product summary
Loading...
company name :
Invitrogen
other brands :
NeoMarkers, Lab Vision, Endogen, Pierce, BioSource International, Zymed Laboratories, Caltag, Molecular Probes, Research Genetics, Life Technologies, Applied Biosystems, GIBCO BRL, ABgene, Dynal, Affinity BioReagents, Nunc, Invitrogen, NatuTec, Oxoid, Richard-Allan Scientific, Arcturus, Perseptive Biosystems, Proxeon, eBioscience
product type :
antibody
product name :
CD31 Monoclonal Antibody (2H8)
catalog :
MA3105
quantity :
500 µg
price :
US 446.00
clonality :
monoclonal
host :
hamsters
conjugate :
nonconjugated
clone name :
2H8
reactivity :
human, mouse
application :
ELISA, immunohistochemistry, immunocytochemistry, neutralization, flow cytometry, immunohistochemistry - paraffin section, immunohistochemistry - frozen section, blocking or activating experiments
more info or order :
citations: 53
Published Application/Species/Sample/DilutionReference
  • immunohistochemistry; mouse; 1:1000; fig 1a
Ridge L, Kewbank D, Schütz D, Stumm R, Scambler P, Ivins S. Dual role for CXCL12 signaling in semilunar valve development. Cell Rep. 2021;36:109610 pubmed publisher
  • immunohistochemistry; mouse; loading ...; fig s1j
  • flow cytometry; human; loading ...; fig 2e
Pasciuto E, Burton O, Roca C, Lagou V, Rajan W, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625-640.e24 pubmed publisher
  • immunohistochemistry - paraffin section; mouse; loading ...; fig 6a
Coulombe P, Paliouras G, Clayton A, Hussainkhel A, Fuller M, Jovanovic V, et al. Endothelial Sash1 Is Required for Lung Maturation through Nitric Oxide Signaling. Cell Rep. 2019;27:1769-1780.e4 pubmed publisher
  • immunohistochemistry; mouse; 1:500; loading ...; fig 6h
Stremmel C, Schuchert R, Wagner F, Thaler R, Weinberger T, Pick R, et al. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat Commun. 2018;9:75 pubmed publisher
  • immunohistochemistry - paraffin section; mouse; loading ...; fig s1e
Vasilopoulou E, Kolatsi Joannou M, Lindenmeyer M, White K, Robson M, Cohen C, et al. Loss of endogenous thymosin β4 accelerates glomerular disease. Kidney Int. 2016;90:1056-1070 pubmed publisher
  • immunohistochemistry; mouse; 1:500; loading ...; fig 2a
Kim M, Allen B, Korhonen E, Nitschké M, Yang H, Baluk P, et al. Opposing actions of angiopoietin-2 on Tie2 signaling and FOXO1 activation. J Clin Invest. 2016;126:3511-25 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:500
Moen I, Gebre M, Alonso Camino V, Chen D, Epstein D, McDonald D. Anti-metastatic action of FAK inhibitor OXA-11 in combination with VEGFR-2 signaling blockade in pancreatic neuroendocrine tumors. Clin Exp Metastasis. 2015;32:799-817 pubmed publisher
  • immunohistochemistry; mouse; 1:100; fig 6
Yotsumoto F, You W, Cejudo Martin P, Kucharova K, Sakimura K, Stallcup W. NG2 proteoglycan-dependent recruitment of tumor macrophages promotes pericyte-endothelial cell interactions required for brain tumor vascularization. Oncoimmunology. 2015;4:e1001204 pubmed
  • immunohistochemistry - frozen section; mouse; loading ...; fig 1f
Huang J, Woolf A, Kolatsi Joannou M, Baluk P, Sandford R, Peters D, et al. Vascular Endothelial Growth Factor C for Polycystic Kidney Diseases. J Am Soc Nephrol. 2016;27:69-77 pubmed publisher
  • immunohistochemistry; mouse
Baluk P, Phillips K, Yao L, Adams A, Nitschké M, McDonald D. Neutrophil dependence of vascular remodeling after Mycoplasma infection of mouse airways. Am J Pathol. 2014;184:1877-89 pubmed publisher
  • immunohistochemistry; mouse
Majima T, Takeuchi K, Sano K, Hirashima M, Zankov D, Tanaka Okamoto M, et al. An Adaptor Molecule Afadin Regulates Lymphangiogenesis by Modulating RhoA Activity in the Developing Mouse Embryo. PLoS ONE. 2013;8:e68134 pubmed publisher
  • blocking or activating experiments; mouse
Sun Z, Li X, Massena S, Kutschera S, Padhan N, Gualandi L, et al. VEGFR2 induces c-Src signaling and vascular permeability in vivo via the adaptor protein TSAd. J Exp Med. 2012;209:1363-77 pubmed publisher
  • immunohistochemistry; mouse
Turnquist H, Zhao Z, Rosborough B, Liu Q, Castellaneta A, Isse K, et al. IL-33 expands suppressive CD11b+ Gr-1(int) and regulatory T cells, including ST2L+ Foxp3+ cells, and mediates regulatory T cell-dependent promotion of cardiac allograft survival. J Immunol. 2011;187:4598-610 pubmed publisher
  • immunohistochemistry; mouse; 1:500
Falcon B, Pietras K, Chou J, Chen D, Sennino B, Hanahan D, et al. Increased vascular delivery and efficacy of chemotherapy after inhibition of platelet-derived growth factor-B. Am J Pathol. 2011;178:2920-30 pubmed publisher
  • immunocytochemistry; mouse
Nakanishi K, Takeda Y, Tetsumoto S, Iwasaki T, Tsujino K, Kuhara H, et al. Involvement of endothelial apoptosis underlying chronic obstructive pulmonary disease-like phenotype in adiponectin-null mice: implications for therapy. Am J Respir Crit Care Med. 2011;183:1164-75 pubmed publisher
  • immunohistochemistry; human; 1:500
Coxon A, Bready J, Min H, Kaufman S, Leal J, Yu D, et al. Context-dependent role of angiopoietin-1 inhibition in the suppression of angiogenesis and tumor growth: implications for AMG 386, an angiopoietin-1/2-neutralizing peptibody. Mol Cancer Ther. 2010;9:2641-51 pubmed publisher
  • immunohistochemistry; mouse; 1:500
Ni A, Lashnits E, Yao L, Baluk P, McDonald D. Rapid remodeling of airway vascular architecture at birth. Dev Dyn. 2010;239:2354-66 pubmed publisher
  • immunohistochemistry; human; 1:500
Hashizume H, Falcon B, Kuroda T, Baluk P, Coxon A, Yu D, et al. Complementary actions of inhibitors of angiopoietin-2 and VEGF on tumor angiogenesis and growth. Cancer Res. 2010;70:2213-23 pubmed publisher
  • immunohistochemistry; mouse
Yao L, Baluk P, Feng J, McDonald D. Steroid-resistant lymphatic remodeling in chronically inflamed mouse airways. Am J Pathol. 2010;176:1525-41 pubmed publisher
  • immunohistochemistry; mouse
Baluk P, Yao L, Feng J, Romano T, Jung S, Schreiter J, et al. TNF-alpha drives remodeling of blood vessels and lymphatics in sustained airway inflammation in mice. J Clin Invest. 2009;119:2954-64 pubmed publisher
  • immunohistochemistry; mouse; 1:1,000
Kanemura H, Satoh T, Bilasy S, Ueda S, Hirashima M, Kataoka T. Impaired vascular development in the yolk sac and allantois in mice lacking RA-GEF-1. Biochem Biophys Res Commun. 2009;387:754-9 pubmed publisher
  • immunohistochemistry; mouse; 1:500
Okazaki T, Ni A, Ayeni O, Baluk P, Yao L, Vossmeyer D, et al. alpha5beta1 Integrin blockade inhibits lymphangiogenesis in airway inflammation. Am J Pathol. 2009;174:2378-87 pubmed publisher
  • immunohistochemistry; mouse; 1:500
Okazaki T, Ni A, Baluk P, Ayeni O, Kearley J, Coyle A, et al. Capillary defects and exaggerated inflammatory response in the airways of EphA2-deficient mice. Am J Pathol. 2009;174:2388-99 pubmed publisher
  • ELISA; human
Hirashima M, Sano K, Morisada T, Murakami K, Rossant J, Suda T. Lymphatic vessel assembly is impaired in Aspp1-deficient mouse embryos. Dev Biol. 2008;316:149-59 pubmed publisher
  • immunohistochemistry; human
Filer A, Parsonage G, Smith E, Osborne C, Thomas A, Curnow S, et al. Differential survival of leukocyte subsets mediated by synovial, bone marrow, and skin fibroblasts: site-specific versus activation-dependent survival of T cells and neutrophils. Arthritis Rheum. 2006;54:2096-108 pubmed
Roy T, Banang Mbeumi S, Boateng S, Ruiz E, Chamcheu R, Kang L, et al. Dual targeting of mTOR/IL-17A and autophagy by fisetin alleviates psoriasis-like skin inflammation. Front Immunol. 2022;13:1075804 pubmed publisher
Santos Coquillat A, Herreros P xe9 rez D, Samaniego R, Gonz xe1 lez M, Cuss xf3 L, Desco M, et al. Dual-labeled nanoparticles based on small extracellular vesicles for tumor detection. Biol Direct. 2022;17:31 pubmed publisher
Kuppuswamy S, Annex B, Ganta V. Targeting Anti-Angiogenic VEGF165b-VEGFR1 Signaling Promotes Nitric Oxide Independent Therapeutic Angiogenesis in Preclinical Peripheral Artery Disease Models. Cells. 2022;11: pubmed publisher
Cedervall J, Herre M, Dragomir A, Rabelo Melo F, Svensson A, Th xe5 lin C, et al. Neutrophil extracellular traps promote cancer-associated inflammation and myocardial stress. Oncoimmunology. 2022;11:2049487 pubmed publisher
Baluk P, McDonald D. Imaging Blood Vessels and Lymphatics in Mouse Trachea Wholemounts. Methods Mol Biol. 2022;2441:115-134 pubmed publisher
Aneas I, Decker D, Howard C, Sobreira D, Sakabe N, Blaine K, et al. Asthma-associated genetic variants induce IL33 differential expression through an enhancer-blocking regulatory region. Nat Commun. 2021;12:6115 pubmed publisher
Lee Y, Wang H, Su C, Lee H, Chou Y, Hsieh C, et al. Deferoxamine accelerates endothelial progenitor cell senescence and compromises angiogenesis. Aging (Albany NY). 2021;13:21364-21384 pubmed publisher
Yang W, He H, Wang T, Su N, Zhang F, Jiang K, et al. Single-Cell Transcriptomic Analysis Reveals a Hepatic Stellate Cell-Activation Roadmap and Myofibroblast Origin During Liver Fibrosis in Mice. Hepatology. 2021;74:2774-2790 pubmed publisher
Wang J, Deng X, Xie Y, Tang J, Zhou Z, Yang F, et al. An Integrated Transcriptome Analysis Reveals IGFBP7 Upregulation in Vasculature in Traumatic Brain Injury. Front Genet. 2020;11:599834 pubmed publisher
Baluk P, Naikawadi R, Kim S, Rodríguez F, Choi D, Hong Y, et al. Lymphatic Proliferation Ameliorates Pulmonary Fibrosis after Lung Injury. Am J Pathol. 2020;190:2355-2375 pubmed publisher
Dai J, Zhang C, Guo L, He H, Jiang K, Huang Y, et al. A necroptotic-independent function of MLKL in regulating endothelial cell adhesion molecule expression. Cell Death Dis. 2020;11:282 pubmed publisher
Testini C, Smith R, Jin Y, Martinsson P, Sun Y, Hedlund M, et al. Myc-dependent endothelial proliferation is controlled by phosphotyrosine 1212 in VEGF receptor-2. EMBO Rep. 2019;20:e47845 pubmed publisher
Mastromoro G, Calcagni G, Versacci P, Putotto C, Chinali M, Lambiase C, et al. Left pulmonary artery in 22q11.2 deletion syndrome. Echocardiographic evaluation in patients without cardiac defects and role of Tbx1 in mice. PLoS ONE. 2019;14:e0211170 pubmed publisher
Tsukita Y, Okazaki T, Ebihara S, Komatsu R, Nihei M, Kobayashi M, et al. Beneficial effects of sunitinib on tumor microenvironment and immunotherapy targeting death receptor5. Oncoimmunology. 2019;8:e1543526 pubmed publisher
Oladipupo S, Kabir A, Smith C, Choi K, Ornitz D. Impaired tumor growth and angiogenesis in mice heterozygous for Vegfr2 (Flk1). Sci Rep. 2018;8:14724 pubmed publisher
Singhal M, Liu X, Inverso D, Jiang K, Dai J, He H, et al. Endothelial cell fitness dictates the source of regenerating liver vasculature. J Exp Med. 2018;215:2497-2508 pubmed publisher
Høye A, Tolstrup S, Horton E, Nicolau M, Frost H, Woo J, et al. Tumor endothelial marker 8 promotes cancer progression and metastasis. Oncotarget. 2018;9:30173-30188 pubmed publisher
Lugano R, Vemuri K, Yu D, Bergqvist M, Smits A, Essand M, et al. CD93 promotes β1 integrin activation and fibronectin fibrillogenesis during tumor angiogenesis. J Clin Invest. 2018;128:3280-3297 pubmed publisher
Kabir A, Lee T, Pan H, Berry J, Krchma K, Wu J, et al. Requisite endothelial reactivation and effective siRNA nanoparticle targeting of Etv2/Er71 in tumor angiogenesis. JCI Insight. 2018;3: pubmed publisher
Seaman S, Zhu Z, Saha S, Zhang X, Yang M, Hilton M, et al. Eradication of Tumors through Simultaneous Ablation of CD276/B7-H3-Positive Tumor Cells and Tumor Vasculature. Cancer Cell. 2017;31:501-515.e8 pubmed publisher
Géraud C, Koch P, Zierow J, Klapproth K, Busch K, Olsavszky V, et al. GATA4-dependent organ-specific endothelial differentiation controls liver development and embryonic hematopoiesis. J Clin Invest. 2017;127:1099-1114 pubmed publisher
Surolia R, Li F, Wang Z, Li H, Liu G, Zhou Y, et al. 3D pulmospheres serve as a personalized and predictive multicellular model for assessment of antifibrotic drugs. JCI Insight. 2017;2:e91377 pubmed publisher
Baluk P, Adams A, Phillips K, Feng J, Hong Y, Brown M, et al. Preferential lymphatic growth in bronchus-associated lymphoid tissue in sustained lung inflammation. Am J Pathol. 2014;184:1577-92 pubmed publisher
Baluk P, Hogmalm A, Bry M, Alitalo K, Bry K, McDonald D. Transgenic overexpression of interleukin-1? induces persistent lymphangiogenesis but not angiogenesis in mouse airways. Am J Pathol. 2013;182:1434-47 pubmed publisher
Fuxe J, Tabruyn S, Colton K, Zaid H, Adams A, Baluk P, et al. Pericyte requirement for anti-leak action of angiopoietin-1 and vascular remodeling in sustained inflammation. Am J Pathol. 2011;178:2897-909 pubmed publisher
Falcon B, Hashizume H, Koumoutsakos P, Chou J, Bready J, Coxon A, et al. Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. Am J Pathol. 2009;175:2159-70 pubmed publisher
Chosay J, Fisher M, Farhood A, Ready K, Dunn C, Jaeschke H. Role of PECAM-1 (CD31) in neutrophil transmigration in murine models of liver and peritoneal inflammation. Am J Physiol. 1998;274:G776-82 pubmed publisher
Bogen S, Baldwin H, Watkins S, Albelda S, Abbas A. Association of murine CD31 with transmigrating lymphocytes following antigenic stimulation. Am J Pathol. 1992;141:843-54 pubmed
product information
Product Type :
Antibody
Product Name :
CD31 Monoclonal Antibody (2H8)
Catalog # :
MA3105
Quantity :
500 µg
Price :
US 446.00
Clonality :
Monoclonal
Purity :
Protein G
Host :
Armenian Hamster
Reactivity :
Human, Mouse
Applications :
Flow Cytometry: Assay-dependent, Neutralization: Assay-dependent
Species :
Human, Mouse
Clone :
2H8
Isotype :
IgG
Storage :
-20°C
Description :
CD31 (platelet endothelial cell adhesion molecule-1, PECAM-1) is an inhibitory coreceptor involved in regulation of T cell and B cell signaling by a dual immunoreceptor tyrosine-based inhibitory motif (ITIM) that upon associated kinases-mediated phosphorylation provide docking sites for protein-tyrosine phosphatases. CD31 is expressed ubiquitously within the vascular compartment and is located mainly at junctions between adjacent cells. N-terminal Ig-like domain of CD31 is responsible for its homophilic binding, which plays an important role in cell-cell interactions. CD31 is a multifunctional molecule with diverse roles in modulation of integrin-mediated cell adhesion, transendothelial migration, angiogenesis, apoptosis, negative regulation of immunoreceptor signaling, autoimmunity, macrophage phagocytosis, IgE-mediated anaphylaxis and thrombosis. It is one of key regulatory molecules in vascular system.
Immunogen :
Mouse PECAM-1 (CD31)
Format :
Liquid
Applications w/Dilutions :
Flow Cytometry: Assay-dependent, Neutralization: Assay-dependent
Aliases :
C85791; CD31; CD31 antigen; CD31, PECAM-1; CD31/EndoCAM; endoCAM; GPIIA'; I79_008304; PECA1; Pecam; PECAM1; Pecam-1; platelet and endothelial cell adhesion molecule 1; platelet endothelial cell adhesion molecule; platelet endothelial cell adhesion molecule-1; platelet/endothelial cell adhesion molecule (CD31 antigen); platelet/endothelial cell adhesion molecule 1; type I transmembrane endothelial adhesion molecule
more info or order :
company information
Invitrogen
Thermo Fisher Scientific
81 Wyman Street
Waltham, MA USA 02451
https://www.thermofisher.com
800-678-5599
headquarters: USA