product summary
Loading...
company name :
Invitrogen
other brands :
NeoMarkers, Lab Vision, Endogen, Pierce, BioSource International, Zymed Laboratories, Caltag, Molecular Probes, Research Genetics, Life Technologies, Applied Biosystems, GIBCO BRL, ABgene, Dynal, Affinity BioReagents, Nunc, Invitrogen, NatuTec, Oxoid, Richard-Allan Scientific, Arcturus, Perseptive Biosystems, Proxeon, eBioscience
product type :
antibody
product name :
Phospho-Histone H3 (Ser10) Polyclonal Antibody
catalog :
PA5-17869
quantity :
100 uL
price :
US 514.00
clonality :
polyclonal
host :
domestic rabbit
conjugate :
nonconjugated
antigen modification :
phosphorylated
reactivity :
human, mouse, rat, fruit fly , Xenopus laevis
application :
western blot, immunohistochemistry, immunocytochemistry, flow cytometry, immunohistochemistry - paraffin section, immunohistochemistry - frozen section
more info or order :
citations: 29
Published Application/Species/Sample/DilutionReference
  • immunocytochemistry; human; fig 1
  • western blot; human; fig 1
Wang Q, Xue L, Zhang X, Bu S, Zhu X, Lai D. Autophagy protects ovarian cancer-associated fibroblasts against oxidative stress. Cell Cycle. 2016;15:1376-85 pubmed publisher
Giuliani A, Licursi V, Nisi P, Fiore M, D Angelo S, Biagioni S, et al. Dbx2, an Aging-Related Homeobox Gene, Inhibits the Proliferation of Adult Neural Progenitors. Stem Cell Rev Rep. 2023;19:2837-2851 pubmed publisher
Pang Y, Zhou S, Zumbo P, Betel D, CISSE B. TCF12 Deficiency Impairs the Proliferation of Glioblastoma Tumor Cells and Improves Survival. Cancers (Basel). 2023;15: pubmed publisher
Friston D, Cuddihy J, Souza Luiz J, Truong A, Ho L, Basra M, et al. Elevated 18:0 lysophosphatidylcholine contributes to the development of pain in tissue injury. Pain. 2023;164:e103-e115 pubmed publisher
L xf6 sing J, H xe4 ge S, Sch xfc tz M, Wagner S, Wardin J, Sticht H, et al. 'Shared-Hook' and 'Changed-Hook' Binding Activities of Herpesviral Core Nuclear Egress Complexes Identified by Random Mutagenesis. Cells. 2022;11: pubmed publisher
Kehagias P, Kindt N, Krayem M, Najem A, Agostini G, Acedo Reina E, et al. Regorafenib Induces Senescence and Epithelial-Mesenchymal Transition in Colorectal Cancer to Promote Drug Resistance. Cells. 2022;11: pubmed publisher
Dong C, Zhao C, Chen X, Berry K, Wang J, Zhang F, et al. Conserved and Distinct Functions of the Autism-Related Chromatin Remodeler CHD8 in Embryonic and Adult Forebrain Neurogenesis. J Neurosci. 2022;42:8373-8392 pubmed publisher
Lan C, Chen C, Qu S, Cao N, Luo H, Yu C, et al. Inhibition of DYRK1A, via histone modification, promotes cardiomyocyte cell cycle activation and cardiac repair after myocardial infarction. EBioMedicine. 2022;82:104139 pubmed publisher
Saha S, Verma R, Kumar C, Kumar B, Dey A, Surjit M, et al. Proteomic analysis reveals USP7 as a novel regulator of palmitic acid-induced hepatocellular carcinoma cell death. Cell Death Dis. 2022;13:563 pubmed publisher
Martins Garcia T, van Roest M, Vermeulen J, Meisner S, Koster J, Wildenberg M, et al. Altered Gut Structure and Anti-Bacterial Defense in Adult Mice Treated with Antibiotics during Early Life. Antibiotics (Basel). 2022;11: pubmed publisher
Pushpa K, Dagar S, Kumar H, Pathak D, Mylavarapu S. The exocyst complex regulates C. elegans germline stem cell proliferation by controlling membrane Notch levels. Development. 2021;148: pubmed publisher
Doyle M, Appleton A, Liu Q, Yao Q, Mazucanti C, Egan J. Human Type II Taste Cells Express Angiotensin-Converting Enzyme 2 and Are Infected by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Am J Pathol. 2021;191:1511-1519 pubmed publisher
Doyle M, Appleton A, Liu Q, Yao Q, Mazucanti C, Egan J. Human Taste Cells Express ACE2: a Portal for SARS-CoV-2 Infection. bioRxiv. 2021;: pubmed publisher
Fishman E, Louie M, Miltner A, Cheema S, Wong J, Schlaeger N, et al. MicroRNA Signatures of the Developing Primate Fovea. Front Cell Dev Biol. 2021;9:654385 pubmed publisher
Kim H, Jiang P. Generation of human pluripotent stem cell-derived fused organoids with oligodendroglia and myelin. STAR Protoc. 2021;2:100443 pubmed publisher
Pizzo L, Lasser M, Yusuff T, Jensen M, Ingraham P, Huber E, et al. Functional assessment of the "two-hit" model for neurodevelopmental defects in Drosophila and X. laevis. PLoS Genet. 2021;17:e1009112 pubmed publisher
Parra A, Johnston C. Mud Loss Restricts Yki-Dependent Hyperplasia in Drosophila Epithelia. J Dev Biol. 2020;8: pubmed publisher
Sun Y, Wang Z, Na L, Dong D, Wang W, Zhao C. FZD5 contributes to TNBC proliferation, DNA damage repair and stemness. Cell Death Dis. 2020;11:1060 pubmed publisher
Cao P, Walker N, Braeuer R, Mazzoni Putman S, Aoki Y, Misumi K, et al. Loss of FOXF1 expression promotes human lung-resident mesenchymal stromal cell migration via ATX/LPA/LPA1 signaling axis. Sci Rep. 2020;10:21231 pubmed publisher
Gan S, Su C, Ma J, Liu M, Cui X, Xin L, et al. Translation of Tudor-SN, a novel terminal oligo-pyrimidine (TOP) mRNA, is regulated by the mTORC1 pathway in cardiomyocytes. RNA Biol. 2021;18:900-913 pubmed publisher
Lan C, Cao N, Chen C, Qu S, Fan C, Luo H, et al. Progesterone, via yes-associated protein, promotes cardiomyocyte proliferation and cardiac repair. Cell Prolif. 2020;53:e12910 pubmed publisher
Hou L, Fu W, Liu Y, Wang Q, Wang L, Huang Y. Agrin Promotes Limbal Stem Cell Proliferation and Corneal Wound Healing Through Hippo-Yap Signaling Pathway. Invest Ophthalmol Vis Sci. 2020;61:7 pubmed publisher
Ross M, Piorczynski T, Harvey J, Burnham T, Francis M, Larsen M, et al. Ceramide: a novel inducer for neural tube defects. Dev Dyn. 2019;248:979-996 pubmed publisher
Xu R, Brawner A, Li S, Liu J, Kim H, Xue H, et al. OLIG2 Drives Abnormal Neurodevelopmental Phenotypes in Human iPSC-Based Organoid and Chimeric Mouse Models of Down Syndrome. Cell Stem Cell. 2019;: pubmed publisher
Shah S, Takei Y, Zhou W, Lubeck E, Yun J, Eng C, et al. Dynamics and Spatial Genomics of the Nascent Transcriptome by Intron seqFISH. Cell. 2018;174:363-376.e16 pubmed publisher
Courtheoux T, Diallo A, Damodaran A, Reboutier D, Watrin E, Prigent C. Aurora A kinase activity is required to maintain an active spindle assembly checkpoint during prometaphase. J Cell Sci. 2018;131: pubmed publisher
Szuperák M, Churgin M, Borja A, Raizen D, Fang Yen C, Kayser M. A sleep state in Drosophila larvae required for neural stem cell proliferation. elife. 2018;7: pubmed publisher
Welty S, Teng Y, Liang Z, Zhao W, Sanders L, Greenamyre J, et al. RAD52 is required for RNA-templated recombination repair in post-mitotic neurons. J Biol Chem. 2018;293:1353-1362 pubmed publisher
Sozmen M, Devrim A, Kabak Y, Devrim T, Sudagidan M. The Effects of Periostin in a Rat Model of Isoproterenol: Mediated Cardiotoxicity. Cardiovasc Toxicol. 2018;18:142-160 pubmed publisher
product information
Product Type :
Antibody
Product Name :
Phospho-Histone H3 (Ser10) Polyclonal Antibody
Catalog # :
PA5-17869
Quantity :
100 uL
Price :
US 514.00
Clonality :
Polyclonal
Purity :
Antigen affinity chromatography
Host :
Rabbit
Reactivity :
Drosophila, Human, Mouse, Non-human primate, Rat, Xenopus laevis
Applications :
Flow Cytometry: 1:50, Immunocytochemistry: 1:800, Immunohistochemistry (Frozen): 1:400, Immunohistochemistry (Paraffin): 1:200, Peptide array: 1:2,000, Western Blot: 1:1,000
Species :
Drosophila, Human, Mouse, Non-human primate, Rat, Xenopus laevis
Isotype :
IgG
Storage :
-20 C
Description :
Histone H3 is one of the DNA-binding proteins found in the chromatin of all eukaryotic cells. H3 along with four core histone proteins binds to DNA forming the structure of the nucleosome. Histones play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. Post translationally, histones are modified in a variety of ways to either directly change the chromatin structure or allow for the binding of specific transcription factors. The N-terminal tail of histone H3 protrudes from the globular nucleosome core and can undergo several different types of post-translational modification that influence cellular processes. These modifications include the covalent attachment of methyl or acetyl groups to lysine and arginine amino acids and the phosphorylation of serine or threonine.
Immunogen :
Synthetic phosphopeptide corresponding to residues surrounding pSer10 of human histone H3
Format :
Liquid
Applications w/Dilutions :
Flow Cytometry: 1:50, Immunocytochemistry: 1:800, Immunohistochemistry (Frozen): 1:400, Immunohistochemistry (Paraffin): 1:200, Peptide array: 1:2,000, Western Blot: 1:1,000
Aliases :
BUR5; CG31613; CG31613-PA; CG33803; CG33806; CG33809; CG33812; CG33815; CG33818; CG33821; CG33824; CG33827; CG33830; CG33833; CG33836; CG33839; CG33842; CG33845; CG33848; CG33851; CG33854; CG33857; CG33860; CG33863; CG33866; CG5825; CG5825-PA; CG5825-PC; CG5825-PD; CG8989; dH3.3A; Dmel CG31613; Dmel CG5825; Dmel_CG31613; Dmel_CG5825; fb58e10; h3; H3 histone; H3 histone family, member A; H3 histone family, member I; H3 histone family, member K; H3 histone family, member L; H3 histone family, member M; H3 histone, family 2; H3 histone, family 3A; H3 histone, family 3B; H3 histone, family 3B (H3.3B); H3 histone, family 3B.1; H3 histone, family 3C; H3.1-221; H3.1-291; H3.1-I; H3.2; H3.2-221; H3.2-614; H3.2-615; H3.2-616; h3.2a; H3.3; H3.3 histone A; H3.3 histone B; H3.3a; H3.3B; H3.5; H3.5 histone; H3.A; H3.B; H3/A; H3/b; H3/d; H3/f; H3/i; H3/j; H3/k; H3/l; H3/M; H3/n; H3/o; H3-143; H3-291; H3-3A; H3-3B; H3-5; H3-53; H3-614; H3a; H3b; H3-B; H3C1; H3c10; H3c11; H3C12; H3C2; H3C3; H3C4; H3C6; H3C7; H3C8; H3f; H3-F; H3F1K; H3F2; H3F3; h3f3a; H3F3A protein; H3f3b; h3f3b.1; H3F3C; h3f3d; H3FA; H3FB; H3FC HIST1H3C; H3FD; H3FF; H3FH; H3FI; H3FJ; H3FK; H3FL; H3FM; H3FN; H3g; H3h; H3i; H3L-like histone; h3r; H3S10ph; H4 clustered histone 16; H4 clustered histone 19; H4C16; H4C19; HHT1; HHT2; His3; His3.3; His3.3A; His-3.3A; His3.3A-PA; His3.3A-PC; His3.3A-PD; His3.3B; His3:CG31613; His3:CG31613-PA; His3:CG33803; His3:CG33806; His3:CG33809; His3:CG33812; His3:CG33815; His3:CG33818; His3:CG33821; His3:CG33824; His3:CG33827; His3:CG33830; His3:CG33833; His3:CG33836; His3:CG33839; His3:CG33842; His3:CG33845; His3:CG33848; His3:CG33851; His3:CG33854; His3:CG33857; His3:CG33860; His3:CG33863; His3:CG33866; Hist1; Hist1h2ai; Hist1h2ail; Hist1h2ail1; HIST1H3A; HIST1H3B; Hist1h3c; HIST1H3D; Hist1h3e; Hist1h3f; Hist1h3g; hist1h3g.L; HIST1H3H; HIST1H3I; HIST1H3J; hist2h3; HIST2H3A; Hist2h3b; HIST2H3C; Hist2h3c1; Hist2h3c2; Hist2h3c2-ps; Hist2h3ca1; Hist2h3ca2; HIST2H3D; histone; histone 1, H2ai; histone 1, H3a; histone 1, H3b; histone 1, H3f; histone 1, H3h; histone 2, H3a; histone 2, H3c; histone 2, H3c2; histone 2, H3ca2; Histone 3; histone cluster 1 H3 family member a; histone cluster 1, H2ai; histone cluster 1, H2ai-like; histone cluster 1, H2ai-like1; histone cluster 1, H3a; histone cluster 1, H3b; histone cluster 1, H3f; histone cluster 1, H3g protein L homeolog; histone cluster 1, H3h; Histone Cluster 2 H3a; histone cluster 2, H3a; histone cluster 2, H3c; histone cluster 2, H3c2; histone cluster 2, H3c2, pseudogene; histone cluster 3, H3; histone gene complex 1; histone H3; Histone H3 containing protein; histone H3.1; Histone H3.2; histone H3.2-like; histone H3.3; Histone H3.3A; Histone H3.3B; Histone H3.3C; histone H3.3C-like; histone H3.3-like protein; Histone H3.5; histone H3/a; Histone H3/b; Histone H3/c; Histone H3/d; Histone H3/f; Histone H3/h; Histone H3/i; Histone H3/j; Histone H3/k; histone H3/l; Histone H3/m; histone H3/o; histone H3-like; histone H4; histone variant H3.5; hypothetical protein LOC406269; hypothetical protein LOC550262; I79_014844; lamprey; lpy; M32461; N2749; PH3; PP781; similar to H3 histone, family 3A; SIN2; Unknown (protein for MGC:128166); wu:fa25h06; wu:fa96g06; wu:fb07a08; wu:fb36f01; wu:fb58e10; XELAEV_18028537mg; YBR010W; YBR0201; YNL031C; zgc:110292; zgc:174300; zgc:56193; zgc:56418; zgc:64222; zgc:86731
more info or order :
company information
Invitrogen
Thermo Fisher Scientific
81 Wyman Street
Waltham, MA USA 02451
https://www.thermofisher.com
800-678-5599
headquarters: USA