product summary
Loading...
company name :
Invitrogen
other brands :
NeoMarkers, Lab Vision, Endogen, Pierce, BioSource International, Zymed Laboratories, Caltag, Molecular Probes, Research Genetics, Life Technologies, Applied Biosystems, GIBCO BRL, ABgene, Dynal, Affinity BioReagents, Nunc, Invitrogen, NatuTec, Oxoid, Richard-Allan Scientific, Arcturus, Perseptive Biosystems, Proxeon, eBioscience
product type :
antibody
product name :
CD4 Monoclonal Antibody (S3.5), APC
catalog :
MHCD0405
quantity :
500 uL
price :
US 508.00
clonality :
monoclonal
host :
mouse
conjugate :
APC
clone name :
S3.5
reactivity :
crab eating macaque, human
application :
immunocytochemistry, flow cytometry, immunohistochemistry - frozen section
more info or order :
citations: 42
Published Application/Species/Sample/DilutionReference
  • flow cytometry; human; 1:50; fig 4c
Calvanese V, Nguyen A, Bolan T, Vavilina A, Su T, Lee L, et al. MLLT3 governs human haematopoietic stem-cell self-renewal and engraftment. Nature. 2019;576:281-286 pubmed publisher
  • flow cytometry; human; 1:300; loading ...; fig s1a
Zhu L, Xie X, Zhang L, Wang H, Jie Z, Zhou X, et al. TBK-binding protein 1 regulates IL-15-induced autophagy and NKT cell survival. Nat Commun. 2018;9:2812 pubmed publisher
  • flow cytometry; human; loading ...; fig 3
Heusinger E, Deppe K, Sette P, Krapp C, Kmiec D, Kluge S, et al. Preadaptation of Simian Immunodeficiency Virus SIVsmm Facilitated Env-Mediated Counteraction of Human Tetherin by Human Immunodeficiency Virus Type 2. J Virol. 2018;92: pubmed publisher
  • flow cytometry; human; fig 5
Kmiec D, Iyer S, Stürzel C, Sauter D, Hahn B, Kirchhoff F. Vpu-Mediated Counteraction of Tetherin Is a Major Determinant of HIV-1 Interferon Resistance. MBio. 2016;7: pubmed publisher
  • flow cytometry; human; 1:50; loading ...; fig s2e
Dou D, Calvanese V, Sierra M, Nguyen A, Minasian A, Saarikoski P, et al. Medial HOXA genes demarcate haematopoietic stem cell fate during human development. Nat Cell Biol. 2016;18:595-606 pubmed publisher
  • flow cytometry; human; 1:40; fig 3
Langer S, Hopfensperger K, Iyer S, Kreider E, Learn G, Lee L, et al. A Naturally Occurring rev1-vpu Fusion Gene Does Not Confer a Fitness Advantage to HIV-1. PLoS ONE. 2015;10:e0142118 pubmed publisher
  • flow cytometry; human
Reeder J, Kwak Y, McNamara R, Forst C, D Orso I. HIV Tat controls RNA Polymerase II and the epigenetic landscape to transcriptionally reprogram target immune cells. elife. 2015;4: pubmed publisher
  • flow cytometry; human; loading ...; fig 1b
Martins L, Bonczkowski P, Spivak A, De Spiegelaere W, Novis C, DePaula Silva A, et al. Modeling HIV-1 Latency in Primary T Cells Using a Replication-Competent Virus. AIDS Res Hum Retroviruses. 2016;32:187-93 pubmed publisher
  • flow cytometry; human
  • immunocytochemistry; human
de Carvalho J, de Castro R, da Silva E, Silveira P, da Silva Januário M, Arruda E, et al. Nef neutralizes the ability of exosomes from CD4+ T cells to act as decoys during HIV-1 infection. PLoS ONE. 2014;9:e113691 pubmed publisher
  • flow cytometry; human
Saayman S, Ackley A, Turner A, Famiglietti M, Bosque A, Clemson M, et al. An HIV-encoded antisense long noncoding RNA epigenetically regulates viral transcription. Mol Ther. 2014;22:1164-1175 pubmed publisher
  • flow cytometry; crab eating macaque; fig 2
Mao C, Brovarney M, Dabbagh K, Birnböck H, Richter W, Del Nagro C. Subcutaneous versus intravenous administration of rituximab: pharmacokinetics, CD20 target coverage and B-cell depletion in cynomolgus monkeys. PLoS ONE. 2013;8:e80533 pubmed publisher
  • flow cytometry; human; fig 2
Kluge S, Sauter D, Vogl M, Peeters M, Li Y, Bibollet Ruche F, et al. The transmembrane domain of HIV-1 Vpu is sufficient to confer anti-tetherin activity to SIVcpz and SIVgor Vpu proteins: cytoplasmic determinants of Vpu function. Retrovirology. 2013;10:32 pubmed publisher
  • flow cytometry; human; fig 3
Palin A, Ramachandran V, Acharya S, Lewis D. Human neonatal naive CD4+ T cells have enhanced activation-dependent signaling regulated by the microRNA miR-181a. J Immunol. 2013;190:2682-91 pubmed publisher
  • flow cytometry; human; fig 3
Sauter D, Unterweger D, Vogl M, Usmani S, Heigele A, Kluge S, et al. Human tetherin exerts strong selection pressure on the HIV-1 group N Vpu protein. PLoS Pathog. 2012;8:e1003093 pubmed publisher
  • flow cytometry; human; fig 1
Mitchell P, Afzali B, Fazekasova H, Chen D, Ali N, Powell N, et al. Helicobacter pylori induces in-vivo expansion of human regulatory T cells through stimulating interleukin-1β production by dendritic cells. Clin Exp Immunol. 2012;170:300-9 pubmed publisher
  • flow cytometry; human; fig 3
Turner A, Ackley A, Matrone M, Morris K. Characterization of an HIV-targeted transcriptional gene-silencing RNA in primary cells. Hum Gene Ther. 2012;23:473-83 pubmed publisher
  • flow cytometry; human; fig 7
Gardam S, Turner V, Anderton H, Limaye S, Basten A, Koentgen F, et al. Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response. Blood. 2011;117:4041-51 pubmed publisher
  • flow cytometry; human; fig s2
Yates J, Whittington A, Mitchell P, Lechler R, Lightstone L, Lombardi G. Natural regulatory T cells: number and function are normal in the majority of patients with lupus nephritis. Clin Exp Immunol. 2008;153:44-55 pubmed publisher
  • flow cytometry; human; loading ...; fig 2b
Grahmann P, Braun R. A new protocol for multiple inhalation of IFN-gamma successfully treats MDR-TB: a case study. Int J Tuberc Lung Dis. 2008;12:636-44 pubmed
  • flow cytometry; human; fig 1A
Yates J, Rovis F, Mitchell P, Afzali B, Tsang J, Garin M, et al. The maintenance of human CD4+ CD25+ regulatory T cell function: IL-2, IL-4, IL-7 and IL-15 preserve optimal suppressive potency in vitro. Int Immunol. 2007;19:785-99 pubmed
  • flow cytometry; human; fig 4C
Yaddanapudi K, Palacios G, Towner J, Chen I, Sariol C, Nichol S, et al. Implication of a retrovirus-like glycoprotein peptide in the immunopathogenesis of Ebola and Marburg viruses. FASEB J. 2006;20:2519-30 pubmed publisher
  • flow cytometry; human; fig 3
Humphreys T, Baldridge L, Billings S, Campbell J, Spinola S. Trafficking pathways and characterization of CD4 and CD8 cells recruited to the skin of humans experimentally infected with Haemophilus ducreyi. Infect Immun. 2005;73:3896-902 pubmed
  • immunohistochemistry - frozen section; human; fig 1
Kim J, Lim H, Kang S, Hillsamer P, Kim C. Human CD57+ germinal center-T cells are the major helpers for GC-B cells and induce class switch recombination. BMC Immunol. 2005;6:3 pubmed
  • flow cytometry; human; fig 1
Lee M, Hanspers K, Barker C, Korn A, McCune J. Gene expression profiles during human CD4+ T cell differentiation. Int Immunol. 2004;16:1109-24 pubmed
  • flow cytometry; human
Braun R, Foerster M, Grahmann P, Haefner D, Workalemahu G, Kroegel C. Phenotypic and molecular characterization of CD103+ CD4+ T cells in bronchoalveolar lavage from patients with interstitial lung diseases. Cytometry B Clin Cytom. 2003;54:19-27 pubmed
  • flow cytometry; human; fig 1
Litvinova E, Maury S, Boyer O, Bruel S, Benard L, Boisserie G, et al. Graft-versus-leukemia effect after suicide-gene-mediated control of graft-versus-host disease. Blood. 2002;100:2020-5 pubmed
  • flow cytometry; human
Venkatesan S, Petrovic A, Van Ryk D, Locati M, Weissman D, Murphy P. Reduced cell surface expression of CCR5 in CCR5Delta 32 heterozygotes is mediated by gene dosage, rather than by receptor sequestration. J Biol Chem. 2002;277:2287-301 pubmed
  • flow cytometry; human
Venkatesan S, Petrovic A, Locati M, Kim Y, Weissman D, Murphy P. A membrane-proximal basic domain and cysteine cluster in the C-terminal tail of CCR5 constitute a bipartite motif critical for cell surface expression. J Biol Chem. 2001;276:40133-45 pubmed
  • flow cytometry; human
Lee B, Sharron M, Montaner L, Weissman D, Doms R. Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci U S A. 1999;96:5215-20 pubmed
Levinger C, Howard J, Cheng J, Tang P, Joshi A, Catalfamo M, et al. An ultrasensitive planar array p24 Gag ELISA to detect HIV-1 in diverse biological matrixes. Sci Rep. 2021;11:23682 pubmed publisher
Scott T, O Meally D, Grepo N, Soemardy C, Lazar D, Zheng Y, et al. Broadly active zinc finger protein-guided transcriptional activation of HIV-1. Mol Ther Methods Clin Dev. 2021;20:18-29 pubmed publisher
Nesspor T, Kinealy K, Mazzanti N, Diem M, Boyé K, Hoffman H, et al. High-Throughput Generation of Bipod (Fab × scFv) Bispecific Antibodies Exploits Differential Chain Expression and Affinity Capture. Sci Rep. 2020;10:7557 pubmed publisher
Buffalo C, Stürzel C, Heusinger E, Kmiec D, Kirchhoff F, Hurley J, et al. Structural Basis for Tetherin Antagonism as a Barrier to Zoonotic Lentiviral Transmission. Cell Host Microbe. 2019;26:359-368.e8 pubmed publisher
Hotter D, Bosso M, Jønsson K, Krapp C, Stürzel C, Das A, et al. IFI16 Targets the Transcription Factor Sp1 to Suppress HIV-1 Transcription and Latency Reactivation. Cell Host Microbe. 2019;25:858-872.e13 pubmed publisher
Morton E, Forst C, Zheng Y, DePaula Silva A, Ramirez N, Planelles V, et al. Transcriptional Circuit Fragility Influences HIV Proviral Fate. Cell Rep. 2019;27:154-171.e9 pubmed publisher
Joas S, Parrish E, Gnanadurai C, Lump E, Stürzel C, Parrish N, et al. Species-specific host factors rather than virus-intrinsic virulence determine primate lentiviral pathogenicity. Nat Commun. 2018;9:1371 pubmed publisher
Xia Q, Zhou Y, Wang X, Fu S. Interleukin-1 receptor-associated kinase 3 downregulation in peripheral blood mononuclear cells attenuates immunosuppression in sepsis. Exp Ther Med. 2018;15:1586-1593 pubmed publisher
Yamada E, Nakaoka S, Klein L, Reith E, Langer S, Hopfensperger K, et al. Human-Specific Adaptations in Vpu Conferring Anti-tetherin Activity Are Critical for Efficient Early HIV-1 Replication In Vivo. Cell Host Microbe. 2018;23:110-120.e7 pubmed publisher
Catakovic K, Gassner F, Ratswohl C, Zaborsky N, Rebhandl S, Schubert M, et al. TIGIT expressing CD4+T cells represent a tumor-supportive T cell subset in chronic lymphocytic leukemia. Oncoimmunology. 2017;7:e1371399 pubmed publisher
Manrique S, Sauter D, Horenkamp F, Lülf S, Yu H, Hotter D, et al. Endocytic sorting motif interactions involved in Nef-mediated downmodulation of CD4 and CD3. Nat Commun. 2017;8:442 pubmed publisher
Vazquez Lombardi R, Loetsch C, Zinkl D, Jackson J, Schofield P, Deenick E, et al. Potent antitumour activity of interleukin-2-Fc fusion proteins requires Fc-mediated depletion of regulatory T-cells. Nat Commun. 2017;8:15373 pubmed publisher
Gupta P, Wright S, Srivastava S. PEITC treatment suppresses myeloid derived tumor suppressor cells to inhibit breast tumor growth. Oncoimmunology. 2015;4:e981449 pubmed
product information
Product Type :
Antibody
Product Name :
CD4 Monoclonal Antibody (S3.5), APC
Catalog # :
MHCD0405
Quantity :
500 uL
Price :
US 508.00
Clonality :
Monoclonal
Purity :
purified
Host :
Mouse
Reactivity :
Human
Applications :
Flow Cytometry: Assay-Dependent
Species :
Human
Clone :
S3.5
Isotype :
IgG2a
Storage :
4 C, store in dark
Description :
The CD4 antigen is involved in the recognition of MHC class II molecules and is a co-receptor for HIV. CD4 is primarily expressed in a subset of T-lymphocytes, also referred to as T helper cells, but may also be expressed by other cells in the immune system, such as monocytes, macrophages, and dendritic cells. At the tissue level, CD4 expression may be detected in thymus, lymph nodes, tonsils, and spleen, and also in specific regions of the brain, gut, and other non-lymphoid tissues. CD4 functions to initiate or augment the early phase of T-cell activation through its association with the T-cell receptor complex and protein tyrosine kinase, Lck. It may also function as an important mediator of direct neuronal damage in infectious and immune-mediated diseases of the central nervous system. Multiple alternatively spliced transcripts have been identified in this gene [RefSeq, July 2017].
Immunogen :
Human CD4
Format :
Liquid
Applications w/Dilutions :
Flow Cytometry: Assay-Dependent
Aliases :
Activation B7-1 antigen; B7; B7.1; B7-1; BB1; B-lymphocyte activation antigen B7; CD28LG; CD28LG1; CD4; CD4 antigen; CD4 antigen (p55); CD4 antigen p55; Cd4 molecule; CD4 precursor; CD4 receptor; CD4, allele 1; cd4a; CD4mut; CD80; CD80 antigen (CD28 antigen ligand 1, B7-1 antigen); CD80 molecule; cell surface glycoprotein CD4; costimulatory factor CD80; costimulatory molecule variant IgV-CD80; CTLA-4 counter-receptor B7.1; fCD4; L3T4; LAB7; Leu-3; Ly-4; lymphocyte antigen CD4; lymphocyte antigen CD4 precursor; membrane protein; p55; T-cell differentiation antigen L3T4; T-cell surface antigen T4/Leu-3; T-cell surface glycoprotein CD4; T-cell surface glycoprotein CD4 precursor (T-cell surface antigen T4/Leu-3) (T-cell differentiation antigen L3T4); T-lymphocyte activation antigen CD80; W3/25; W3/25 antigen
more info or order :
company information
Invitrogen
Thermo Fisher Scientific
81 Wyman Street
Waltham, MA USA 02451
https://www.thermofisher.com
800-678-5599
headquarters: USA