This webpage contains legacy information. The product is either no longer available from the supplier or has been delisted at Labome.
product summary
company name :
Invitrogen
other brands :
NeoMarkers, Lab Vision, Endogen, Pierce, BioSource International, Zymed Laboratories, Caltag, Molecular Probes, Research Genetics, Life Technologies, Applied Biosystems, GIBCO BRL, ABgene, Dynal, Affinity BioReagents, Nunc, Invitrogen, NatuTec, Oxoid, Richard-Allan Scientific, Arcturus, Perseptive Biosystems, Proxeon, eBioscience
product type :
antibody
product name :
MiTF Monoclonal Antibody (C5)
catalog :
MA5-14146
quantity :
500µL
price :
US 309.00
clonality :
monoclonal
host :
mouse
conjugate :
nonconjugated
clone name :
C5
reactivity :
human, mouse, rat, dog, equine
application :
western blot, immunohistochemistry, immunocytochemistry, immunoprecipitation, flow cytometry, EMSA, chromatin immunoprecipitation, immunohistochemistry - paraffin section
citations: 58
Published Application/Species/DilutionReference
  • western blot (knockdown validation); human; 1:500; fig 4
  • immunohistochemistry; human; 1:500; fig 3
Dar A, Majid S, Bezrookove V, Phan B, Ursu S, Nosrati M, et al. BPTF transduces MITF-driven prosurvival signals in melanoma cells. Proc Natl Acad Sci U S A. 2016;113:6254-8 pubmed publisher
  • western blot; human; 1:200; fig 2
Poindexter K, Matthew S, Aronchik I, Firestone G. Cooperative antiproliferative signaling by aspirin and indole-3-carbinol targets microphthalmia-associated transcription factor gene expression and promoter activity in human melanoma cells. Cell Biol Toxicol. 2016;32:103-19 pubmed publisher
  • immunohistochemistry; mouse; 1:500; fig 1
Iwai-Takekoshi L, Ramos A, Schaler A, Weinreb S, Blazeski R, Mason C. Retinal pigment epithelial integrity is compromised in the developing albino mouse retina. J Comp Neurol. 2016;524:3696-3716 pubmed publisher
  • western blot; human; fig 6
Zhang T, Zhou Q, Ogmundsdottir M, Möller K, Siddaway R, Larue L, et al. Mitf is a master regulator of the v-ATPase, forming a control module for cellular homeostasis with v-ATPase and TORC1. J Cell Sci. 2015;128:2938-50 pubmed publisher
  • immunohistochemistry - paraffin section; human; 1:50; fig s7
Riesenberg S, Groetchen A, Siddaway R, Bald T, Reinhardt J, Smorra D, et al. MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment. Nat Commun. 2015;6:8755 pubmed publisher
  • western blot; human
Howlin J, Cirenajwis H, Lettiero B, Staaf J, Lauss M, Saal L, et al. Loss of CITED1, an MITF regulator, drives a phenotype switch in vitro and can predict clinical outcome in primary melanoma tumours. Peerj. 2015;3:e788 pubmed publisher
  • western blot; mouse; 1:1000
Balcos M, Kim S, Jeong H, Yun H, Baek K, Kwon N, et al. Docosahexaenoic acid inhibits melanin synthesis in murine melanoma cells in vitro through increasing tyrosinase degradation. Acta Pharmacol Sin. 2014;35:489-95 pubmed publisher
  • immunohistochemistry; human; 1:50; fig 1i
Zhong X, Gutierrez C, Xue T, Hampton C, Vergara M, Cao L, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun. 2014;5:4047 pubmed publisher
  • EMSA; human
  • chromatin immunoprecipitation; human
  • western blot; human
Praetorius C, Grill C, Stacey S, Metcalf A, Gorkin D, Robinson K, et al. A polymorphism in IRF4 affects human pigmentation through a tyrosinase-dependent MITF/TFAP2A pathway. Cell. 2013;155:1022-33 pubmed publisher
  • western blot; mouse; fig 6
Cheung F, Guo J, Ling Y, Che C, Liu W. Anti-melanogenic property of geoditin A in murine B16 melanoma cells. Mar Drugs. 2012;10:465-76 pubmed publisher
  • western blot; mouse
  • immunocytochemistry; mouse
Wellbrock C, Marais R. Elevated expression of MITF counteracts B-RAF-stimulated melanocyte and melanoma cell proliferation. J Cell Biol. 2005;170:703-8 pubmed
  • western blot; mouse
Jeong H, Lee S, Yun H, Baek K, Kwon N, Park K, et al. Involvement of mTOR signaling in sphingosylphosphorylcholine-induced hypopigmentation effects. J Biomed Sci. 2011;18:55 pubmed publisher
Takeda K, Hozumi H, Nakai K, Yoshizawa M, Satoh H, Yamamoto H, et al. Insertion of long interspersed element-1 in the Mitf gene is associated with altered neurobehavior of the black-eyed white Mitf(mi-bw) mouse. Genes Cells. 2014;19:126-40 pubmed publisher
Chiang H, Chien Y, Wu C, Kuo Y, Wu W, Pan Y, et al. Hydroalcoholic extract of Rhodiola rosea L. (Crassulaceae) and its hydrolysate inhibit melanogenesis in B16F0 cells by regulating the CREB/MITF/tyrosinase pathway. Food Chem Toxicol. 2014;65:129-39 pubmed publisher
Van Allen E, Wagle N, Sucker A, Treacy D, Johannessen C, Goetz E, et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 2014;4:94-109 pubmed publisher
Lee T, Seo J, Baek S, Kim S. Inhibitory effects of resveratrol on melanin synthesis in ultraviolet B-induced pigmentation in Guinea pig skin. Biomol Ther (Seoul). 2014;22:35-40 pubmed
Choi Y, Rho Y, Yoo K, Lim Y, Li K, Kim B, et al. Effects of vitamin C vs. multivitamin on melanogenesis: comparative study in vitro and in vivo. Int J Dermatol. 2010;49:218-26 pubmed publisher
Smith M, Ferguson J, Arozarena I, Hayward R, Marais R, Chapman A, et al. Effect of SMURF2 targeting on susceptibility to MEK inhibitors in melanoma. J Natl Cancer Inst. 2013;105:33-46 pubmed publisher
Smit D, Gardiner B, Sturm R. Osteonectin downregulates E-cadherin, induces osteopontin and focal adhesion kinase activity stimulating an invasive melanoma phenotype. Int J Cancer. 2007;121:2653-60 pubmed
Sundström E, Komisarczuk A, Jiang L, Golovko A, Navratilova P, Rinkwitz S, et al. Identification of a melanocyte-specific, microphthalmia-associated transcription factor-dependent regulatory element in the intronic duplication causing hair greying and melanoma in horses. Pigment Cell Melanoma Res. 2012;25:28-36 pubmed publisher
Bismuth K, Maric D, Arnheiter H. MITF and cell proliferation: the role of alternative splice forms. Pigment Cell Res. 2005;18:349-59 pubmed
Pierrat M, Marsaud V, Mauviel A, Javelaud D. Expression of microphthalmia-associated transcription factor (MITF), which is critical for melanoma progression, is inhibited by both transcription factor GLI2 and transforming growth factor-β. J Biol Chem. 2012;287:17996-8004 pubmed publisher
Chen S, Lewis B, Moran A, Xie T. Cadherin-mediated cell adhesion is critical for the closing of the mouse optic fissure. PLoS ONE. 2012;7:e51705 pubmed publisher
Carreira S, Goodall J, Aksan I, La Rocca S, Galibert M, Denat L, et al. Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature. 2005;433:764-9 pubmed
Hasegawa J, Goto Y, Murata H, Takata M, Saida T, Imokawa G. Downregulated melanogenic paracrine cytokine linkages in hypopigmented palmoplantar skin. Pigment Cell Melanoma Res. 2008;21:687-99 pubmed
Deyrup A, Althof P, Zhou M, Morgan M, Solomon A, Bridge J, et al. Paraganglioma-like dermal melanocytic tumor: a unique entity distinct from cellular blue nevus, clear cell sarcoma, and cutaneous melanoma. Am J Surg Pathol. 2004;28:1579-86 pubmed
Cronin J, Wunderlich J, Loftus S, Prickett T, Wei X, Ridd K, et al. Frequent mutations in the MITF pathway in melanoma. Pigment Cell Melanoma Res. 2009;22:435-44 pubmed publisher
Masuda T, Esumi N. SOX9, through interaction with microphthalmia-associated transcription factor (MITF) and OTX2, regulates BEST1 expression in the retinal pigment epithelium. J Biol Chem. 2010;285:26933-44 pubmed publisher
Strub T, Giuliano S, Ye T, Bonet C, Keime C, Kobi D, et al. Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma. Oncogene. 2011;30:2319-32 pubmed publisher
Nybakken G, Sargen M, Abraham R, Zhang P, Ming M, Xu X. MITF accurately highlights epidermal melanocytes in atypical intraepidermal melanocytic proliferations. Am J Dermatopathol. 2013;35:25-9 pubmed publisher
Lekmine F, Chang C, Sethakorn N, Das Gupta T, Salti G. Role of microphthalmia transcription factor (Mitf) in melanoma differentiation. Biochem Biophys Res Commun. 2007;354:830-5 pubmed
Kraft S, Antonescu C, Rosenberg A, Deschler D, Nielsen G. Primary clear cell sarcoma of the tongue. Arch Pathol Lab Med. 2013;137:1680-3 pubmed publisher
Xu X, Chu A, Pasha T, Elder D, Zhang P. Immunoprofile of MITF, tyrosinase, melan-A, and MAGE-1 in HMB45-negative melanomas. Am J Surg Pathol. 2002;26:82-7 pubmed
Schepsky A, Bruser K, Gunnarsson G, Goodall J, Hallsson J, Goding C, et al. The microphthalmia-associated transcription factor Mitf interacts with beta-catenin to determine target gene expression. Mol Cell Biol. 2006;26:8914-27 pubmed
Lau S. Malignant PEComa of the adrenal gland. Pathol Res Pract. 2012;208:113-7 pubmed publisher
Mosher J, Yeager K, Kruger G, Joseph N, Hutchin M, Dlugosz A, et al. Intrinsic differences among spatially distinct neural crest stem cells in terms of migratory properties, fate determination, and ability to colonize the enteric nervous system. Dev Biol. 2007;303:1-15 pubmed
Li X, Kishore A, Dao D, Zheng W, Roman C, Word R. A novel isoform of microphthalmia-associated transcription factor inhibits IL-8 gene expression in human cervical stromal cells. Mol Endocrinol. 2010;24:1512-28 pubmed publisher
Esumi N, Kachi S, Campochiaro P, Zack D. VMD2 promoter requires two proximal E-box sites for its activity in vivo and is regulated by the MITF-TFE family. J Biol Chem. 2007;282:1838-50 pubmed
Boyle G, Pedley J, Martyn A, Banducci K, Strutton G, Brown D, et al. Macrophage inhibitory cytokine-1 is overexpressed in malignant melanoma and is associated with tumorigenicity. J Invest Dermatol. 2009;129:383-91 pubmed publisher
Jin S, Lee Y, Kang H. Methyl-beta-cyclodextrin, a specific cholesterol-binding agent, inhibits melanogenesis in human melanocytes through activation of ERK. Arch Dermatol Res. 2008;300:451-4 pubmed publisher
Furumura M, Potterf S, Toyofuku K, Matsunaga J, Muller J, Hearing V. Involvement of ITF2 in the transcriptional regulation of melanogenic genes. J Biol Chem. 2001;276:28147-54 pubmed
Hoek K, Eichhoff O, Schlegel N, Dobbeling U, Kobert N, Schaerer L, et al. In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res. 2008;68:650-6 pubmed publisher
Goodall J, Carreira S, Denat L, Kobi D, Davidson I, Nuciforo P, et al. Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells. Cancer Res. 2008;68:7788-94 pubmed publisher
Blenkinsop T, Salero E, Stern J, Temple S. The culture and maintenance of functional retinal pigment epithelial monolayers from adult human eye. Methods Mol Biol. 2013;945:45-65 pubmed publisher
Mizutani Y, Hayashi N, Kawashima M, Imokawa G. A single UVB exposure increases the expression of functional KIT in human melanocytes by up-regulating MITF expression through the phosphorylation of p38/CREB. Arch Dermatol Res. 2010;302:283-94 pubmed publisher
van Schanke A, Jongsma M, Bisschop R, van Venrooij G, Rebel H, de Gruijl F. Single UVB overexposure stimulates melanocyte proliferation in murine skin, in contrast to fractionated or UVA-1 exposure. J Invest Dermatol. 2005;124:241-7 pubmed
Li H, Min Y, Park K, Kim D. Inhibition of melanogenesis by Xanthium strumarium L. Biosci Biotechnol Biochem. 2012;76:767-71 pubmed
Hozumi H, Takeda K, Yoshida-Amano Y, Takemoto Y, Kusumi R, Fukuzaki-Dohi U, et al. Impaired development of melanoblasts in the black-eyed white Mitf(mi-bw) mouse, a model for auditory-pigmentary disorders. Genes Cells. 2012;17:494-508 pubmed publisher
Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek K, et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev. 2006;20:3426-39 pubmed
Ho H, Kapadia R, Al-Tahan S, Ahmad S, Ganesan A. WIPI1 coordinates melanogenic gene transcription and melanosome formation via TORC1 inhibition. J Biol Chem. 2011;286:12509-23 pubmed publisher
Miettinen M, Fernandez M, Franssila K, Gatalica Z, Lasota J, Sarlomo-Rikala M. Microphthalmia transcription factor in the immunohistochemical diagnosis of metastatic melanoma: comparison with four other melanoma markers. Am J Surg Pathol. 2001;25:205-11 pubmed
Yao C, Oh J, Oh I, Park C, Chung J. [6]-Shogaol inhibits melanogenesis in B16 mouse melanoma cells through activation of the ERK pathway. Acta Pharmacol Sin. 2013;34:289-94 pubmed publisher
Mascarenhas J, Littlejohn E, Wolsky R, Young K, Nelson M, Salgia R, et al. PAX3 and SOX10 activate MET receptor expression in melanoma. Pigment Cell Melanoma Res. 2010;23:225-37 pubmed publisher
Chen S, Li H, Gaudenz K, Paulson A, Guo F, Trimble R, et al. Defective FGF signaling causes coloboma formation and disrupts retinal neurogenesis. Cell Res. 2013;23:254-73 pubmed publisher
Maruotti J, Wahlin K, Gorrell D, Bhutto I, Lutty G, Zack D. A simple and scalable process for the differentiation of retinal pigment epithelium from human pluripotent stem cells. Stem Cells Transl Med. 2013;2:341-54 pubmed publisher
Cook A, Chen W, Thurber A, Smit D, Smith A, Bladen T, et al. Analysis of cultured human melanocytes based on polymorphisms within the SLC45A2/MATP, SLC24A5/NCKX5, and OCA2/P loci. J Invest Dermatol. 2009;129:392-405 pubmed publisher
Feng H, Cheng T, Steer J, Joyce D, Pavlos N, Leong C, et al. Myocyte enhancer factor 2 and microphthalmia-associated transcription factor cooperate with NFATc1 to transactivate the V-ATPase d2 promoter during RANKL-induced osteoclastogenesis. J Biol Chem. 2009;284:14667-76 pubmed publisher
Wellbrock C, Weisser C, Geissinger E, Troppmair J, Schartl M. Activation of p59(Fyn) leads to melanocyte dedifferentiation by influencing MKP-1-regulated mitogen-activated protein kinase signaling. J Biol Chem. 2002;277:6443-54 pubmed
product information
Product Type :
Antibody
Product Name :
MiTF Monoclonal Antibody (C5)
Catalog # :
MA5-14146
Quantity :
500µL
Price :
US 309.00
Clonality :
Monoclonal
Purity :
Protein G
Host :
Mouse
Reactivity :
Canine, Equine, Human, Mouse, Rat
Applications :
Flow Cytometry: 0.5-1ug/test, Gel Shift: 1mg/mL, Immunohistochemistry (Paraffin): Assay Dependent, Western Blot: 2-4 ug/ml
Species :
Canine, Equine, Human, Mouse, Rat
Clone :
C5
Isotype :
IgG1, kappa
Storage :
4° C
Description :
Mi is a basic helix-loop-helix-leucine zipper (b-HLH-ZIP) transcription factor implicated in pigmentation, mast cells and bone development. The mutation of Mi causes Waardenburg Syndrome type II in humans. In mice, a profound loss of pigmented cells in the skin eye and inner ear results, as well as osteopetrosis and defects in natural killer and mast cells. There are two known isoforms of Mi differing by 66 amino acids at the NH2 terminus. Shorter forms are expressed in melanocytes and run as two bands at 52kDa and 56kDa, while the longer Mi form runs as a cluster of bands at 60-70kDa in osteoclasts and in B16 melonoma cells (but not other melanoma cell lines), as well as mast cells and heart.
Immunogen :
N-terminal fragment of human Mi protein
Format :
Liquid
Applications w/Dilutions :
Flow Cytometry: 0.5-1ug/test, Gel Shift: 1mg/mL, Immunohistochemistry (Paraffin): Assay Dependent, Western Blot: 2-4 ug/ml
Aliases :
class E basic helix-loop-helix protein 32
PubMed References :
11176069, 11382753, 11734563, 11756773, 15577676, 15654980, 15716956, 16129781, 16162175, 17000761, 17085443, 17113577, 17182868, 17266927, 17724718, 18245463, 18478239, 18650849, 18754039, 18829533, 19086131, 19321441, 19422606, 19937254, 20067553, 20465650, 20530484, 20573688, 21258399, 21317285, 21838918, 21883983, 22412813, 22484949, 22496449, 22563733, 22668579, 23097100, 23147794, 23240058, 23250956, 23585288, 24168510, 24265153, 24267888, 24304702, 24380755, 24562306, 24596619, 24915161, 25755924, 26092939, 26530832, 27055402, 27097562, 27185926
company information
Invitrogen
Thermo Fisher Scientific
81 Wyman Street
Waltham, MA USA 02451
www.thermofisher.com
800-678-5599
headquarters: USA