This webpage contains legacy information. The product is either no longer available from the supplier or has been delisted at Labome.
product summary
company name :
Invitrogen
other brands :
NeoMarkers, Lab Vision, Endogen, Pierce, BioSource International, Zymed Laboratories, Caltag, Molecular Probes, Research Genetics, Life Technologies, Applied Biosystems, GIBCO BRL, ABgene, Dynal, Affinity BioReagents, Nunc, Invitrogen, NatuTec, Oxoid, Richard-Allan Scientific, Arcturus, Perseptive Biosystems, Proxeon, eBioscience
product type :
antibody
product name :
CD81 Monoclonal Antibody (1.3.3.22)
catalog :
MA5-13548
quantity :
500 uL
price :
US 520.00
clonality :
monoclonal
host :
mouse
conjugate :
nonconjugated
clone name :
1.3.3.22

The same clone is also sold as:
reactivity :
human, rat
application :
western blot, immunohistochemistry, immunocytochemistry, flow cytometry, immunohistochemistry - frozen section
citations: 25
Reference
Tati V, Mitra S, Basu S, Shukla S. Bone marrow mesenchymal stem cell-derived extracellular vesicles promote corneal epithelial repair and suppress apoptosis via modulation of Caspase-3 in vitro. FEBS Open Bio. 2024;14:968-982 pubmed publisher
Ekram S, Khalid S, Ramzan F, Salim A, Bashir I, Durrieu M, et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles Protect Rat Nucleus Pulposus Cells from Oxidative Stress. Cartilage. 2024;15:328-344 pubmed publisher
Paw M, Kusiak A, Nit K, Litewka J, Piejko M, Wnuk D, et al. Hypoxia enhances anti-fibrotic properties of extracellular vesicles derived from hiPSCs via the miR302b-3p/TGFβ/SMAD2 axis. BMC Med. 2023;21:412 pubmed publisher
Hu L, Wang B, Fan Y, He Z, Zheng W. Exosomal miR-23b from bone marrow mesenchymal stem cells alleviates oxidative stress and pyroptosis after intracerebral hemorrhage. Neural Regen Res. 2023;18:560-567 pubmed publisher
Laso Garc xed a F, Piniella D, G xf3 mez de Frutos M, Casado Fern xe1 ndez L, P xe9 rez Mato M, Alonso L xf3 pez E, et al. Protein content of blood-derived extracellular vesicles: An approach to the pathophysiology of cerebral hemorrhage. Front Cell Neurosci. 2022;16:1058546 pubmed publisher
Coray M, G xf6 ldi V, Schmid L, Benecke L, Figueir xf3 F, Muller L. Differential Immunomodulatory Effects of Head and Neck Cancer-Derived Exosomes on B Cells in the Presence of ATP. Int J Mol Sci. 2022;23: pubmed publisher
Zarubova J, Hasani Sadrabadi M, Norris S, Majedi F, Xiao C, Kasko A, et al. Cell-Taxi: Mesenchymal Cells Carry and Transport Clusters of Cancer Cells. Small. 2022;18:e2203515 pubmed publisher
Santos M, Rappa G, Fontana S, Karbanov xe1 J, Aalam F, Tai D, et al. Anti-Human CD9 Fab Fragment Antibody Blocks the Extracellular Vesicle-Mediated Increase in Malignancy of Colon Cancer Cells. Cells. 2022;11: pubmed publisher
. Late Breaking Orals. J Extracell Vesicles. 2022;11:e12252 pubmed publisher
Fan X, Cyganek L, Nitschke K, Uhlig S, Nuhn P, Bieback K, et al. Functional Characterization of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells. Int J Mol Sci. 2022;23: pubmed publisher
Miao N, Cai W, Ding S, Liu Y, Chen W, Sun T. Characterization of plasma exosomal microRNAs in responding to radiotherapy of human esophageal squamous cell carcinoma. Mol Med Rep. 2022;26: pubmed publisher
P xe9 rez Macedonio C, Flores Alfaro E, Alarc xf3 n Romero L, Vences Vel xe1 zquez A, Castro Alarc xf3 n N, Mart xed nez Mart xed nez E, et al. CD14 and CD26 from serum exosomes are associated with type 2 diabetes, exosomal Cystatin C and CD14 are associated with metabolic syndrome and atherogenic index of plasma. Peerj. 2022;10:e13656 pubmed publisher
Biadglegne F, Rademacher P, De Sulbaran Y, K xf6 nig B, Rodloff A, Zedler U, et al. Exosomes in serum‑free cultures of THP‑1 macrophages infected with Mycobacterium tuberculosis. Mol Med Rep. 2021;24: pubmed publisher
Tutuianu R, Rosca A, Iacomi D, Simionescu M, Titorencu I. Human Mesenchymal Stromal Cell-Derived Exosomes Promote In Vitro Wound Healing by Modulating the Biological Properties of Skin Keratinocytes and Fibroblasts and Stimulating Angiogenesis. Int J Mol Sci. 2021;22: pubmed publisher
Sorop A, Iacob R, Iacob S, Constantinescu D, Chitoiu L, Fertig T, et al. Plasma Small Extracellular Vesicles Derived miR-21-5p and miR-92a-3p as Potential Biomarkers for Hepatocellular Carcinoma Screening. Front Genet. 2020;11:712 pubmed publisher
Zhang S, Jin T, Wang L, Liu W, Zhang Y, Zheng Y, et al. Electro-Acupuncture Promotes the Differentiation of Endogenous Neural Stem Cells via Exosomal microRNA 146b After Ischemic Stroke. Front Cell Neurosci. 2020;14:223 pubmed publisher
Le Gall L, Ouandaogo Z, Anakor E, Connolly O, Butler Browne G, Laine J, et al. Optimized method for extraction of exosomes from human primary muscle cells. Skelet Muscle. 2020;10:20 pubmed publisher
Van Deun J, Jo A, Li H, Lin H, Weissleder R, Im H, et al. Integrated Dual-Mode Chromatography to Enrich Extracellular Vesicles from Plasma. Adv Biosyst. 2020;4:e1900310 pubmed publisher
Dinh P, Paudel D, Brochu H, Popowski K, Gracieux M, Cores J, et al. Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis. Nat Commun. 2020;11:1064 pubmed publisher
Shimagaki T, Yoshio S, Kawai H, Sakamoto Y, Doi H, Matsuda M, et al. Serum milk fat globule-EGF factor 8 (MFG-E8) as a diagnostic and prognostic biomarker in patients with hepatocellular carcinoma. Sci Rep. 2019;9:15788 pubmed publisher
Geeurickx E, Tulkens J, Dhondt B, Van Deun J, Lippens L, Vergauwen G, et al. The generation and use of recombinant extracellular vesicles as biological reference material. Nat Commun. 2019;10:3288 pubmed publisher
Morris Love J, Gee G, O Hara B, Assetta B, Atkinson A, Dugan A, et al. JC Polyomavirus Uses Extracellular Vesicles To Infect Target Cells. MBio. 2019;10: pubmed publisher
Kerr N, Garcia Contreras M, Abbassi S, Mejias N, Desousa B, Ricordi C, et al. Inflammasome Proteins in Serum and Serum-Derived Extracellular Vesicles as Biomarkers of Stroke. Front Mol Neurosci. 2018;11:309 pubmed publisher
Peng Y, Baulier E, Ke Y, Young A, Ahmedli N, Schwartz S, et al. Human embryonic stem cells extracellular vesicles and their effects on immortalized human retinal Müller cells. PLoS ONE. 2018;13:e0194004 pubmed publisher
Bhome R, Goh R, Bullock M, Pillar N, Thirdborough S, Mellone M, et al. Exosomal microRNAs derived from colorectal cancer-associated fibroblasts: role in driving cancer progression. Aging (Albany NY). 2017;9:2666-2694 pubmed publisher
product information
Product Type :
Antibody
Product Name :
CD81 Monoclonal Antibody (1.3.3.22)
Catalog # :
MA5-13548
Quantity :
500 uL
Price :
US 520.00
Clonality :
Monoclonal
Purity :
Protein A/G
Host :
Mouse
Reactivity :
Human, Rat
Applications :
Flow Cytometry: Assay-dependent, Functional Assay: Assay-dependent, Immunocytochemistry: 1:10-1:100, Immunohistochemistry (Frozen): Assay-dependent, Western Blot: 1:100-1:500
Species :
Human, Rat
Clone :
1.3.3.22
Isotype :
IgG1, kappa
Storage :
4 C
Description :
CD81 (TAPA-1, target of anti-proliferative antibody-1) is a member of the tetraspanin family, is expressed on virtually all nucleated cells, but above all on germinal center B cells. CD81 forms complexes with other tetraspanin proteins, integrins, coreceptors, MHC class I and II molecules, and influences adhesion, morphology, activation, proliferation and differentiation of B, T cells. In muscles, CD81 promotes cell fusion and myotube maintenance. CD81 has been also identified as a receptor for the hepatitis C virus. Like members of the tetraspanin family that include CD9, CD37, CD53, CD63, and CD82, CD81 is a cell-surface proteins that are characterized by the presence of four hydrophobic domains. The proteins mediate signal transduction events that play a role in the regulation of cell development, activation, growth and motility. CD81 is a cell surface glycoprotein that is known to complex with integrins. CD81 appears to promote muscle cell fusion and support myotube maintenance. CD81 associates with CD19, CD21, Leu 13, and integrins on cell membrane and acts as a receptor for the envelope protein E2 of chronic hepatitis C virus. Antibodies to CD81 have anti-proliferative effects on different lymphoid cell lines, particularly those derived from large cell lymphomas. CD81 is also localized in the tumor-suppressor gene region and is a candidate gene for malignancies.
Immunogen :
B cell line derived from a Burkitt lymphoma
Format :
Liquid
Applications w/Dilutions :
Flow Cytometry: Assay-dependent, Functional Assay: Assay-dependent, Immunocytochemistry: 1:10-1:100, Immunohistochemistry (Frozen): Assay-dependent, Western Blot: 1:100-1:500
Aliases :
26 kDa cell surface protein TAPA-1; CD 81 antigen; Cd81; CD81 antigen; CD81 antigen (target of antiproliferative antibody 1); CD81 molecule; CVID6; S5.7; Tapa1; Tapa-1; Target of the antiproliferative antibody 1; Tetraspanin28; tetraspanin-28; Tspan28; Tspan-28
company information
Invitrogen
Thermo Fisher Scientific
81 Wyman Street
Waltham, MA USA 02451
https://www.thermofisher.com
800-678-5599
headquarters: USA