product summary
Loading...
company name :
Invitrogen
other brands :
NeoMarkers, Lab Vision, Endogen, Pierce, BioSource International, Zymed Laboratories, Caltag, Molecular Probes, Research Genetics, Life Technologies, Applied Biosystems, GIBCO BRL, ABgene, Dynal, Affinity BioReagents, Nunc, Invitrogen, NatuTec, Oxoid, Richard-Allan Scientific, Arcturus, Perseptive Biosystems, Proxeon, eBioscience
product type :
antibody
product name :
Cardiac Troponin T Monoclonal Antibody (13-11)
catalog :
MA5-12960
quantity :
200 µL
price :
US 399.00
clonality :
monoclonal
host :
mouse
conjugate :
nonconjugated
clone name :
13-11
reactivity :
guinea pig, hamsters, human, mouse, rat, dogs, chicken, pigs , zebrafish , domestic rabbit
application :
western blot, ELISA, immunohistochemistry, immunocytochemistry, flow cytometry, immunohistochemistry - paraffin section, immunohistochemistry - frozen section, western blot knockout validation
more info or order :
citations: 207
Published Application/Species/Sample/DilutionReference
  • western blot knockout validation; human; loading ...; fig 5e
Pettinato A, Yoo D, VanOudenhove J, Chen Y, Cohn R, Ladha F, et al. Sarcomere function activates a p53-dependent DNA damage response that promotes polyploidization and limits in vivo cell engraftment. Cell Rep. 2021;35:109088 pubmed publisher
  • immunohistochemistry; mouse; 1:200; loading ...; fig 2e
Cui M, Atmanli A, Morales M, Tan W, Chen K, Xiao X, et al. Nrf1 promotes heart regeneration and repair by regulating proteostasis and redox balance. Nat Commun. 2021;12:5270 pubmed publisher
  • immunocytochemistry; mouse; 1:1000; loading ...; fig 3g
Qian B, Wang P, Zhang D, Wu L. m6A modification promotes miR-133a repression during cardiac development and hypertrophy via IGF2BP2. Cell Death Discov. 2021;7:157 pubmed publisher
  • immunohistochemistry - paraffin section; mouse; 1:200; loading ...; fig 1a
Zheng F, Chen Z, Tang Q, Wang X, Chong D, Zhang T, et al. Cholesterol metabolic enzyme Ggpps regulates epicardium development and ventricular wall architecture integrity in mice. J Mol Cell Biol. 2021;13:445-454 pubmed publisher
  • immunocytochemistry; human; fig s7
Royer Pokora B, Busch M, Tenbusch S, Schmidt M, Beier M, Woods A, et al. Comprehensive Biology and Genetics Compendium of Wilms Tumor Cell Lines with Different WT1 Mutations. Cancers (Basel). 2020;13: pubmed publisher
  • immunocytochemistry; mouse; loading ...; fig 1c
Yoshida S, Miyagawa S, Toyofuku T, Fukushima S, Kawamura T, Kawamura A, et al. Syngeneic Mesenchymal Stem Cells Reduce Immune Rejection After Induced Pluripotent Stem Cell-Derived Allogeneic Cardiomyocyte Transplantation. Sci Rep. 2020;10:4593 pubmed publisher
  • immunohistochemistry - paraffin section; human; loading ...; fig 2b
  • immunohistochemistry - paraffin section; mouse; loading ...; fig e3a
Aghajanian H, Kimura T, Rurik J, Hancock A, Leibowitz M, Li L, et al. Targeting cardiac fibrosis with engineered T cells. Nature. 2019;573:430-433 pubmed publisher
  • immunocytochemistry; human; 1:1000; loading ...; fig 2a
Tsai S, Ghazizadeh Z, Wang H, Ortega F, Badieyan Z, Hsu Z, et al. A Human Embryonic Stem Cell Reporter Line for Monitoring Chemical-induced Cardiotoxicity. Cardiovasc Res. 2019;: pubmed publisher
  • flow cytometry; human; 1:200; loading ...; fig s3e, s3g
  • immunocytochemistry; human; 1:200; fig s3c
  • immunohistochemistry; human; 1:100; loading ...; fig 4e
Yap L, Wang J, Moreno Moral A, Chong L, Sun Y, Harmston N, et al. In Vivo Generation of Post-infarct Human Cardiac Muscle by Laminin-Promoted Cardiovascular Progenitors. Cell Rep. 2019;26:3231-3245.e9 pubmed publisher
  • immunohistochemistry - frozen section; human; 1:100; loading ...; fig s2a
  • immunocytochemistry; human; 1:100; loading ...; fig 2f
Sahara M, Santoro F, Sohlmér J, Zhou C, Witman N, Leung C, et al. Population and Single-Cell Analysis of Human Cardiogenesis Reveals Unique LGR5 Ventricular Progenitors in Embryonic Outflow Tract. Dev Cell. 2019;48:475-490.e7 pubmed publisher
  • immunocytochemistry; human; 1:200; loading ...; fig 3e
Zhao Y, Rafatian N, Feric N, Cox B, Aschar Sobbi R, Wang E, et al. A Platform for Generation of Chamber-Specific Cardiac Tissues and Disease Modeling. Cell. 2019;176:913-927.e18 pubmed publisher
  • immunocytochemistry; human; fig 7c
  • immunocytochemistry; mouse; fig 1c
Mohamed T, Ang Y, Radzinsky E, Zhou P, Huang Y, Elfenbein A, et al. Regulation of Cell Cycle to Stimulate Adult Cardiomyocyte Proliferation and Cardiac Regeneration. Cell. 2018;173:104-116.e12 pubmed publisher
  • immunocytochemistry; human; 1:500; loading ...; fig 5d
Freire A, Waghray A, Soares da Silva F, Resende T, Lee D, Pereira C, et al. Transient HES5 Activity Instructs Mesodermal Cells toward a Cardiac Fate. Stem Cell Reports. 2017;9:136-148 pubmed publisher
  • western blot; human
Al Maqtari T, Hong K, Vajravelu B, Moktar A, Cao P, Moore J, et al. Transcription factor-induced activation of cardiac gene expression in human c-kit+ cardiac progenitor cells. PLoS ONE. 2017;12:e0174242 pubmed publisher
  • immunocytochemistry; mouse; 1:400; loading ...; fig 1e
Abad M, Hashimoto H, Zhou H, Morales M, Chen B, Bassel Duby R, et al. Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Transcriptional Activity. Stem Cell Reports. 2017;8:548-560 pubmed publisher
  • immunohistochemistry - frozen section; mouse; loading ...; fig 2a
Hirai M, Arita Y, McGlade C, Lee K, Chen J, Evans S. Adaptor proteins NUMB and NUMBL promote cell cycle withdrawal by targeting ERBB2 for degradation. J Clin Invest. 2017;127:569-582 pubmed publisher
  • flow cytometry; human; loading ...; fig 2a
  • immunocytochemistry; human; loading ...; fig s2a
Ang Y, Rivas R, Ribeiro A, Srivas R, Rivera J, Stone N, et al. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell. 2016;167:1734-1749.e22 pubmed publisher
  • flow cytometry; human; 1:2000; loading ...; fig 6b
  • immunohistochemistry - frozen section; rat; 1:100; loading ...; fig s1e
Protze S, Liu J, Nussinovitch U, Ohana L, Backx P, Gepstein L, et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat Biotechnol. 2017;35:56-68 pubmed publisher
  • flow cytometry; human; 1:200; fig 1d
Kempf H, Olmer R, Haase A, Franke A, Bolesani E, Schwanke K, et al. Bulk cell density and Wnt/TGFbeta signalling regulate mesendodermal patterning of human pluripotent stem cells. Nat Commun. 2016;7:13602 pubmed publisher
  • immunohistochemistry; mouse; loading ...
Ma H, Wang L, Liu J, Qian L. Direct Cardiac Reprogramming as a Novel Therapeutic Strategy for Treatment of Myocardial Infarction. Methods Mol Biol. 2017;1521:69-88 pubmed
  • immunohistochemistry - paraffin section; mouse; 1:100; loading ...; fig 5e
Monnerat G, Alarcón M, Vasconcellos L, Hochman Mendez C, Brasil G, Bassani R, et al. Macrophage-dependent IL-1β production induces cardiac arrhythmias in diabetic mice. Nat Commun. 2016;7:13344 pubmed publisher
  • flow cytometry; human; loading ...; fig s3a
  • immunocytochemistry; human; loading ...; fig s3a
Zeltner N, Fattahi F, Dubois N, Saurat N, Lafaille F, Shang L, et al. Capturing the biology of disease severity in a PSC-based model of familial dysautonomia. Nat Med. 2016;22:1421-1427 pubmed publisher
  • immunohistochemistry - paraffin section; mouse; loading ...; fig 4c
Zhou L, Dai H, Wu J, Zhou M, Yuan H, Du J, et al. Role of FEN1 S187 phosphorylation in counteracting oxygen-induced stress and regulating postnatal heart development. FASEB J. 2017;31:132-147 pubmed publisher
  • immunocytochemistry; human; 1:200; fig s1
Okata S, Yuasa S, Suzuki T, Ito S, Makita N, Yoshida T, et al. Embryonic type Na+ channel ?-subunit, SCN3B masks the disease phenotype of Brugada syndrome. Sci Rep. 2016;6:34198 pubmed publisher
  • flow cytometry; human; fig 1d
  • immunocytochemistry; human; 1:100; fig 2a
Josowitz R, Mulero Navarro S, Rodriguez N, Falce C, Cohen N, Ullian E, et al. Autonomous and Non-autonomous Defects Underlie Hypertrophic Cardiomyopathy in BRAF-Mutant hiPSC-Derived Cardiomyocytes. Stem Cell Reports. 2016;7:355-369 pubmed publisher
  • immunocytochemistry; mouse; 1:200; loading ...; fig 2a
Hofbauer P, Jung J, McArdle T, Ogle B. Simple Monolayer Differentiation of Murine Cardiomyocytes via Nutrient Deprivation-Mediated Activation of β-Catenin. Stem Cell Rev. 2016;12:731-743 pubmed
  • western blot; human; fig 1
Elhamine F, Iorga B, Kruger M, Hunger M, Eckhardt J, Sreeram N, et al. Postnatal Development of Right Ventricular Myofibrillar Biomechanics in Relation to the Sarcomeric Protein Phenotype in Pediatric Patients with Conotruncal Heart Defects. J Am Heart Assoc. 2016;5: pubmed publisher
  • immunocytochemistry; mouse; 1:100; loading ...; fig 1e
Chiapparo G, Lin X, Lescroart F, Chabab S, Paulissen C, Pitisci L, et al. Mesp1 controls the speed, polarity, and directionality of cardiovascular progenitor migration. J Cell Biol. 2016;213:463-77 pubmed publisher
  • immunohistochemistry - paraffin section; mouse; 1:100; loading ...; fig 2h
Nakamura R, Koshiba Takeuchi K, Tsuchiya M, Kojima M, Miyazawa A, Ito K, et al. Expression analysis of Baf60c during heart regeneration in axolotls and neonatal mice. Dev Growth Differ. 2016;58:367-82 pubmed publisher
  • flow cytometry; human; 1:200; fig 4
  • immunocytochemistry; human; 1:200
Titmarsh D, Glass N, Mills R, Hidalgo A, Wolvetang E, Porrello E, et al. Induction of Human iPSC-Derived Cardiomyocyte Proliferation Revealed by Combinatorial Screening in High Density Microbioreactor Arrays. Sci Rep. 2016;6:24637 pubmed publisher
  • immunocytochemistry; human; 1:200; fig 1
Burridge P, Li Y, Matsa E, Wu H, Ong S, Sharma A, et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med. 2016;22:547-56 pubmed publisher
  • immunocytochemistry; mouse; 1:1000; fig 8
Langer D, Martianov I, Alpern D, Rhinn M, Keime C, Dolle P, et al. Essential role of the TFIID subunit TAF4 in murine embryogenesis and embryonic stem cell differentiation. Nat Commun. 2016;7:11063 pubmed publisher
  • immunocytochemistry; mouse; 1:400; fig 4
Fischer K, Morgan K, Hearon K, Sklaviadis D, Tochka Z, Fenton O, et al. Poly(Limonene Thioether) Scaffold for Tissue Engineering. Adv Healthc Mater. 2016;5:813-21 pubmed publisher
  • immunohistochemistry - frozen section; mouse; fig 2
Passer D, van de Vrugt A, Atmanli A, Domian I. Atypical Protein Kinase C-Dependent Polarized Cell Division Is Required for Myocardial Trabeculation. Cell Rep. 2016;14:1662-1672 pubmed publisher
  • immunocytochemistry; mouse; 1:200; fig s2f
Fuchs C, Gawlas S, Heher P, Nikouli S, Paar H, Ivankovic M, et al. Desmin enters the nucleus of cardiac stem cells and modulates Nkx2.5 expression by participating in transcription factor complexes that interact with the nkx2.5 gene. Biol Open. 2016;5:140-53 pubmed publisher
  • flow cytometry; human; fig s1
Eng G, Lee B, Protas L, Gagliardi M, Brown K, Kass R, et al. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat Commun. 2016;7:10312 pubmed publisher
  • immunocytochemistry; mouse; 1:200; fig s2
Jung J, Hu D, Domian I, Ogle B. An integrated statistical model for enhanced murine cardiomyocyte differentiation via optimized engagement of 3D extracellular matrices. Sci Rep. 2015;5:18705 pubmed publisher
  • flow cytometry; mouse; fig 2
  • immunocytochemistry; mouse; 1:100; fig 4
Ban K, Wile B, Cho K, Kim S, Song M, Kim S, et al. Non-genetic Purification of Ventricular Cardiomyocytes from Differentiating Embryonic Stem Cells through Molecular Beacons Targeting IRX-4. Stem Cell Reports. 2015;5:1239-1249 pubmed publisher
  • flow cytometry; human; 1:200; fig 3
Busser B, Lin Y, Yang Y, Zhu J, Chen G, Michelson A. An Orthologous Epigenetic Gene Expression Signature Derived from Differentiating Embryonic Stem Cells Identifies Regulators of Cardiogenesis. PLoS ONE. 2015;10:e0141066 pubmed publisher
  • flow cytometry; mouse; 1:200; fig 2
  • immunocytochemistry; mouse; 1:500; fig 2
Zhao Y, Londono P, Cao Y, Sharpe E, Proenza C, O Rourke R, et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun. 2015;6:8243 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:350; fig 1b
Kimura W, Xiao F, Canseco D, Muralidhar S, Thet S, Zhang H, et al. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature. 2015;523:226-30 pubmed publisher
  • flow cytometry; human
Szabo L, Morey R, Palpant N, Wang P, Afari N, Jiang C, et al. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol. 2015;16:126 pubmed publisher
  • immunocytochemistry; mouse; 1:500; fig 2
Zhu S, Wang H, Ding S. Reprogramming fibroblasts toward cardiomyocytes, neural stem cells and hepatocytes by cell activation and signaling-directed lineage conversion. Nat Protoc. 2015;10:959-73 pubmed publisher
  • immunocytochemistry; mouse; 1:500; fig 2
Tsai S, Maass K, Lu J, Fishman G, Chen S, Evans T. Efficient Generation of Cardiac Purkinje Cells from ESCs by Activating cAMP Signaling. Stem Cell Reports. 2015;4:1089-102 pubmed publisher
  • immunocytochemistry; human; 1:100; fig 2
  • western blot; human; 1:500; fig 5
Zatti S, Martewicz S, Serena E, Uno N, Giobbe G, Kazuki Y, et al. Complete restoration of multiple dystrophin isoforms in genetically corrected Duchenne muscular dystrophy patient-derived cardiomyocytes. Mol Ther Methods Clin Dev. 2014;1:1 pubmed publisher
  • immunocytochemistry; human; 1:400; fig 6
Palpant N, Hofsteen P, Pabon L, Reinecke H, Murry C. Cardiac development in zebrafish and human embryonic stem cells is inhibited by exposure to tobacco cigarettes and e-cigarettes. PLoS ONE. 2015;10:e0126259 pubmed publisher
  • western blot; mouse
Quan C, Xie B, Wang H, Chen S. PKB-Mediated Thr649 Phosphorylation of AS160/TBC1D4 Regulates the R-Wave Amplitude in the Heart. PLoS ONE. 2015;10:e0124491 pubmed publisher
  • western blot; mouse; 1:100; fig 1
Alexander J, Hota S, He D, Thomas S, Ho L, Pennacchio L, et al. Brg1 modulates enhancer activation in mesoderm lineage commitment. Development. 2015;142:1418-30 pubmed publisher
  • flow cytometry; human
Kim M, Horst A, Blinka S, Stamm K, Mahnke D, Schuman J, et al. Activin-A and Bmp4 levels modulate cell type specification during CHIR-induced cardiomyogenesis. PLoS ONE. 2015;10:e0118670 pubmed publisher
  • immunocytochemistry; mouse; 1:400; fig 1e
Choi S, Lee H, Choi J, Kim J, Park C, Joo H, et al. Cyclosporin A induces cardiac differentiation but inhibits hemato-endothelial differentiation of P19 cells. PLoS ONE. 2015;10:e0117410 pubmed publisher
  • flow cytometry; human; 1:1000
van den Berg C, Elliott D, Braam S, Mummery C, Davis R. Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes Under Defined Conditions. Methods Mol Biol. 2016;1353:163-80 pubmed publisher
  • immunohistochemistry - paraffin section; human; 1:100; fig 3
  • western blot; human; fig s1
Clarke J, Lyra e Silva N, Figueiredo C, Frozza R, Ledo J, Beckman D, et al. Alzheimer-associated Aβ oligomers impact the central nervous system to induce peripheral metabolic deregulation. EMBO Mol Med. 2015;7:190-210 pubmed publisher
  • immunocytochemistry; human; 1:200
Lewis K, Silvester N, Barberini Jammaers S, Mason S, Marsh S, Lipka M, et al. A new system for profiling drug-induced calcium signal perturbation in human embryonic stem cell-derived cardiomyocytes. J Biomol Screen. 2015;20:330-40 pubmed publisher
  • immunocytochemistry; mouse; 1:400; fig 3
Nam Y, Lubczyk C, Bhakta M, Zang T, Fernandez Perez A, McAnally J, et al. Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors. Development. 2014;141:4267-78 pubmed publisher
  • immunohistochemistry; human; 1:150; fig 4
Tchao J, Han L, Lin B, Yang L, Tobita K. Combined biophysical and soluble factor modulation induces cardiomyocyte differentiation from human muscle derived stem cells. Sci Rep. 2014;4:6614 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:100
Kim E, Shekhar A, Lu J, Lin X, Liu F, Zhang J, et al. PCP4 regulates Purkinje cell excitability and cardiac rhythmicity. J Clin Invest. 2014;124:5027-36 pubmed publisher
  • immunocytochemistry; mouse; 1:100; fig 4
Wile B, Ban K, Yoon Y, Bao G. Molecular beacon-enabled purification of living cells by targeting cell type-specific mRNAs. Nat Protoc. 2014;9:2411-24 pubmed publisher
  • flow cytometry; human; 1:100
  • immunocytochemistry; human; 1:100
Josowitz R, Lu J, Falce C, D Souza S, Wu M, Cohen N, et al. Identification and purification of human induced pluripotent stem cell-derived atrial-like cardiomyocytes based on sarcolipin expression. PLoS ONE. 2014;9:e101316 pubmed publisher
  • flow cytometry; human; 1:200
  • immunocytochemistry; human; 1:200
Burridge P, Matsa E, Shukla P, Lin Z, Churko J, Ebert A, et al. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11:855-60 pubmed publisher
  • flow cytometry; mouse; 0.25 ug/ml
Xie Y, Ibrahim A, Cheng K, Wu Z, Liang W, Malliaras K, et al. Importance of cell-cell contact in the therapeutic benefits of cardiosphere-derived cells. Stem Cells. 2014;32:2397-406 pubmed publisher
  • immunohistochemistry; mouse; 1:100
  • western blot; mouse; 1:10,000
Puente B, Kimura W, Muralidhar S, Moon J, Amatruda J, Phelps K, et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell. 2014;157:565-79 pubmed publisher
  • immunocytochemistry; mouse; fig 4
Kowno M, Watanabe Susaki K, Ishimine H, Komazaki S, Enomoto K, Seki Y, et al. Prohibitin 2 regulates the proliferation and lineage-specific differentiation of mouse embryonic stem cells in mitochondria. PLoS ONE. 2014;9:e81552 pubmed publisher
  • flow cytometry; mouse
  • immunocytochemistry; mouse
Cho S, Park J, Heo H, Park S, Song S, Kim I, et al. Dual modulation of the mitochondrial permeability transition pore and redox signaling synergistically promotes cardiomyocyte differentiation from pluripotent stem cells. J Am Heart Assoc. 2014;3:e000693 pubmed publisher
  • flow cytometry; mouse; 1:500
Shenje L, Andersen P, Halushka M, Lui C, Fernandez L, Collin G, et al. Mutations in Alström protein impair terminal differentiation of cardiomyocytes. Nat Commun. 2014;5:3416 pubmed publisher
  • immunocytochemistry; mouse; 1:200
Ifkovits J, Addis R, Epstein J, Gearhart J. Inhibition of TGF? signaling increases direct conversion of fibroblasts to induced cardiomyocytes. PLoS ONE. 2014;9:e89678 pubmed publisher
  • flow cytometry; mouse; 1:100
Engels M, Rajarajan K, Feistritzer R, Sharma A, Nielsen U, Schalij M, et al. Insulin-like growth factor promotes cardiac lineage induction in vitro by selective expansion of early mesoderm. Stem Cells. 2014;32:1493-502 pubmed publisher
  • immunohistochemistry; mouse; 1:200
Heallen T, Morikawa Y, Leach J, Tao G, Willerson J, Johnson R, et al. Hippo signaling impedes adult heart regeneration. Development. 2013;140:4683-90 pubmed publisher
  • immunohistochemistry; zebrafish ; 1:100
Chen C, Durand E, Wang J, Zon L, Poss K. zebraflash transgenic lines for in vivo bioluminescence imaging of stem cells and regeneration in adult zebrafish. Development. 2013;140:4988-97 pubmed publisher
  • immunohistochemistry - paraffin section; human; 1:100
Turnbull I, Karakikes I, Serrao G, Backeris P, Lee J, Xie C, et al. Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium. FASEB J. 2014;28:644-54 pubmed publisher
  • immunohistochemistry; mouse; 1:500; fig 6
Maejima Y, Kyoi S, Zhai P, Liu T, Li H, Ivessa A, et al. Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat Med. 2013;19:1478-88 pubmed publisher
  • immunohistochemistry; mouse; 1:250
Nelson D, Jin D, Downs K, Kamp T, Lyons G. Irx4 identifies a chamber-specific cell population that contributes to ventricular myocardium development. Dev Dyn. 2014;243:381-92 pubmed
  • immunocytochemistry; mouse; 1:10
  • immunohistochemistry; mouse; 1:200
Später D, Abramczuk M, Buac K, Zangi L, Stachel M, Clarke J, et al. A HCN4+ cardiomyogenic progenitor derived from the first heart field and human pluripotent stem cells. Nat Cell Biol. 2013;15:1098-106 pubmed publisher
  • immunocytochemistry; mouse; 1:1000
Lehmann M, Nguemo F, Wagh V, Pfannkuche K, Hescheler J, Reppel M. Evidence for a critical role of catecholamines for cardiomyocyte lineage commitment in murine embryonic stem cells. PLoS ONE. 2013;8:e70913 pubmed publisher
  • immunohistochemistry; human
Yoshioka N, Gros E, Li H, Kumar S, Deacon D, Maron C, et al. Efficient generation of human iPSCs by a synthetic self-replicative RNA. Cell Stem Cell. 2013;13:246-54 pubmed publisher
  • immunohistochemistry; human
Zhang W, Liu X, Yang L, Zhu D, Zhang Y, Chen Y, et al. Wharton's jelly-derived mesenchymal stem cells promote myocardial regeneration and cardiac repair after miniswine acute myocardial infarction. Coron Artery Dis. 2013;24:549-58 pubmed publisher
  • immunohistochemistry; mouse; 1:200
Rebuzzini P, Fassina L, Mulas F, Bellazzi R, Redi C, Di Liberto R, et al. Mouse embryonic stem cells irradiated with ?-rays differentiate into cardiomyocytes but with altered contractile properties. Mutat Res. 2013;756:37-45 pubmed publisher
  • immunohistochemistry; mouse
Liang X, Wang G, Lin L, Lowe J, Zhang Q, Bu L, et al. HCN4 dynamically marks the first heart field and conduction system precursors. Circ Res. 2013;113:399-407 pubmed publisher
  • immunocytochemistry; mouse
Craft A, Ahmed N, Rockel J, Baht G, Alman B, Kandel R, et al. Specification of chondrocytes and cartilage tissues from embryonic stem cells. Development. 2013;140:2597-610 pubmed publisher
  • immunohistochemistry; human
Duerr G, Heinemann J, Dunkel S, Zimmer A, Lutz B, Lerner R, et al. Myocardial hypertrophy is associated with inflammation and activation of endocannabinoid system in patients with aortic valve stenosis. Life Sci. 2013;92:976-83 pubmed publisher
  • immunocytochemistry; rat; 1:100; fig 2
Hadad I, Veithen A, Springael J, Sotiropoulou P, Mendes Da Costa A, Miot F, et al. Stroma cell-derived factor-1? signaling enhances calcium transients and beating frequency in rat neonatal cardiomyocytes. PLoS ONE. 2013;8:e56007 pubmed publisher
  • immunohistochemistry; mouse; 1:100
Haenebalcke L, Goossens S, Dierickx P, Bartunkova S, D Hont J, Haigh K, et al. The ROSA26-iPSC mouse: a conditional, inducible, and exchangeable resource for studying cellular (De)differentiation. Cell Rep. 2013;3:335-41 pubmed publisher
  • immunohistochemistry; mouse; 1:200
Hoebaus J, Heher P, Gottschamel T, Scheinast M, Auner H, Walder D, et al. Embryonic stem cells facilitate the isolation of persistent clonal cardiovascular progenitor cell lines and leukemia inhibitor factor maintains their self-renewal and myocardial differentiation potential in vitro. Cells Tissues Organs. 2013;197:249-68 pubmed publisher
  • immunohistochemistry; mouse
Del Re D, Yang Y, Nakano N, Cho J, Zhai P, Yamamoto T, et al. Yes-associated protein isoform 1 (Yap1) promotes cardiomyocyte survival and growth to protect against myocardial ischemic injury. J Biol Chem. 2013;288:3977-88 pubmed publisher
  • western blot; mouse
Brody M, Hacker T, Patel J, Feng L, Sadoshima J, Tevosian S, et al. Ablation of the cardiac-specific gene leucine-rich repeat containing 10 (Lrrc10) results in dilated cardiomyopathy. PLoS ONE. 2012;7:e51621 pubmed publisher
  • immunocytochemistry; human
Serena E, Cimetta E, Zatti S, Zaglia T, Zagallo M, Keller G, et al. Micro-arrayed human embryonic stem cells-derived cardiomyocytes for in vitro functional assay. PLoS ONE. 2012;7:e48483 pubmed publisher
  • immunohistochemistry; zebrafish
Opitz R, Maquet E, Huisken J, Antonica F, Trubiroha A, Pottier G, et al. Transgenic zebrafish illuminate the dynamics of thyroid morphogenesis and its relationship to cardiovascular development. Dev Biol. 2012;372:203-16 pubmed publisher
  • flow cytometry; mouse; fig 4
  • immunohistochemistry; mouse; 1:500; fig 3
Wei W, Sun H, Ting K, Zhang L, Lee H, Li G, et al. Inhibition of cardiomyocytes differentiation of mouse embryonic stem cells by CD38/cADPR/Ca2+ signaling pathway. J Biol Chem. 2012;287:35599-611 pubmed publisher
  • immunohistochemistry; hamsters
Mastri M, Shah Z, McLaughlin T, Greene C, Baum L, Suzuki G, et al. Activation of Toll-like receptor 3 amplifies mesenchymal stem cell trophic factors and enhances therapeutic potency. Am J Physiol Cell Physiol. 2012;303:C1021-33 pubmed publisher
  • immunocytochemistry; human
Egashira T, Yuasa S, Suzuki T, Aizawa Y, Yamakawa H, Matsuhashi T, et al. Disease characterization using LQTS-specific induced pluripotent stem cells. Cardiovasc Res. 2012;95:419-29 pubmed publisher
  • immunohistochemistry; human
Traister A, Aafaqi S, Masse S, Dai X, Li M, Hinek A, et al. ILK induces cardiomyogenesis in the human heart. PLoS ONE. 2012;7:e37802 pubmed publisher
  • immunocytochemistry; mouse; 1:400
  • immunohistochemistry; mouse; 1:400
Song K, Nam Y, Luo X, Qi X, Tan W, Huang G, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485:599-604 pubmed publisher
  • flow cytometry; human; 1:200
Hazeltine L, Simmons C, Salick M, Lian X, Badur M, Han W, et al. Effects of substrate mechanics on contractility of cardiomyocytes generated from human pluripotent stem cells. Int J Cell Biol. 2012;2012:508294 pubmed publisher
  • flow cytometry; mouse
van den Ameele J, Tiberi L, Bondue A, Paulissen C, Herpoel A, Iacovino M, et al. Eomesodermin induces Mesp1 expression and cardiac differentiation from embryonic stem cells in the absence of Activin. EMBO Rep. 2012;13:355-62 pubmed publisher
  • western blot; human; 0.2 ug/ml
Jung C, Moretti A, Mederos y Schnitzler M, Iop L, Storch U, Bellin M, et al. Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO Mol Med. 2012;4:180-91 pubmed publisher
  • immunohistochemistry; human
Ng K, Chan Y, Lee Y, Lai W, Au K, Fung M, et al. Cobalt chloride pretreatment promotes cardiac differentiation of human embryonic stem cells under atmospheric oxygen level. Cell Reprogram. 2011;13:527-37 pubmed publisher
  • flow cytometry; human; 1:400
Dubois N, Craft A, Sharma P, Elliott D, Stanley E, Elefanty A, et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol. 2011;29:1011-8 pubmed publisher
  • immunocytochemistry; mouse; 1:100
Pieters T, Haenebalcke L, Hochepied T, D Hont J, Haigh J, van Roy F, et al. Efficient and user-friendly pluripotin-based derivation of mouse embryonic stem cells. Stem Cell Rev. 2012;8:768-78 pubmed publisher
  • flow cytometry; human
Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N, Yamanaka S, et al. Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS ONE. 2011;6:e23657 pubmed publisher
  • ELISA; domestic rabbit; 0.25 ug/ml
  • ELISA; mouse; 0.25 ug/ml
Lopez J, Myagmar B, Swigart P, Montgomery M, Haynam S, Bigos M, et al. ?-myosin heavy chain is induced by pressure overload in a minor subpopulation of smaller mouse cardiac myocytes. Circ Res. 2011;109:629-38 pubmed publisher
  • immunocytochemistry; human; 1:100
Guo L, Abrams R, Babiarz J, Cohen J, Kameoka S, Sanders M, et al. Estimating the risk of drug-induced proarrhythmia using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci. 2011;123:281-9 pubmed publisher
  • immunohistochemistry; mouse; 1:200
Kim E, Chen L, Ma Y, Yu W, Chang J, Moskowitz I, et al. Expression of sumoylation deficient Nkx2.5 mutant in Nkx2.5 haploinsufficient mice leads to congenital heart defects. PLoS ONE. 2011;6:e20803 pubmed publisher
  • immunocytochemistry; mouse; 1:200
Neri T, Merico V, Fiordaliso F, Salio M, Rebuzzini P, Sacchi L, et al. The differentiation of cardiomyocytes from mouse embryonic stem cells is altered by dioxin. Toxicol Lett. 2011;202:226-36 pubmed publisher
  • flow cytometry; human
Kattman S, Witty A, Gagliardi M, Dubois N, Niapour M, Hotta A, et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell. 2011;8:228-40 pubmed publisher
  • immunocytochemistry; mouse; 1:100
Lee Y, Ng K, Lai W, Man C, Lieu D, Lau C, et al. Ouabain facilitates cardiac differentiation of mouse embryonic stem cells through ERK1/2 pathway. Acta Pharmacol Sin. 2011;32:52-61 pubmed publisher
  • immunohistochemistry; mouse; 1:200
Nakano H, Williams E, Hoshijima M, Sasaki M, Minamisawa S, Chien K, et al. Cardiac origin of smooth muscle cells in the inflow tract. J Mol Cell Cardiol. 2011;50:337-45 pubmed publisher
  • immunocytochemistry; human; 1:100
Gupta M, Illich D, Gaarz A, Matzkies M, Nguemo F, Pfannkuche K, et al. Global transcriptional profiles of beating clusters derived from human induced pluripotent stem cells and embryonic stem cells are highly similar. BMC Dev Biol. 2010;10:98 pubmed publisher
  • immunocytochemistry; mouse; 1:100
Lee Y, Ng K, Chan Y, Lai W, Au K, Ho C, et al. Triiodothyronine promotes cardiac differentiation and maturation of embryonic stem cells via the classical genomic pathway. Mol Endocrinol. 2010;24:1728-36 pubmed publisher
  • immunocytochemistry; human; fig 6
Gaur M, Ritner C, Sievers R, Pedersen A, Prasad M, Bernstein H, et al. Timed inhibition of p38MAPK directs accelerated differentiation of human embryonic stem cells into cardiomyocytes. Cytotherapy. 2010;12:807-17 pubmed publisher
  • immunocytochemistry; mouse
Jin M, Shi S, Zhang Y, Yan Y, Sun X, Liu W, et al. Icariin-mediated differentiation of mouse adipose-derived stem cells into cardiomyocytes. Mol Cell Biochem. 2010;344:1-9 pubmed publisher
  • immunocytochemistry; mouse; 1:100
Potta S, Liang H, Winkler J, Doss M, Chen S, Wagh V, et al. Isolation and functional characterization of alpha-smooth muscle actin expressing cardiomyocytes from embryonic stem cells. Cell Physiol Biochem. 2010;25:595-604 pubmed publisher
  • immunocytochemistry; mouse; 1:200
Grajales L, Garcia J, Banach K, Geenen D. Delayed enrichment of mesenchymal cells promotes cardiac lineage and calcium transient development. J Mol Cell Cardiol. 2010;48:735-45 pubmed publisher
  • immunohistochemistry; mouse; 0.4 ug/ml
Moretti A, Bellin M, Jung C, Thies T, Takashima Y, Bernshausen A, et al. Mouse and human induced pluripotent stem cells as a source for multipotent Isl1+ cardiovascular progenitors. FASEB J. 2010;24:700-11 pubmed publisher
  • flow cytometry; mouse
  • immunocytochemistry; mouse
Wiese C, Nikolova T, Zahanich I, Sulzbacher S, Fuchs J, Yamanaka S, et al. Differentiation induction of mouse embryonic stem cells into sinus node-like cells by suramin. Int J Cardiol. 2011;147:95-111 pubmed publisher
  • immunohistochemistry; mouse; 1:100
Au K, Liao S, Lee Y, Lai W, Ng K, Chan Y, et al. Effects of iron oxide nanoparticles on cardiac differentiation of embryonic stem cells. Biochem Biophys Res Commun. 2009;379:898-903 pubmed publisher
  • immunocytochemistry; mouse
Yamanaka S, Zahanich I, Wersto R, Boheler K. Enhanced proliferation of monolayer cultures of embryonic stem (ES) cell-derived cardiomyocytes following acute loss of retinoblastoma. PLoS ONE. 2008;3:e3896 pubmed publisher
  • immunohistochemistry; human
Maherali N, Ahfeldt T, Rigamonti A, Utikal J, Cowan C, Hochedlinger K. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell. 2008;3:340-5 pubmed publisher
  • immunohistochemistry; mouse
van der Hoorn J, Jukema J, Bekkers M, Princen H, Corda S, Emeis J, et al. Negative effects of rofecoxib treatment on cardiac function after ischemia-reperfusion injury in APOE3Leiden mice are prevented by combined treatment with thromboxane prostanoid-receptor antagonist S18886 (terutroban). Crit Care Med. 2008;36:2576-82 pubmed publisher
  • immunocytochemistry; mouse; 2 ug/ml
Mauritz C, Schwanke K, Reppel M, Neef S, Katsirntaki K, Maier L, et al. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation. 2008;118:507-17 pubmed publisher
  • flow cytometry; mouse; 1:100
  • immunocytochemistry; mouse; 1:100
Bondue A, Lapouge G, Paulissen C, Semeraro C, Iacovino M, Kyba M, et al. Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell. 2008;3:69-84 pubmed publisher
  • immunocytochemistry; human; 1:300
Kami D, Shiojima I, Makino H, Matsumoto K, Takahashi Y, Ishii R, et al. Gremlin enhances the determined path to cardiomyogenesis. PLoS ONE. 2008;3:e2407 pubmed publisher
  • immunohistochemistry; mouse; 1:200
Cai C, Martin J, Sun Y, Cui L, Wang L, Ouyang K, et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature. 2008;454:104-8 pubmed publisher
  • western blot; human
Genovese J, Spadaccio C, Langer J, Habe J, Jackson J, Patel A. Electrostimulation induces cardiomyocyte predifferentiation of fibroblasts. Biochem Biophys Res Commun. 2008;370:450-5 pubmed publisher
  • immunocytochemistry; mouse; 1:100
Hirata H, Kawamata S, Murakami Y, Inoue K, Nagahashi A, Tosaka M, et al. Coexpression of platelet-derived growth factor receptor alpha and fetal liver kinase 1 enhances cardiogenic potential in embryonic stem cell differentiation in vitro. J Biosci Bioeng. 2007;103:412-9 pubmed
  • immunocytochemistry; mouse; 1:100
Tesar P, Chenoweth J, Brook F, Davies T, Evans E, Mack D, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature. 2007;448:196-9 pubmed
  • immunohistochemistry; mouse
Tateishi K, Ashihara E, Takehara N, Nomura T, Honsho S, Nakagami T, et al. Clonally amplified cardiac stem cells are regulated by Sca-1 signaling for efficient cardiovascular regeneration. J Cell Sci. 2007;120:1791-800 pubmed
  • immunohistochemistry; mouse; 1:100
Hirata H, Murakami Y, Miyamoto Y, Tosaka M, Inoue K, Nagahashi A, et al. ALCAM (CD166) is a surface marker for early murine cardiomyocytes. Cells Tissues Organs. 2006;184:172-80 pubmed
  • immunohistochemistry; mouse
Yamada Y, Yokoyama S, Wang X, Fukuda N, Takakura N. Cardiac stem cells in brown adipose tissue express CD133 and induce bone marrow nonhematopoietic cells to differentiate into cardiomyocytes. Stem Cells. 2007;25:1326-33 pubmed
  • immunohistochemistry; mouse
Kuhlmann M, Kirchhof P, Klocke R, Hasib L, Stypmann J, Fabritz L, et al. G-CSF/SCF reduces inducible arrhythmias in the infarcted heart potentially via increased connexin43 expression and arteriogenesis. J Exp Med. 2006;203:87-97 pubmed
  • immunohistochemistry; dogs
Memon I, Sawa Y, Miyagawa S, Taketani S, Matsuda H. Combined autologous cellular cardiomyoplasty with skeletal myoblasts and bone marrow cells in canine hearts for ischemic cardiomyopathy. J Thorac Cardiovasc Surg. 2005;130:646-53 pubmed
  • immunocytochemistry; mouse; 1:200
Lauss M, Stary M, Tischler J, Egger G, Puz S, Bader Allmer A, et al. Single inner cell masses yield embryonic stem cell lines differing in lifr expression and their developmental potential. Biochem Biophys Res Commun. 2005;331:1577-86 pubmed
  • immunocytochemistry; chicken; fig 1
Gerhart J, Neely C, Stewart B, Perlman J, Beckmann D, Wallon M, et al. Epiblast cells that express MyoD recruit pluripotent cells to the skeletal muscle lineage. J Cell Biol. 2004;164:739-46 pubmed
Anderson C, Langer E, Routes T, McWilliams S, Bereslavskyy I, Kamp T, et al. Most myopathic lamin variants aggregate: a functional genomics approach for assessing variants of uncertain significance. NPJ Genom Med. 2021;6:103 pubmed publisher
Sapp V, Aguirre A, Mainkar G, Ding J, Adler E, Liao R, et al. Genome-wide CRISPR/Cas9 screening in human iPS derived cardiomyocytes uncovers novel mediators of doxorubicin cardiotoxicity. Sci Rep. 2021;11:13866 pubmed publisher
Garry G, Bezprozvannaya S, Chen K, Zhou H, Hashimoto H, Morales M, et al. The histone reader PHF7 cooperates with the SWI/SNF complex at cardiac super enhancers to promote direct reprogramming. Nat Cell Biol. 2021;23:467-475 pubmed publisher
El Nachef D, Bugg D, Beussman K, Steczina S, Martinson A, Murry C, et al. Engrafted Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Undergo Clonal Expansion In Vivo. Circulation. 2021;143:1635-1638 pubmed publisher
Jez M, Martyniak A, Andrysiak K, Mucha O, Szade K, Kania A, et al. Role of Heme-Oxygenase-1 in Biology of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells. Cells. 2021;10: pubmed publisher
Feng Y, Xu H, Liu J, Xie N, Gao L, He Y, et al. Functional and Adaptive Significance of Promoter Mutations That Affect Divergent Myocardial Expressions of TRIM72 in Primates. Mol Biol Evol. 2021;38:2930-2945 pubmed publisher
Zhao H, Zhang Y, Xu X, Sun Q, Yang C, Wang H, et al. Sall4 and Myocd Empower Direct Cardiac Reprogramming From Adult Cardiac Fibroblasts After Injury. Front Cell Dev Biol. 2021;9:608367 pubmed publisher
Daly A, Davidson M, Burdick J. 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nat Commun. 2021;12:753 pubmed publisher
Cohen E, Yee M, Porter G, Ritzer E, McDavid A, Brookes P, et al. Neonatal hyperoxia inhibits proliferation and survival of atrial cardiomyocytes by suppressing fatty acid synthesis. JCI Insight. 2021;6: pubmed publisher
Souidi M, Sleiman Y, Acimovic I, Pribyl J, Charrabi A, Baecker V, et al. Oxygen Is an Ambivalent Factor for the Differentiation of Human Pluripotent Stem Cells in Cardiac 2D Monolayer and 3D Cardiac Spheroids. Int J Mol Sci. 2021;22: pubmed publisher
Borys B, Dang T, So T, Rohani L, Revay T, Walsh T, et al. Overcoming bioprocess bottlenecks in the large-scale expansion of high-quality hiPSC aggregates in vertical-wheel stirred suspension bioreactors. Stem Cell Res Ther. 2021;12:55 pubmed publisher
Fu W, Liao Q, Li L, Shi Y, Zeng A, Zeng C, et al. An Aurora Kinase B-Based Mouse System to Efficiently Identify and Analyze Proliferating Cardiomyocytes. Front Cell Dev Biol. 2020;8:570252 pubmed publisher
Kleinsorge M, Cyganek L. Subtype-Directed Differentiation of Human iPSCs into Atrial and Ventricular Cardiomyocytes. STAR Protoc. 2020;1:100026 pubmed publisher
Gambini E, Martinelli I, Stadiotti I, Vinci M, Scopece A, Eramo L, et al. Differences in Mitochondrial Membrane Potential Identify Distinct Populations of Human Cardiac Mesenchymal Progenitor Cells. Int J Mol Sci. 2020;21: pubmed publisher
Lan C, Cao N, Chen C, Qu S, Fan C, Luo H, et al. Progesterone, via yes-associated protein, promotes cardiomyocyte proliferation and cardiac repair. Cell Prolif. 2020;53:e12910 pubmed publisher
Aalders J, Léger L, Tuerlings T, Ledda S, van Hengel J. Liquid marble technology to create cost-effective 3D cardiospheres as a platform for in vitro drug testing and disease modelling. MethodsX. 2020;7:101065 pubmed publisher
Ribeiro da Silva A, Neri E, Turaça L, Dariolli R, Fonseca Alaniz M, Santos Miranda A, et al. NOTCH1 is critical for fibroblast-mediated induction of cardiomyocyte specialization into ventricular conduction system-like cells in vitro. Sci Rep. 2020;10:16163 pubmed publisher
Rohani L, Borys B, Razian G, Naghsh P, Liu S, Johnson A, et al. Stirred suspension bioreactors maintain naïve pluripotency of human pluripotent stem cells. Commun Biol. 2020;3:492 pubmed publisher
Miller J, Meki M, Ou Q, George S, Gams A, Abouleisa R, et al. Heart slice culture system reliably demonstrates clinical drug-related cardiotoxicity. Toxicol Appl Pharmacol. 2020;406:115213 pubmed publisher
Hochman Mendez C, Pereira de Campos D, Pinto R, Mendes B, Rocha G, Monnerat G, et al. Tissue-engineered human embryonic stem cell-containing cardiac patches: evaluating recellularization of decellularized matrix. J Tissue Eng. 2020;11:2041731420921482 pubmed publisher
Feyen D, McKeithan W, Bruyneel A, Spiering S, Hörmann L, Ulmer B, et al. Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes. Cell Rep. 2020;32:107925 pubmed publisher
Martens M, Field J, Seshadri N, Day C, Chapman D, Keijzer R, et al. Misoprostol attenuates neonatal cardiomyocyte proliferation through Bnip3, perinuclear calcium signaling, and inhibition of glycolysis. J Mol Cell Cardiol. 2020;146:19-31 pubmed publisher
Lee S, Hesse R, Tamaki S, Garland C, Pomerantz J. Human ARF Specifically Inhibits Epimorphic Regeneration in the Zebrafish Heart. Genes (Basel). 2020;11: pubmed publisher
Kraszewska I, Tomczyk M, Andrysiak K, Biniecka M, Geisler A, Fechner H, et al. Variability in Cardiac miRNA-122 Level Determines Therapeutic Potential of miRNA-Regulated AAV Vectors. Mol Ther Methods Clin Dev. 2020;17:1190-1201 pubmed publisher
Sakamoto S, Matsuura K, Masuda S, Hagiwara N, Shimizu T. Heart-derived fibroblasts express LYPD-1 and negatively regulate angiogenesis in rat. Regen Ther. 2020;15:27-33 pubmed publisher
Zhao J, Rodger C, Allen G, Weidlich S, Ganley I. HIF1α-dependent mitophagy facilitates cardiomyoblast differentiation. Cell Stress. 2020;4:99-113 pubmed publisher
Testa G, Russo M, Di Benedetto G, Barbato M, Parisi S, Pirozzi F, et al. Bmi1 inhibitor PTC-209 promotes Chemically-induced Direct Cardiac Reprogramming of cardiac fibroblasts into cardiomyocytes. Sci Rep. 2020;10:7129 pubmed publisher
Chu A, Zhao E, Chiao M, Lim C. Co-culture of induced pluripotent stem cells with cardiomyocytes is sufficient to promote their differentiation into cardiomyocytes. PLoS ONE. 2020;15:e0230966 pubmed publisher
Ebeid D, Khalafalla F, Broughton K, Monsanto M, Esquer C, Sacchi V, et al. Pim1 Maintains Telomere Length in Mouse Cardiomyocytes by Inhibiting TGFβ Signaling. Cardiovasc Res. 2020;: pubmed publisher
Xuan W, Wang L, Xu M, Weintraub N, Ashraf M. miRNAs in Extracellular Vesicles from iPS-Derived Cardiac Progenitor Cells Effectively Reduce Fibrosis and Promote Angiogenesis in Infarcted Heart. Stem Cells Int. 2019;2019:3726392 pubmed publisher
Murphy J, Mayourian J, Stillitano F, Munawar S, Broughton K, Agullo Pascual E, et al. Adult human cardiac stem cell supplementation effectively increases contractile function and maturation in human engineered cardiac tissues. Stem Cell Res Ther. 2019;10:373 pubmed publisher
Zhang Z, Zhang W, Nam Y. Stoichiometric optimization of Gata4, Hand2, Mef2c, and Tbx5 expression for contractile cardiomyocyte reprogramming. Sci Rep. 2019;9:14970 pubmed publisher
Dias T, Fernandes T, Diogo M, Cabral J. Multifactorial Modeling Reveals a Dominant Role of Wnt Signaling in Lineage Commitment of Human Pluripotent Stem Cells. Bioengineering (Basel). 2019;6: pubmed publisher
Zhang Y, Li T, Preissl S, Amaral M, Grinstein J, Farah E, et al. Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat Genet. 2019;51:1380-1388 pubmed publisher
Bertero A, Fields P, Smith A, Leonard A, Beussman K, Sniadecki N, et al. Chromatin compartment dynamics in a haploinsufficient model of cardiac laminopathy. J Cell Biol. 2019;218:2919-2944 pubmed publisher
Park S, Kim R, Park B, Lee S, Choi S, Park J, et al. Dual stem cell therapy synergistically improves cardiac function and vascular regeneration following myocardial infarction. Nat Commun. 2019;10:3123 pubmed publisher
Francisco J, Byun J, Zhang Y, Kalloo O, Mizushima W, Oka S, et al. The tumor suppressor RASSF1A modulates inflammation and injury in the reperfused murine myocardium. J Biol Chem. 2019;294:13131-13144 pubmed publisher
Hashimoto H, Wang Z, Garry G, Malladi V, Botten G, Ye W, et al. Cardiac Reprogramming Factors Synergistically Activate Genome-wide Cardiogenic Stage-Specific Enhancers. Cell Stem Cell. 2019;: pubmed publisher
Wang H, Sheehan R, Palmer A, Everley R, Boswell S, Ron Harel N, et al. Adaptation of Human iPSC-Derived Cardiomyocytes to Tyrosine Kinase Inhibitors Reduces Acute Cardiotoxicity via Metabolic Reprogramming. Cell Syst. 2019;8:412-426.e7 pubmed publisher
Liao Q, Qu S, Tang L, Li L, He D, Zeng C, et al. Irisin exerts a therapeutic effect against myocardial infarction via promoting angiogenesis. Acta Pharmacol Sin. 2019;: pubmed publisher
Durham K, Kluck G, Mak K, Deng Y, Trigatti B. Treatment with apolipoprotein A1 protects mice against doxorubicin-induced cardiotoxicity in a scavenger receptor class B, type I-dependent manner. Am J Physiol Heart Circ Physiol. 2019;316:H1447-H1457 pubmed publisher
Mura M, Lee Y, Pisano F, Ginevrino M, Boni M, Calabrò F, et al. Generation of the human induced pluripotent stem cell (hiPSC) line PSMi004-A from a carrier of the KCNQ1-R594Q mutation. Stem Cell Res. 2019;37:101431 pubmed publisher
WARD M, Gilad Y. A generally conserved response to hypoxia in iPSC-derived cardiomyocytes from humans and chimpanzees. elife. 2019;8: pubmed publisher
Monroe T, Hill M, Morikawa Y, Leach J, Heallen T, Cao S, et al. YAP Partially Reprograms Chromatin Accessibility to Directly Induce Adult Cardiogenesis In Vivo. Dev Cell. 2019;48:765-779.e7 pubmed publisher
Saludas L, Garbayo E, Mazo M, Pelacho B, Abizanda G, Iglesias Garcia O, et al. Long-term engraftment of human cardiomyocytes combined with biodegradable microparticles induces heart repair. J Pharmacol Exp Ther. 2019;: pubmed publisher
Guilbeau Frugier C, Cauquil M, Karsenty C, Lairez O, Dambrin C, Payre B, et al. Structural evidence for a new elaborate 3D-organization of the cardiomyocyte lateral membrane in adult mammalian cardiac tissues. Cardiovasc Res. 2019;115:1078-1091 pubmed publisher
Du G, Yu M, Wang L, Hu W, Song L, Lu C, et al. Transcriptome and DNA Methylome Dynamics during Triclosan-Induced Cardiomyocyte Differentiation Toxicity. Stem Cells Int. 2018;2018:8608327 pubmed publisher
Friedman C, Nguyen Q, Lukowski S, Helfer A, Chiu H, Miklas J, et al. Single-Cell Transcriptomic Analysis of Cardiac Differentiation from Human PSCs Reveals HOPX-Dependent Cardiomyocyte Maturation. Cell Stem Cell. 2018;23:586-598.e8 pubmed publisher
Sakai T, Naito A, Kuramoto Y, Ito M, Okada K, Higo T, et al. Phenotypic Screening Using Patient-Derived Induced Pluripotent Stem Cells Identified Pyr3 as a Candidate Compound for the Treatment of Infantile Hypertrophic Cardiomyopathy. Int Heart J. 2018;59:1096-1105 pubmed publisher
Nakashima Y, Miyagi Shiohira C, Noguchi H, Omasa T. Atorvastatin Inhibits the HIF1α-PPAR Axis, Which Is Essential for Maintaining the Function of Human Induced Pluripotent Stem Cells. Mol Ther. 2018;26:1715-1734 pubmed publisher
Sakaguchi K, Hinata Y, Kagawa Y, Iwasaki K, Tsuneda S, Shimizu T, et al. Low-temperature culturing improves survival rate of tissue-engineered cardiac cell sheets. Biochem Biophys Rep. 2018;14:89-97 pubmed publisher
Artap S, Manderfield L, Smith C, Poleshko A, Aghajanian H, See K, et al. Endocardial Hippo signaling regulates myocardial growth and cardiogenesis. Dev Biol. 2018;440:22-30 pubmed publisher
Durham K, Chathely K, Trigatti B. High-density lipoprotein protects cardiomyocytes against necrosis induced by oxygen and glucose deprivation through SR-B1, PI3K, and AKT1 and 2. Biochem J. 2018;475:1253-1265 pubmed publisher
Ferguson S, Wang J, Lee C, Liu M, Neelamegham S, Canty J, et al. The microRNA regulatory landscape of MSC-derived exosomes: a systems view. Sci Rep. 2018;8:1419 pubmed publisher
Alexanian M, Maric D, Jenkinson S, Mina M, Friedman C, Ting C, et al. A transcribed enhancer dictates mesendoderm specification in pluripotency. Nat Commun. 2017;8:1806 pubmed publisher
Lin B, Lin X, Stachel M, Wang E, Luo Y, Lader J, et al. Culture in Glucose-Depleted Medium Supplemented with Fatty Acid and 3,3',5-Triiodo-l-Thyronine Facilitates Purification and Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Front Endocrinol (Lausanne). 2017;8:253 pubmed publisher
Poleshko A, Shah P, Gupta M, Babu A, Morley M, Manderfield L, et al. Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction. Cell. 2017;171:573-587.e14 pubmed publisher
Zhou H, Morales M, Hashimoto H, Dickson M, Song K, Ye W, et al. ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression. Genes Dev. 2017;31:1770-1783 pubmed publisher
Sozmen M, Devrim A, Kabak Y, Devrim T, Sudagidan M. The Effects of Periostin in a Rat Model of Isoproterenol: Mediated Cardiotoxicity. Cardiovasc Toxicol. 2018;18:142-160 pubmed publisher
Miake J, Notsu T, Higaki K, Hidaka K, Morisaki T, Yamamoto K, et al. Cited4 is related to cardiogenic induction and maintenance of proliferation capacity of embryonic stem cell-derived cardiomyocytes during in vitro cardiogenesis. PLoS ONE. 2017;12:e0183225 pubmed publisher
Baskin K, Makarewich C, DeLeon S, Ye W, Chen B, Beetz N, et al. MED12 regulates a transcriptional network of calcium-handling genes in the heart. JCI Insight. 2017;2: pubmed publisher
Dierickx P, Vermunt M, Muraro M, Creyghton M, Doevendans P, van Oudenaarden A, et al. Circadian networks in human embryonic stem cell-derived cardiomyocytes. EMBO Rep. 2017;18:1199-1212 pubmed publisher
Hong S, Song S, Cho S, Lee S, Koh B, Bae H, et al. Generation of PDGFRα+ Cardioblasts from Pluripotent Stem Cells. Sci Rep. 2017;7:41840 pubmed publisher
Palpant N, Pabon L, Friedman C, Roberts M, Hadland B, Zaunbrecher R, et al. Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Nat Protoc. 2017;12:15-31 pubmed publisher
Hayashi Y, Hsiao E, Sami S, Lancero M, Schlieve C, Nguyen T, et al. BMP-SMAD-ID promotes reprogramming to pluripotency by inhibiting p16/INK4A-dependent senescence. Proc Natl Acad Sci U S A. 2016;113:13057-13062 pubmed
Oh Y, Cho G, Li Z, Hong I, Zhu R, Kim M, et al. Functional Coupling with Cardiac Muscle Promotes Maturation of hPSC-Derived Sympathetic Neurons. Cell Stem Cell. 2016;19:95-106 pubmed publisher
Traister A, Li M, Aafaqi S, Lu M, Arab S, Radisic M, et al. Integrin-linked kinase mediates force transduction in cardiomyocytes by modulating SERCA2a/PLN function. Nat Commun. 2014;5:4533 pubmed publisher
Mallon B, Hamilton R, Kozhich O, Johnson K, Fann Y, Rao M, et al. Comparison of the molecular profiles of human embryonic and induced pluripotent stem cells of isogenic origin. Stem Cell Res. 2014;12:376-86 pubmed publisher
Wolchinsky Z, Shivtiel S, Kouwenhoven E, Putin D, Sprecher E, Zhou H, et al. Angiomodulin is required for cardiogenesis of embryonic stem cells and is maintained by a feedback loop network of p63 and Activin-A. Stem Cell Res. 2014;12:49-59 pubmed publisher
Liu Y, Jin Y, Li J, Seto E, Kuo E, Yu W, et al. Inactivation of Cdc42 in neural crest cells causes craniofacial and cardiovascular morphogenesis defects. Dev Biol. 2013;383:239-52 pubmed publisher
Addis R, Ifkovits J, Pinto F, Kellam L, Esteso P, Rentschler S, et al. Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success. J Mol Cell Cardiol. 2013;60:97-106 pubmed publisher
Moyes K, Sip C, Obenza W, Yang E, Horst C, Welikson R, et al. Human embryonic stem cell-derived cardiomyocytes migrate in response to gradients of fibronectin and Wnt5a. Stem Cells Dev. 2013;22:2315-25 pubmed publisher
Huang Y, Kuang J, Hu Y, Song Y, Qiu R, Mai W. Bone marrow stromal cell transplantation combined with angiotensin-converting enzyme inhibitor treatment in rat with acute myocardial infarction and the role of insulin-like growth factor-1. Cytotherapy. 2012;14:563-9 pubmed publisher
Yau W, Tang M, Chen E, Yaoyao -, Wong I, Lee H, et al. Cardiogenol C can induce Mouse Hair Bulge Progenitor Cells to Transdifferentiate into Cardiomyocyte-like Cells. Proteome Sci. 2011;9:3 pubmed publisher
Bedelbaeva K, Gourevitch D, Clark L, Chen P, Leferovich J, Heber Katz E. The MRL mouse heart healing response shows donor dominance in allogeneic fetal liver chimeric mice. Cloning Stem Cells. 2004;6:352-63 pubmed
Shim W, Jiang S, Wong P, Tan J, Chua Y, Tan Y, et al. Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like cells. Biochem Biophys Res Commun. 2004;324:481-8 pubmed
image
image 1 :
Invitrogen MA5-12960 image 1
Formalin-fixed, paraffin-embedded human heart stained with Troponin antibody using peroxidase-conjugate and DAB chromogen. Note cytoplasmic staining of cardiac muscle cells.
image 2 :
Invitrogen MA5-12960 image 2
Formalin-fixed, paraffin-embedded rat heart stained with Troponin T antibody using peroxidase-conjugate and AEC chromogen. Note cytoplasmic staining of cardiac muscles.
image 3 :
Invitrogen MA5-12960 image 3
product information
Product Type :
Antibody
Product Name :
Cardiac Troponin T Monoclonal Antibody (13-11)
Catalog # :
MA5-12960
Quantity :
200 µL
Price :
US 399.00
Clonality :
Monoclonal
Purity :
Affinity chromatography
Host :
Mouse
Reactivity :
Avian, Canine, Chicken, Fish, Guinea Pig, Human, Mouse, Porcine, Rabbit, Rat
Applications :
Immunocytochemistry: 5 µg/mL, Immunohistochemistry (Frozen): 5 µg/mL, Immunohistochemistry (Paraffin): 1-2 µg/mL, Western Blot: 1 µg/mL
Species :
Avian, Canine, Chicken, Fish, Guinea Pig, Human, Mouse, Porcine, Rabbit, Rat
Clone :
13-11
Isotype :
IgG1
Storage :
4° C
Description :
Cardiac Troponin T is the tropomyosin-binding subunit of the troponin complex, which is located on the thin filament of striated muscles and regulates muscle contraction in response to alterations in intracellular calcium ion concentration. Cardiac Troponin T is important in proper muscle function and myofibril formation. In the human heart, four cTnT isoforms are expressed in a developmentally regulated manner. Cardiac Troponin T expression in the human heart is affected by heart failure. Mutations within the Cardiac Troponin T protein have been associated with familial hypertrophic cardiomyopathy as well as with dilated cardiomyopathy. Transcripts for the Cardiac Troponin T gene undergo alternative splicing that results in many tissue-specific isoforms.
Immunogen :
Purified rabbit cardiac troponin T isoform (TnT4R)
Format :
Liquid
Applications w/Dilutions :
Immunocytochemistry: 5 µg/mL, Immunohistochemistry (Frozen): 5 µg/mL, Immunohistochemistry (Paraffin): 1-2 µg/mL, Western Blot: 1 µg/mL
Aliases :
alternatively spliced; cardiac muscle troponin T; cardiac TnT; cardiac troponin 2; cardiac troponin 2 adult #1 isoform; cardiac troponin 2 adult #2 isoform; cardiac troponin 2 embryonic #1 isoform; cardiac troponin 2 embryonic #2 isoform; cardiac troponin 2, exclusion exon 6 #1 isoform; cardiac troponin 2, exclusion exon 6 #2 isoform; cardiac troponin T; cardiac troponin T form I; cardiac troponin T isoform 1; cardiac troponin T isoform 2; cardiac troponin T isoform I; cardiac troponin T2; cardiomyopathy, dilated 1D (autosomal dominant); cardiomyopathy, hypertrophic 2; CMD1D; CMH2; CMPD2; cTnT; Ctt; CTTG; LVNC6; MGC3889; RATCTTG; RCM3; TNNT2; Tnnt3; Tnt; TnTc; troponin T; Troponin T cardiac; troponin T cardiac isoform; troponin T isoform 1; troponin T isoform 2; troponin T splicing mutant isoform 1; troponin T splicing mutant isoform 2; troponin T type 2 (cardiac); troponin T, cardiac muscle; Troponin T, cardiac muscle isoforms; Troponin T2; troponin T2, cardiac; troponin T2, cardiac type; truncated cardiac troponin T
more info or order :
company information
Invitrogen
Thermo Fisher Scientific
81 Wyman Street
Waltham, MA USA 02451
https://www.thermofisher.com
800-678-5599
headquarters: USA