in an APP knock-in mouse model. Mol Neurodegener. 2020;15:3 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; 1:500; loading ...; fig 2
| Wei S, Du H, Li Z, Tao G, Xu Z, Song X, et al. Transcription factors Sp8 and Sp9 regulate the development of caudal ganglionic eminence-derived cortical interneurons. J Comp Neurol. 2019;527:2860-2874 pubmed publisher
|
- immunohistochemistry; mouse; loading ...; fig s4f
| del Toro D, Ruff T, Cederfjäll E, Villalba A, Seyit Bremer G, Borrell V, et al. Regulation of Cerebral Cortex Folding by Controlling Neuronal Migration via FLRT Adhesion Molecules. Cell. 2017;169:621-635.e16 pubmed publisher
|
- immunohistochemistry - free floating section; mouse; 1:250; loading ...
| Justus D, Dalügge D, Bothe S, Fuhrmann F, Hannes C, Kaneko H, et al. Glutamatergic synaptic integration of locomotion speed via septoentorhinal projections. Nat Neurosci. 2017;20:16-19 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; 1:200; loading ...; fig 2b
| Sürmeli G, Marcu D, McClure C, Garden D, Pastoll H, Nolan M. Molecularly Defined Circuitry Reveals Input-Output Segregation in Deep Layers of the Medial Entorhinal Cortex. Neuron. 2015;88:1040-1053 pubmed publisher
|
- immunohistochemistry; mouse; 1:1000
| Miyoshi G, Young A, PETROS T, Karayannis T, McKenzie Chang M, Lavado A, et al. Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons. J Neurosci. 2015;35:12869-89 pubmed publisher
|
- immunohistochemistry; mouse; 1:500; fig e1
| Karayannis T, Au E, Patel J, Kruglikov I, Markx S, Delorme R, et al. Cntnap4 differentially contributes to GABAergic and dopaminergic synaptic transmission. Nature. 2014;511:236-40 pubmed
|
| Zhang X, Liu Z, Liu X, Wang S, Zhang Y, He X, et al. Telomere-dependent and telomere-independent roles of RAP1 in regulating human stem cell homeostasis. Protein Cell. 2019;: pubmed publisher
|
| Priya R, Rakela B, Kaneko M, Spatazza J, Larimer P, Hoseini M, et al. Vesicular GABA Transporter Is Necessary for Transplant-Induced Critical Period Plasticity in Mouse Visual Cortex. J Neurosci. 2019;39:2635-2648 pubmed publisher
|
| Cárdenas A, Villalba A, de Juan Romero C, Picó E, Kyrousi C, Tzika A, et al. Evolution of Cortical Neurogenesis in Amniotes Controlled by Robo Signaling Levels. Cell. 2018;174:590-606.e21 pubmed publisher
|
| Leroy F, Brann D, Meira T, Siegelbaum S. Input-Timing-Dependent Plasticity in the Hippocampal CA2 Region and Its Potential Role in Social Memory. Neuron. 2017;95:1089-1102.e5 pubmed publisher
|