product summary
Loading...
company name :
Invitrogen
other brands :
NeoMarkers, Lab Vision, Endogen, Pierce, BioSource International, Zymed Laboratories, Caltag, Molecular Probes, Research Genetics, Life Technologies, Applied Biosystems, GIBCO BRL, ABgene, Dynal, Affinity BioReagents, Nunc, Invitrogen, NatuTec, Oxoid, Richard-Allan Scientific, Arcturus, Perseptive Biosystems, Proxeon, eBioscience
product type :
antibody
product name :
Granzyme B Monoclonal Antibody (GB11)
catalog :
MA1-80734
quantity :
100 ug
price :
US 532.00
clonality :
monoclonal
host :
mouse
conjugate :
nonconjugated
clone name :
GB11
reactivity :
African green monkey, human, mouse, rhesus macaque
application :
western blot, ELISA, immunohistochemistry, immunocytochemistry, immunoprecipitation, flow cytometry, immunohistochemistry - frozen section, other
more info or order :
citations: 79
Published Application/Species/Sample/DilutionReference
  • flow cytometry; mouse; loading ...
Hutton C, Heider F, Blanco Gómez A, Banyard A, Kononov A, Zhang X, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell. 2021;: pubmed publisher
  • flow cytometry; mouse; 1:200; loading ...
Amoozgar Z, Kloepper J, Ren J, Tay R, Kazer S, Kiner E, et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat Commun. 2021;12:2582 pubmed publisher
  • immunocytochemistry; human; 10 ug/ml; loading ...; fig 6v1
Lafouresse F, Jugele R, Müller S, Doineau M, Duplan Eche V, Espinosa E, et al. Stochastic asymmetric repartition of lytic machinery in dividing CD8+ T cells generates heterogeneous killing behavior. elife. 2021;10: pubmed publisher
  • flow cytometry; human; loading ...; fig 4a
Liu G, Yu Y, Feng F, Zhu P, Zhang H, Zhang D, et al. Human CD8+CD28- T suppressor cells expanded by common gamma chain (γc) cytokines retain steady allospecific suppressive capacity in vivo. BMC Immunol. 2020;21:23 pubmed publisher
  • other; human; 1:25; loading ...; fig 2f
Ramaglia V, Sheikh Mohamed S, Legg K, Park C, Rojas O, Zandee S, et al. Multiplexed imaging of immune cells in staged multiple sclerosis lesions by mass cytometry. elife. 2019;8: pubmed publisher
  • flow cytometry; human; loading ...; fig 2f
Provine N, Binder B, FitzPatrick M, Schuch A, Garner L, Williamson K, et al. Unique and Common Features of Innate-Like Human Vδ2+ γδT Cells and Mucosal-Associated Invariant T Cells. Front Immunol. 2018;9:756 pubmed publisher
  • flow cytometry; human; loading ...; fig 3b
Li N, van Unen V, Höllt T, Thompson A, van Bergen J, Pezzotti N, et al. Mass cytometry reveals innate lymphoid cell differentiation pathways in the human fetal intestine. J Exp Med. 2018;215:1383-1396 pubmed publisher
  • flow cytometry; human; loading ...; fig 3a
Gorvel L, Korenfeld D, Tung T, Klechevsky E. Dendritic Cell-Derived IL-32?: A Novel Inhibitory Cytokine of NK Cell Function. J Immunol. 2017;199:1290-1300 pubmed publisher
  • flow cytometry; human; loading ...; fig 3d
Tong A, Hashem H, Eid S, Allen F, Kingsley D, Huang A. Adoptive natural killer cell therapy is effective in reducing pulmonary metastasis of Ewing sarcoma. Oncoimmunology. 2017;6:e1303586 pubmed publisher
  • flow cytometry; human; loading ...; fig 3a
Cheuk S, Schlums H, Gallais Sérézal I, Martini E, Chiang S, Marquardt N, et al. CD49a Expression Defines Tissue-Resident CD8+ T Cells Poised for Cytotoxic Function in Human Skin. Immunity. 2017;46:287-300 pubmed publisher
  • flow cytometry; mouse; fig 6m
Knudson K, Pritzl C, Saxena V, Altman A, Daniels M, Teixeiro E. NFκB-Pim-1-Eomesodermin axis is critical for maintaining CD8 T-cell memory quality. Proc Natl Acad Sci U S A. 2017;114:E1659-E1667 pubmed publisher
  • flow cytometry; human; loading ...; fig 3c
Jeffery H, Jeffery L, Lutz P, Corrigan M, Webb G, Hirschfield G, et al. Low-dose interleukin-2 promotes STAT-5 phosphorylation, Treg survival and CTLA-4-dependent function in autoimmune liver diseases. Clin Exp Immunol. 2017;188:394-411 pubmed publisher
  • flow cytometry; human; loading ...
Tauriainen J, Scharf L, Frederiksen J, Naji A, Ljunggren H, Sonnerborg A, et al. Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals. Sci Rep. 2017;7:40354 pubmed publisher
  • flow cytometry; mouse; fig 1
Urban S, Berg L, Welsh R. Type 1 interferon licenses naïve CD8 T cells to mediate anti-viral cytotoxicity. Virology. 2016;493:52-9 pubmed publisher
  • flow cytometry; mouse
Luo C, Liao W, Dadi S, Toure A, Li M. Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature. 2016;529:532-6 pubmed publisher
  • flow cytometry; mouse; 1:50; fig 5
Lucas T, Richner J, Diamond M. The Interferon-Stimulated Gene Ifi27l2a Restricts West Nile Virus Infection and Pathogenesis in a Cell-Type- and Region-Specific Manner. J Virol. 2015;90:2600-15 pubmed publisher
  • flow cytometry; mouse; loading ...; fig 2f
Littwitz Salomon E, Akhmetzyanova I, Vallet C, Francois S, Dittmer U, Gibbert K. Activated regulatory T cells suppress effector NK cell responses by an IL-2-mediated mechanism during an acute retroviral infection. Retrovirology. 2015;12:66 pubmed publisher
  • flow cytometry; mouse; loading ...; fig 10a
Herz J, Johnson K, McGavern D. Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells. J Exp Med. 2015;212:1153-69 pubmed publisher
  • flow cytometry; human; loading ...; fig 1
Bhela S, Kempsell C, Manohar M, Dominguez Villar M, Griffin R, Bhatt P, et al. Nonapoptotic and extracellular activity of granzyme B mediates resistance to regulatory T cell (Treg) suppression by HLA-DR-CD25hiCD127lo Tregs in multiple sclerosis and in response to IL-6. J Immunol. 2015;194:2180-9 pubmed publisher
  • flow cytometry; mouse
Wang X, Sumida H, Cyster J. GPR18 is required for a normal CD8αα intestinal intraepithelial lymphocyte compartment. J Exp Med. 2014;211:2351-9 pubmed publisher
  • flow cytometry; human; fig 5
Srivastava P, Paluch B, Matsuzaki J, James S, Collamat Lai G, Karbach J, et al. Immunomodulatory action of SGI-110, a hypomethylating agent, in acute myeloid leukemia cells and xenografts. Leuk Res. 2014;38:1332-41 pubmed publisher
  • flow cytometry; mouse; fig 7
Urban S, Welsh R. Out-of-sequence signal 3 as a mechanism for virus-induced immune suppression of CD8 T cell responses. PLoS Pathog. 2014;10:e1004357 pubmed publisher
  • flow cytometry; mouse; fig 2
Boding L, Hansen A, Meroni G, Johansen B, Braunstein T, Bonefeld C, et al. Midline 1 directs lytic granule exocytosis and cytotoxicity of mouse killer T cells. Eur J Immunol. 2014;44:3109-18 pubmed publisher
  • flow cytometry; mouse
Smith N, Wissink E, Wang J, Pinello J, Davenport M, Grimson A, et al. Rapid proliferation and differentiation impairs the development of memory CD8+ T cells in early life. J Immunol. 2014;193:177-84 pubmed publisher
  • flow cytometry; human
Bacchetta R, Lucarelli B, Sartirana C, Gregori S, Lupo Stanghellini M, Miqueu P, et al. Immunological Outcome in Haploidentical-HSC Transplanted Patients Treated with IL-10-Anergized Donor T Cells. Front Immunol. 2014;5:16 pubmed publisher
  • flow cytometry; human
Poonia B, Pauza C. Levels of CD56+TIM-3- effector CD8 T cells distinguish HIV natural virus suppressors from patients receiving antiretroviral therapy. PLoS ONE. 2014;9:e88884 pubmed publisher
  • flow cytometry; mouse
Joedicke J, Dietze K, Zelinskyy G, Dittmer U. The phenotype and activation status of regulatory T cells during Friend retrovirus infection. Virol Sin. 2014;29:48-60 pubmed publisher
  • flow cytometry; mouse
Kim E, Gasper D, Lee S, Plisch E, Svaren J, Suresh M. Bach2 regulates homeostasis of Foxp3+ regulatory T cells and protects against fatal lung disease in mice. J Immunol. 2014;192:985-95 pubmed publisher
  • immunocytochemistry; human; fig 1
  • western blot; human; fig 1
Tuli A, Thiery J, James A, Michelet X, Sharma M, Garg S, et al. Arf-like GTPase Arl8b regulates lytic granule polarization and natural killer cell-mediated cytotoxicity. Mol Biol Cell. 2013;24:3721-35 pubmed publisher
  • flow cytometry; mouse; fig 2
Tejera M, Kim E, Sullivan J, Plisch E, Suresh M. FoxO1 controls effector-to-memory transition and maintenance of functional CD8 T cell memory. J Immunol. 2013;191:187-99 pubmed publisher
  • flow cytometry; mouse; fig 4
Manzke N, Akhmetzyanova I, Hasenkrug K, Trilling M, Zelinskyy G, Dittmer U. CD4+ T cells develop antiretroviral cytotoxic activity in the absence of regulatory T cells and CD8+ T cells. J Virol. 2013;87:6306-13 pubmed publisher
  • flow cytometry; mouse; fig 2
Schmitt D, O Dee D, Brown M, Horzempa J, Russo B, Morel P, et al. Role of NK cells in host defense against pulmonary type A Francisella tularensis infection. Microbes Infect. 2013;15:201-11 pubmed publisher
  • flow cytometry; mouse; fig 2
Deguine J, Breart B, Lemaitre F, Bousso P. Cutting edge: tumor-targeting antibodies enhance NKG2D-mediated NK cell cytotoxicity by stabilizing NK cell-tumor cell interactions. J Immunol. 2012;189:5493-7 pubmed publisher
  • flow cytometry; mouse; fig 3
Bhadra R, Khan I. IL-7 and IL-15 do not synergize during CD8 T cell recall response against an obligate intracellular parasite. Microbes Infect. 2012;14:1160-8 pubmed publisher
  • flow cytometry; mouse
Zhang N, Bevan M. TGF-? signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation. Nat Immunol. 2012;13:667-73 pubmed publisher
  • flow cytometry; human; fig 5
Ribeiro Dos Santos P, Turnbull E, Monteiro M, Legrand A, Conrod K, Baalwa J, et al. Chronic HIV infection affects the expression of the 2 transcription factors required for CD8 T-cell differentiation into cytolytic effectors. Blood. 2012;119:4928-38 pubmed publisher
  • flow cytometry; rhesus macaque; loading ...; fig 4a
Hutnick N, Myles D, Hirao L, Scott V, Ferraro B, Khan A, et al. An optimized SIV DNA vaccine can serve as a boost for Ad5 and provide partial protection from a high-dose SIVmac251 challenge. Vaccine. 2012;30:3202-8 pubmed publisher
  • flow cytometry; African green monkey; fig 6
CLAY C, Donart N, Fomukong N, Knight J, Lei W, Price L, et al. Primary severe acute respiratory syndrome coronavirus infection limits replication but not lung inflammation upon homologous rechallenge. J Virol. 2012;86:4234-44 pubmed publisher
  • flow cytometry; human
Randall K, Chan S, Ma C, Fung I, Mei Y, Yabas M, et al. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J Exp Med. 2011;208:2305-20 pubmed publisher
  • flow cytometry; rhesus macaque; fig 2
Vargas Inchaustegui D, Demberg T, Robert Guroff M. A CD8?(-) subpopulation of macaque circulatory natural killer cells can mediate both antibody-dependent and antibody-independent cytotoxic activities. Immunology. 2011;134:326-40 pubmed publisher
  • flow cytometry; mouse; fig 3
Brincks E, Gurung P, Langlois R, Hemann E, Legge K, Griffith T. The magnitude of the T cell response to a clinically significant dose of influenza virus is regulated by TRAIL. J Immunol. 2011;187:4581-8 pubmed publisher
  • flow cytometry; mouse; fig 4
Zelinskyy G, Myers L, Dietze K, Gibbert K, Roggendorf M, Liu J, et al. Virus-specific CD8+ T cells upregulate programmed death-1 expression during acute friend retrovirus infection but are highly cytotoxic and control virus replication. J Immunol. 2011;187:3730-7 pubmed publisher
  • flow cytometry; human; fig 3
Meythaler M, Wang Z, Martinot A, Pryputniewicz S, Kasheta M, McClure H, et al. Early induction of polyfunctional simian immunodeficiency virus (SIV)-specific T lymphocytes and rapid disappearance of SIV from lymph nodes of sooty mangabeys during primary infection. J Immunol. 2011;186:5151-61 pubmed publisher
  • flow cytometry; mouse; fig 2
Marshall H, Prince A, Berg L, Welsh R. IFN-alpha beta and self-MHC divert CD8 T cells into a distinct differentiation pathway characterized by rapid acquisition of effector functions. J Immunol. 2010;185:1419-28 pubmed publisher
  • flow cytometry; mouse; fig 6
Tran Thang N, Derouazi M, Philippin G, Arcidiaco S, Di Berardino Besson W, Masson F, et al. Immune infiltration of spontaneous mouse astrocytomas is dominated by immunosuppressive cells from early stages of tumor development. Cancer Res. 2010;70:4829-39 pubmed publisher
  • immunocytochemistry; human
Thiery J, Keefe D, Saffarian S, Martinvalet D, Walch M, Boucrot E, et al. Perforin activates clathrin- and dynamin-dependent endocytosis, which is required for plasma membrane repair and delivery of granzyme B for granzyme-mediated apoptosis. Blood. 2010;115:1582-93 pubmed publisher
  • flow cytometry; mouse; fig 1
Brown D, Kamperschroer C, Dilzer A, Roberts D, Swain S. IL-2 and antigen dose differentially regulate perforin- and FasL-mediated cytolytic activity in antigen specific CD4+ T cells. Cell Immunol. 2009;257:69-79 pubmed publisher
  • flow cytometry; mouse; fig 5b
Hamada H, Garcia Hernandez M, Reome J, Misra S, Strutt T, McKinstry K, et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol. 2009;182:3469-81 pubmed publisher
  • flow cytometry; human
Huntington N, Legrand N, Alves N, Jaron B, Weijer K, Plet A, et al. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J Exp Med. 2009;206:25-34 pubmed publisher
  • flow cytometry; human; fig 5
Brincks E, Katewa A, Kucaba T, Griffith T, Legge K. CD8 T cells utilize TRAIL to control influenza virus infection. J Immunol. 2008;181:4918-25 pubmed
  • flow cytometry; mouse; fig 3B
  • flow cytometry; human; fig 5C
Masson F, Calzascia T, Di Berardino Besson W, De Tribolet N, Dietrich P, Walker P. Brain microenvironment promotes the final functional maturation of tumor-specific effector CD8+ T cells. J Immunol. 2007;179:845-53 pubmed
  • flow cytometry; mouse; fig 7
Love V, Grabie N, Duramad P, Stavrakis G, Sharpe A, Lichtman A. CTLA-4 ablation and interleukin-12 driven differentiation synergistically augment cardiac pathogenicity of cytotoxic T lymphocytes. Circ Res. 2007;101:248-57 pubmed
  • flow cytometry; mouse; fig 2
Coquet J, Kyparissoudis K, Pellicci D, Besra G, Berzins S, Smyth M, et al. IL-21 is produced by NKT cells and modulates NKT cell activation and cytokine production. J Immunol. 2007;178:2827-34 pubmed
  • flow cytometry; mouse
Obar J, Fuse S, Leung E, Bellfy S, Usherwood E. Gammaherpesvirus persistence alters key CD8 T-cell memory characteristics and enhances antiviral protection. J Virol. 2006;80:8303-15 pubmed
  • flow cytometry; mouse; fig 6
Yang T, Millar J, Groves T, Grinshtein N, Parsons R, Takenaka S, et al. The CD8+ T cell population elicited by recombinant adenovirus displays a novel partially exhausted phenotype associated with prolonged antigen presentation that nonetheless provides long-term immunity. J Immunol. 2006;176:200-10 pubmed
  • flow cytometry; mouse; fig 3
Matsuda J, Zhang Q, Ndonye R, Richardson S, Howell A, Gapin L. T-bet concomitantly controls migration, survival, and effector functions during the development of Valpha14i NKT cells. Blood. 2006;107:2797-805 pubmed
  • flow cytometry; mouse; fig 2
Klebanoff C, Gattinoni L, Torabi Parizi P, Kerstann K, Cardones A, Finkelstein S, et al. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci U S A. 2005;102:9571-6 pubmed
Kim H, Kim H, Nam M, Park J, Lee M, Chung S, et al. Suppression of the antitumoral activity of natural killer cells under indirect coculture with cancer-associated fibroblasts in a pancreatic TIME-on-chip model. Cancer Cell Int. 2023;23:219 pubmed publisher
Chen Z, Ruan W, Guo C, Chen K, Li L, Tian J, et al. Non-SMC condensin I complex subunit H participates in anti-programmed cell death-1 resistance of clear cell renal cell carcinomas. Cell Prolif. 2023;56:e13400 pubmed publisher
Lander V, Belle J, Kingston N, Herndon J, Hogg G, Liu X, et al. Stromal Reprogramming by FAK Inhibition Overcomes Radiation Resistance to Allow for Immune Priming and Response to Checkpoint Blockade. Cancer Discov. 2022;12:2774-2799 pubmed publisher
Lee R, Li J, Li J, Wu C, Jiang S, Hsu W, et al. Synthetic Essentiality of Tryptophan 2,3-Dioxygenase 2 in APC-Mutated Colorectal Cancer. Cancer Discov. 2022;12:1702-1717 pubmed publisher
Rahman S, Billingsley J, Sharma A, Styles T, Govindaraj S, Shanmugasundaram U, et al. Lymph node CXCR5+ NK cells associate with control of chronic SHIV infection. JCI Insight. 2022;7: pubmed publisher
Chevrier S, Zurbuchen Y, Cervia C, Adamo S, Raeber M, de Souza N, et al. A distinct innate immune signature marks progression from mild to severe COVID-19. Cell Rep Med. 2021;2:100166 pubmed publisher
Carré T, Thiery J, Janji B, Terry S, Gros G, Meurice G, et al. Selection of tumor‑resistant variants following sustained natural killer cell‑mediated immune stress. Oncol Rep. 2021;45:582-594 pubmed publisher
Thomé R, Boehm A, Ishikawa L, Casella G, Munhoz J, Ciric B, et al. Comprehensive Analysis of the Immune and Stromal Compartments of the CNS in EAE Mice Reveal Pathways by Which Chloroquine Suppresses Neuroinflammation. Brain Sci. 2020;10: pubmed publisher
Schorer M, Rakebrandt N, Lambert K, Hunziker A, Pallmer K, Oxenius A, et al. TIGIT limits immune pathology during viral infections. Nat Commun. 2020;11:1288 pubmed publisher
Zhang E, Ma Z, Li Q, Yan H, Liu J, Wu W, et al. TLR2 Stimulation Increases Cellular Metabolism in CD8+ T Cells and Thereby Enhances CD8+ T Cell Activation, Function, and Antiviral Activity. J Immunol. 2019;203:2872-2886 pubmed publisher
Kuehlwein J, Borsche M, Korir P, Risch F, Mueller A, Hübner M, et al. Protection of Batf3-deficient mice from experimental cerebral malaria correlates with impaired cytotoxic T-cell responses and immune regulation. Immunology. 2020;159:193-204 pubmed publisher
Sant S, Jenkins M, Dash P, Watson K, Wang Z, Pizzolla A, et al. Human γδ T-cell receptor repertoire is shaped by influenza viruses, age and tissue compartmentalisation. Clin Transl Immunology. 2019;8:e1079 pubmed publisher
Taouk G, Hussein O, Zekak M, Abouelghar A, Al Sarraj Y, Abdelalim E, et al. CD56 expression in breast cancer induces sensitivity to natural killer-mediated cytotoxicity by enhancing the formation of cytotoxic immunological synapse. Sci Rep. 2019;9:8756 pubmed publisher
Bajor D, Mick R, Riese M, Huang A, Sullivan B, Richman L, et al. Long-term outcomes of a phase I study of agonist CD40 antibody and CTLA-4 blockade in patients with metastatic melanoma. Oncoimmunology. 2018;7:e1468956 pubmed publisher
Lim E, Cugliandolo F, Rosner D, Gyori D, Roychoudhuri R, Okkenhaug K. Phosphoinositide 3-kinase δ inhibition promotes antitumor responses but antagonizes checkpoint inhibitors. JCI Insight. 2018;3: pubmed publisher
Zaiatz Bittencourt V, Finlay D, Gardiner C. Canonical TGF-β Signaling Pathway Represses Human NK Cell Metabolism. J Immunol. 2018;200:3934-3941 pubmed publisher
Pyle C, Uwadiae F, Swieboda D, Harker J. Early IL-6 signalling promotes IL-27 dependent maturation of regulatory T cells in the lungs and resolution of viral immunopathology. PLoS Pathog. 2017;13:e1006640 pubmed publisher
Komlósi Z, Kovacs N, Van De Veen W, Kirsch A, Fahrner H, Wawrzyniak M, et al. Human CD40 ligand-expressing type 3 innate lymphoid cells induce IL-10-producing immature transitional regulatory B cells. J Allergy Clin Immunol. 2018;142:178-194.e11 pubmed publisher
Miosge L, Sontani Y, Chuah A, Horikawa K, Russell T, Mei Y, et al. Systems-guided forward genetic screen reveals a critical role of the replication stress response protein ETAA1 in T cell clonal expansion. Proc Natl Acad Sci U S A. 2017;114:E5216-E5225 pubmed publisher
Marshall N, Vong A, Devarajan P, Brauner M, Kuang Y, Nayar R, et al. NKG2C/E Marks the Unique Cytotoxic CD4 T Cell Subset, ThCTL, Generated by Influenza Infection. J Immunol. 2017;198:1142-1155 pubmed publisher
Smithey M, Li G, Venturi V, Davenport M, Nikolich Zugich J. Lifelong persistent viral infection alters the naive T cell pool, impairing CD8 T cell immunity in late life. J Immunol. 2012;189:5356-66 pubmed publisher
Lepisto A, Moser A, Zeh H, Lee K, Bartlett D, McKolanis J, et al. A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors. Cancer Ther. 2008;6:955-964 pubmed
product information
Product Type :
Antibody
Product Name :
Granzyme B Monoclonal Antibody (GB11)
Catalog # :
MA1-80734
Quantity :
100 ug
Price :
US 532.00
Clonality :
Monoclonal
Purity :
protein A
Host :
Mouse
Reactivity :
Human, Non-human primate, Rhesus Monkey
Applications :
ELISA: 2-5 ug/mL, Flow Cytometry: 1:10-1:100, Immunocytochemistry: 1:100, Immunohistochemistry (Frozen): Assay-dependent, Immunoprecipitation: Assay-dependent, Western Blot: 1:1,000
Species :
Human, Non-human primate, Rhesus Monkey
Clone :
GB11
Isotype :
IgG1
Storage :
Store at 4 C short term. For long term storage, store at -20 C, avoiding freeze/thaw cycles.
Description :
Granzyme B is a member of the granzyme serine protease family, and is found in the granules of cytotoxic T cells and NK cells. Granzyme B has been described as CGL1 (cathepsin G-like-1), a serine protease expressed only in cytotoxic T-lymphocytes after cell activation, and CTLA-1 (cytotoxic T lymphocyte-associated serine esterase 1) based on identification of mRNA in various cytotoxic T cells, but not observed in non-cytotoxic lymphoid cells. Granzyme B is crucial for the rapid induction of target cell death by apoptosis, induced by interaction with cytotoxic T cells. The receptor involved in this process has been identified as mannose 6-phosphate receptor which functions as a death receptor for Granzyme B during cytotoxic T cell-induced apoptosis. Granzyme B enters target cells to cleave caspase-3 and initiate the caspase cascade leading to DNA fragmentation and apoptosis. Granzyme B can also act through a mitochondrial apoptosis pathway by cleaving the Bid protein. Granzymes are neutral serine proteases, which are stored in specialized lytic granules of cytotoxic T lymphocytes (CTLs) and in natural killer (NK) cells. A number of granzymes (A to G) have been isolated and cloned from mouse CTLs and NK cells, however in man, fewer have been cloned and identified.
Immunogen :
Purified human Granzyme B.
Format :
Liquid
Applications w/Dilutions :
ELISA: 2-5 ug/mL, Flow Cytometry: 1:10-1:100, Immunocytochemistry: 1:100, Immunohistochemistry (Frozen): Assay-dependent, Immunoprecipitation: Assay-dependent, Western Blot: 1:1,000
Aliases :
AI553453; C11; Cathepsin G-like 1; CCP1; CCP-1/C11; CCPI; CGL1; CGL-1; CSPB; CSP-B; Ctla1; Ctla-1; CTSGL1; cytotoxic cell protease 1; cytotoxic serine protease B; Cytotoxic T lymphocyte associated serine esterase 1; cytotoxic T-lymphocyte proteinase 2; cytotoxic T-lymphocyte-associated serine esterase 1; fragmentin; fragmentin 2; fragmentin-2; GLP I; GLP III; GLP-1; granzyme 2; granzyme B; granzyme B (granzyme 2, cytotoxic T-lymphocyte-associated serine esterase 1); granzyme B(G,H); Granzyme-2; GranzymeB; granzyme-like protein 1; granzyme-like protein I; GRB; GZB; Gzmb; HLP; human lymphocyte protein; Human lymphocyte protein (Hlp); Lymphocyte protease; Natural killer cell protease 1; OTTHUMP00000028189; RNKP-1; SECT; T-cell serine protease 1-3E
more info or order :
company information
Invitrogen
Thermo Fisher Scientific
81 Wyman Street
Waltham, MA USA 02451
https://www.thermofisher.com
800-678-5599
headquarters: USA