product summary
Loading...
company name :
Invitrogen
other brands :
NeoMarkers, Lab Vision, Endogen, Pierce, BioSource International, Zymed Laboratories, Caltag, Molecular Probes, Research Genetics, Life Technologies, Applied Biosystems, GIBCO BRL, ABgene, Dynal, Affinity BioReagents, Nunc, Invitrogen, NatuTec, Oxoid, Richard-Allan Scientific, Arcturus, Perseptive Biosystems, Proxeon, eBioscience
product type :
antibody
product name :
Tau Monoclonal Antibody (TAU-5)
catalog :
AHB0042
quantity :
100 µg
price :
US 450.00
clonality :
monoclonal
host :
mouse
conjugate :
nonconjugated
clone name :
Tau-5
reactivity :
human, mouse, rat, bovine, cat, domestic sheep
application :
western blot, ELISA, immunohistochemistry, immunocytochemistry, immunoprecipitation, immunohistochemistry - paraffin section, immunohistochemistry - frozen section, western blot knockout validation, immunocytochemistry knockout validation
more info or order :
citations: 152
Published Application/Species/Sample/DilutionReference
  • western blot knockout validation; mouse; 1:1000; loading ...; fig 4b
Van Hummel A, Bi M, Ippati S, van der Hoven J, Volkerling A, Lee W, et al. No Overt Deficits in Aged Tau-Deficient C57Bl/6.Mapttm1(EGFP)Kit GFP Knockin Mice. PLoS ONE. 2016;11:e0163236 pubmed publisher
  • immunocytochemistry; human; fig 3
  • immunocytochemistry knockout validation; mouse; fig 3
Mansuroglu Z, Benhelli Mokrani H, Marcato V, Sultan A, Violet M, Chauderlier A, et al. Loss of Tau protein affects the structure, transcription and repair of neuronal pericentromeric heterochromatin. Sci Rep. 2016;6:33047 pubmed publisher
  • immunocytochemistry; human; 1:200; loading ...; fig 3e
  • western blot; human; 1:1000; loading ...; fig s2
  • immunocytochemistry; mouse; 1:500; loading ...; fig 1a
Easton A, Jensen M, Wang C, Hagedorn P, Li Y, WEED M, et al. Identification and characterization of a MAPT-targeting locked nucleic acid antisense oligonucleotide therapeutic for tauopathies. Mol Ther Nucleic Acids. 2022;29:625-642 pubmed publisher
  • western blot; rat; 1:500; loading ...; fig 2f
Guix F, Capitán A, Casadomé Perales Á, Palomares Perez I, López Del Castillo I, Miguel V, et al. Increased exosome secretion in neurons aging in vitro by NPC1-mediated endosomal cholesterol buildup. Life Sci Alliance. 2021;4: pubmed publisher
  • immunocytochemistry; human; 0.5 ug/ml; loading ...; fig 6d
Sokratian A, Ziaee J, Kelly K, Chang A, Bryant N, Wang S, et al. Heterogeneity in α-synuclein fibril activity correlates to disease phenotypes in Lewy body dementia. Acta Neuropathol. 2021;141:547-564 pubmed publisher
  • immunocytochemistry; mouse; 1:200; loading ...; fig 1a
Choi G, Lee H, Chae C, Cho J, Jung Y, Kim J, et al. BNIP3L/NIX-mediated mitophagy protects against glucocorticoid-induced synapse defects. Nat Commun. 2021;12:487 pubmed publisher
  • western blot; human; 1:1000; loading ...; fig 2a
Silva M, Nandi G, Tentarelli S, Gurrell I, Jamier T, Lucente D, et al. Prolonged tau clearance and stress vulnerability rescue by pharmacological activation of autophagy in tauopathy neurons. Nat Commun. 2020;11:3258 pubmed publisher
  • immunohistochemistry; mouse; loading ...; fig 3a
Wander C, Tseng J, Song S, Al Housseiny H, Tart D, Ajit A, et al. The Accumulation of Tau-Immunoreactive Hippocampal Granules and Corpora Amylacea Implicates Reactive Glia in Tau Pathogenesis during Aging. iScience. 2020;23:101255 pubmed publisher
  • western blot; human; 1:1000; loading ...
Silva M, Ferguson F, Cai Q, Donovan K, Nandi G, Patnaik D, et al. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. elife. 2019;8: pubmed publisher
  • immunohistochemistry; mouse; loading ...; fig 1c
Merezhko M, Brunello C, Yan X, Vihinen H, Jokitalo E, Uronen R, et al. Secretion of Tau via an Unconventional Non-vesicular Mechanism. Cell Rep. 2018;25:2027-2035.e4 pubmed publisher
  • western blot; mouse; 1:1000; loading ...; fig 8b
Quaranta V, Rainer C, Nielsen S, Raymant M, Ahmed M, Engle D, et al. Macrophage-Derived Granulin Drives Resistance to Immune Checkpoint Inhibition in Metastatic Pancreatic Cancer. Cancer Res. 2018;78:4253-4269 pubmed publisher
  • immunocytochemistry; human; 1:500; loading ...; fig 1a
Tseng J, Xie L, Song S, Xie Y, Allen L, Ajit D, et al. The Deacetylase HDAC6 Mediates Endogenous Neuritic Tau Pathology. Cell Rep. 2017;20:2169-2183 pubmed publisher
  • western blot; mouse; 1:1000; loading ...; fig 2A
Chen S, Sun J, Zhao G, Guo A, Chen Y, Fu R, et al. Liraglutide Improves Water Maze Learning and Memory Performance While Reduces Hyperphosphorylation of Tau and Neurofilaments in APP/PS1/Tau Triple Transgenic Mice. Neurochem Res. 2017;42:2326-2335 pubmed publisher
  • western blot; mouse; loading ...; fig 5a
Maphis N, Jiang S, Binder J, Wright C, Gopalan B, Lamb B, et al. Whole Genome Expression Analysis in a Mouse Model of Tauopathy Identifies MECP2 as a Possible Regulator of Tau Pathology. Front Mol Neurosci. 2017;10:69 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:100; loading ...; fig 2e
Li Y, Li Z, Jin T, Wang Z, Zhao P. Tau Pathology Promotes the Reorganization of the Extracellular Matrix and Inhibits the Formation of Perineuronal Nets by Regulating the Expression and the Distribution of Hyaluronic Acid Synthases. J Alzheimers Dis. 2017;57:395-409 pubmed publisher
  • western blot; mouse; 1:5000; loading ...; fig 4b
Shin S, Kim J, Lee J, Son Y, Lee M, Kim H, et al. Docosahexaenoic acid-mediated protein aggregates may reduce proteasome activity and delay myotube degradation during muscle atrophy in vitro. Exp Mol Med. 2017;49:e287 pubmed publisher
  • western blot; human; 1:2000; loading ...; fig 7a
Takahashi H, Klein Z, Bhagat S, Kaufman A, Kostylev M, Ikezu T, et al. Opposing effects of progranulin deficiency on amyloid and tau pathologies via microglial TYROBP network. Acta Neuropathol. 2017;133:785-807 pubmed publisher
  • immunocytochemistry; rat; 1:1000; loading ...; fig s1a
Soo Hoo L, Banna C, Radeke C, Sharma N, Albertolle M, Low S, et al. The SNARE Protein Syntaxin 3 Confers Specificity for Polarized Axonal Trafficking in Neurons. PLoS ONE. 2016;11:e0163671 pubmed publisher
  • western blot; human; loading ...; fig 3d
Yoshitake J, Soeda Y, Ida T, Sumioka A, Yoshikawa M, Matsushita K, et al. Modification of Tau by 8-Nitroguanosine 3',5'-Cyclic Monophosphate (8-Nitro-cGMP): EFFECTS OF NITRIC OXIDE-LINKED CHEMICAL MODIFICATION ON TAU AGGREGATION. J Biol Chem. 2016;291:22714-22720 pubmed
  • western blot; human; fig s3
Sohn P, Tracy T, Son H, Zhou Y, Leite R, Miller B, et al. Acetylated tau destabilizes the cytoskeleton in the axon initial segment and is mislocalized to the somatodendritic compartment. Mol Neurodegener. 2016;11:47 pubmed publisher
  • immunocytochemistry; human; 1:600; fig 4
  • western blot; human; 1:1000; fig 2
Yan X, Nykänen N, Brunello C, Haapasalo A, Hiltunen M, Uronen R, et al. FRMD4A-cytohesin signaling modulates the cellular release of tau. J Cell Sci. 2016;129:2003-15 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:500; tbl 1
  • western blot; mouse; 1:500; tbl 1
Krishnan V, White Z, McMahon C, Hodgetts S, Fitzgerald M, Shavlakadze T, et al. A Neurogenic Perspective of Sarcopenia: Time Course Study of Sciatic Nerves From Aging Mice. J Neuropathol Exp Neurol. 2016;75:464-78 pubmed publisher
  • western blot; human; fig 2
Ortuno D, Carlisle H, Miller S. Does inactivation of USP14 enhance degradation of proteasomal substrates that are associated with neurodegenerative diseases?. F1000Res. 2016;5:137 pubmed publisher
  • western blot; human; 1:10,000; fig 3f
Choi W, de Poot S, Lee J, Kim J, Han D, Kim Y, et al. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation. Nat Commun. 2016;7:10963 pubmed publisher
  • western blot; human; fig 1
Urnukhsaikhan E, Cho H, Mishig Ochir T, Seo Y, Park J. Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs. Life Sci. 2016;151:130-138 pubmed publisher
  • western blot; mouse; 1:1000; tbl 1
  • western blot; human; 1:1000; tbl 1
Piedrahita D, Castro Álvarez J, Boudreau R, Villegas Lanau A, Kosik K, Gallego Gómez J, et al. β-Secretase 1's Targeting Reduces Hyperphosphorilated Tau, Implying Autophagy Actors in 3xTg-AD Mice. Front Cell Neurosci. 2015;9:498 pubmed publisher
  • western blot; human; fig 3
Kailainathan S, Piers T, Yi J, Choi S, Fahey M, Borger E, et al. Activation of a synapse weakening pathway by human Val66 but not Met66 pro-brain-derived neurotrophic factor (proBDNF). Pharmacol Res. 2016;104:97-107 pubmed publisher
  • western blot; cat; 1:1000; fig 4
Chambers J, Tokuda T, Uchida K, Ishii R, Tatebe H, Takahashi E, et al. The domestic cat as a natural animal model of Alzheimer's disease. Acta Neuropathol Commun. 2015;3:78 pubmed publisher
  • western blot; mouse; 1:5000; fig 5
Gyoneva S, Kim D, Katsumoto A, Kokiko Cochran O, Lamb B, Ransohoff R. Ccr2 deletion dissociates cavity size and tau pathology after mild traumatic brain injury. J Neuroinflammation. 2015;12:228 pubmed publisher
  • western blot; human; 1,000 ug/ml; fig 10
Puvenna V, Engeler M, Banjara M, Brennan C, Schreiber P, Dadas A, et al. Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy. Brain Res. 2016;1630:225-40 pubmed publisher
  • immunoprecipitation; human; fig 1
  • western blot; human; fig 1
Min S, Chen X, Tracy T, Li Y, Zhou Y, Wang C, et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat Med. 2015;21:1154-62 pubmed publisher
  • western blot; human
de Paula C, Santiago F, de Oliveira A, Oliveira F, Almeida M, Carrettiero D. The Co-chaperone BAG2 Mediates Cold-Induced Accumulation of Phosphorylated Tau in SH-SY5Y Cells. Cell Mol Neurobiol. 2016;36:593-602 pubmed publisher
  • western blot; rat; 1:1000
Sun L, Ban T, Liu C, Chen Q, Wang X, Yan M, et al. Activation of Cdk5/p25 and tau phosphorylation following chronic brain hypoperfusion in rats involves microRNA-195 down-regulation. J Neurochem. 2015;134:1139-51 pubmed publisher
  • western blot; human; 1:5000; fig 1
Sheik Mohideen S, Yamasaki Y, Omata Y, Tsuda L, Yoshiike Y. Nontoxic singlet oxygen generator as a therapeutic candidate for treating tauopathies. Sci Rep. 2015;5:10821 pubmed publisher
  • western blot; mouse; fig 4
Petrov D, Pedrós I, Artiach G, Sureda F, Barroso E, Pallas M, et al. High-fat diet-induced deregulation of hippocampal insulin signaling and mitochondrial homeostasis deficiences contribute to Alzheimer disease pathology in rodents. Biochim Biophys Acta. 2015;1852:1687-99 pubmed publisher
  • western blot; human
De Zio D, Molinari F, Rizza S, Gatta L, Ciotti M, Salvatore A, et al. Apaf1-deficient cortical neurons exhibit defects in axonal outgrowth. Cell Mol Life Sci. 2015;72:4173-91 pubmed publisher
  • immunohistochemistry - paraffin section; human; 1:500; fig 2
  • western blot; human; 1:1000; fig 4
Ohia Nwoko O, Montazari S, Lau Y, Eriksen J. Long-term treadmill exercise attenuates tau pathology in P301S tau transgenic mice. Mol Neurodegener. 2014;9:54 pubmed publisher
  • western blot; mouse; fig 2
Castro Alvarez J, Uribe Arias S, Kosik K, Cardona Gómez G. Long- and short-term CDK5 knockdown prevents spatial memory dysfunction and tau pathology of triple transgenic Alzheimer's mice. Front Aging Neurosci. 2014;6:243 pubmed publisher
  • western blot; mouse; 1:20,000
Lee S, Xu G, Jay T, Bhatta S, Kim K, Jung S, et al. Opposing effects of membrane-anchored CX3CL1 on amyloid and tau pathologies via the p38 MAPK pathway. J Neurosci. 2014;34:12538-46 pubmed publisher
  • immunohistochemistry; mouse; 1:3000
Gheyara A, Ponnusamy R, Djukic B, Craft R, Ho K, Guo W, et al. Tau reduction prevents disease in a mouse model of Dravet syndrome. Ann Neurol. 2014;76:443-56 pubmed publisher
  • western blot; mouse
Pedr s I, Petrov D, Allgaier M, Sureda F, Barroso E, Beas Zarate C, et al. Early alterations in energy metabolism in the hippocampus of APPswe/PS1dE9 mouse model of Alzheimer's disease. Biochim Biophys Acta. 2014;1842:1556-66 pubmed publisher
  • western blot; mouse; 1:500
Liu X, Zhou J, Abid M, Yan H, Huang H, Wan L, et al. Berberine attenuates axonal transport impairment and axonopathy induced by Calyculin A in N2a cells. PLoS ONE. 2014;9:e93974 pubmed publisher
  • western blot; mouse; 1:1000
Liu C, Götz J. Profiling murine tau with 0N, 1N and 2N isoform-specific antibodies in brain and peripheral organs reveals distinct subcellular localization, with the 1N isoform being enriched in the nucleus. PLoS ONE. 2013;8:e84849 pubmed publisher
  • western blot; mouse; 1:4000
Notter T, Panzanelli P, PFISTER S, Mircsof D, Fritschy J. A protocol for concurrent high-quality immunohistochemical and biochemical analyses in adult mouse central nervous system. Eur J Neurosci. 2014;39:165-75 pubmed publisher
  • immunohistochemistry - frozen section; mouse
Manich G, del Valle J, Cabezón I, Camins A, Pallas M, Pelegri C, et al. Presence of a neo-epitope and absence of amyloid beta and tau protein in degenerative hippocampal granules of aged mice. Age (Dordr). 2014;36:151-65 pubmed publisher
  • western blot; mouse; fig 6
Ordóñez Gutiérrez L, Torres J, Gavin R, Anton M, Arroba Espinosa A, Espinosa J, et al. Cellular prion protein modulates ?-amyloid deposition in aged APP/PS1 transgenic mice. Neurobiol Aging. 2013;34:2793-804 pubmed publisher
  • immunohistochemistry; human; 1:1000
  • western blot; human; 1:1000; fig 3
Hebron M, Algarzae N, Lonskaya I, Moussa C. Fractalkine signaling and Tau hyper-phosphorylation are associated with autophagic alterations in lentiviral Tau and A?1-42 gene transfer models. Exp Neurol. 2014;251:127-38 pubmed publisher
  • western blot; mouse; 1:1000; fig 6
Porquet D, Casadesus G, Bayod S, Vicente A, Canudas A, Vilaplana J, et al. Dietary resveratrol prevents Alzheimer's markers and increases life span in SAMP8. Age (Dordr). 2013;35:1851-65 pubmed publisher
  • western blot; mouse; fig 3
Tian M, Zhu D, Xie W, Shi J. Central angiotensin II-induced Alzheimer-like tau phosphorylation in normal rat brains. FEBS Lett. 2012;586:3737-45 pubmed publisher
  • immunohistochemistry; rat; 1:2000
Karlsson O, Berg A, Lindström A, Hanrieder J, Arnerup G, Roman E, et al. Neonatal exposure to the cyanobacterial toxin BMAA induces changes in protein expression and neurodegeneration in adult hippocampus. Toxicol Sci. 2012;130:391-404 pubmed publisher
  • western blot; mouse; fig 1
Sontag J, Nunbhakdi Craig V, White C, Halpain S, Sontag E. The protein phosphatase PP2A/B? binds to the microtubule-associated proteins Tau and MAP2 at a motif also recognized by the kinase Fyn: implications for tauopathies. J Biol Chem. 2012;287:14984-93 pubmed publisher
  • immunohistochemistry; mouse; fig 3
Kaul T, Credle J, Haggerty T, Oaks A, Masliah E, Sidhu A. Region-specific tauopathy and synucleinopathy in brain of the alpha-synuclein overexpressing mouse model of Parkinson's disease. BMC Neurosci. 2011;12:79 pubmed publisher
  • western blot; human; 1:1000; fig 2
Maldonado H, Ramírez E, Utreras E, Pando M, Kettlun A, Chiong M, et al. Inhibition of cyclin-dependent kinase 5 but not of glycogen synthase kinase 3-β prevents neurite retraction and tau hyperphosphorylation caused by secretable products of human T-cell leukemia virus type I-infected lymphocytes. J Neurosci Res. 2011;89:1489-98 pubmed publisher
  • western blot; human; 1:500; fig 2
Haggerty T, Credle J, Rodriguez O, Wills J, Oaks A, Masliah E, et al. Hyperphosphorylated Tau in an ?-synuclein-overexpressing transgenic model of Parkinson's disease. Eur J Neurosci. 2011;33:1598-610 pubmed publisher
  • western blot; mouse; 1:500; fig 3
Wills J, Credle J, Haggerty T, Lee J, Oaks A, Sidhu A. Tauopathic changes in the striatum of A53T ?-synuclein mutant mouse model of Parkinson's disease. PLoS ONE. 2011;6:e17953 pubmed publisher
  • immunohistochemistry - paraffin section; rat; 1:1000; fig 5
  • western blot; rat; 1:2000; fig 4
Nakajima T, Ochi S, Oda C, Ishii M, Ogawa K. Ischemic preconditioning attenuates of ischemia-induced degradation of spectrin and tau: implications for ischemic tolerance. Neurol Sci. 2011;32:229-39 pubmed publisher
  • western blot; human; 1:1000
Spatara M, Robinson A. Transgenic mouse and cell culture models demonstrate a lack of mechanistic connection between endoplasmic reticulum stress and tau dysfunction. J Neurosci Res. 2010;88:1951-61 pubmed publisher
  • ELISA; human; fig 1a
Hall E, Lee S, Mairuae N, Simmons Z, Connor J. Expression of the HFE allelic variant H63D in SH-SY5Y cells affects tau phosphorylation at serine residues. Neurobiol Aging. 2011;32:1409-19 pubmed publisher
  • western blot; rat; 1:1000; fig 3
Kim H, Sul D, Lim J, Lee D, Joo S, Hwang K, et al. Delphinidin ameliorates beta-amyloid-induced neurotoxicity by inhibiting calcium influx and tau hyperphosphorylation. Biosci Biotechnol Biochem. 2009;73:1685-9 pubmed
  • western blot; rat; 1:1000
Sul D, Kim H, Lee D, Joo S, Hwang K, Park S. Protective effect of caffeic acid against beta-amyloid-induced neurotoxicity by the inhibition of calcium influx and tau phosphorylation. Life Sci. 2009;84:257-62 pubmed publisher
  • western blot; mouse; 1:1000
Sul D, Kim H, Cho E, Lee M, Kim H, Jung W, et al. 2,3,7,8-TCDD neurotoxicity in neuroblastoma cells is caused by increased oxidative stress, intracellular calcium levels, and tau phosphorylation. Toxicology. 2009;255:65-71 pubmed publisher
  • western blot; rat; 1:1000; fig 6
Park S, Kim H, Cho E, Kwon B, Phark S, Hwang K, et al. Curcumin protected PC12 cells against beta-amyloid-induced toxicity through the inhibition of oxidative damage and tau hyperphosphorylation. Food Chem Toxicol. 2008;46:2881-7 pubmed publisher
  • western blot; mouse; 1:1000; fig 3
Fukuzaki E, Takuma K, Himeno Y, Yoshida S, Funatsu Y, Kitahara Y, et al. Enhanced activity of hippocampal BACE1 in a mouse model of postmenopausal memory deficits. Neurosci Lett. 2008;433:141-5 pubmed publisher
  • western blot; mouse; 1:1000; fig 5
Liu R, Zhou X, Tanila H, Bjorkdahl C, Wang J, Guan Z, et al. Phosphorylated PP2A (tyrosine 307) is associated with Alzheimer neurofibrillary pathology. J Cell Mol Med. 2008;12:241-57 pubmed publisher
  • western blot; rat; 1:5000
Selenica M, Jensen H, Larsen A, Pedersen M, Helboe L, Leist M, et al. Efficacy of small-molecule glycogen synthase kinase-3 inhibitors in the postnatal rat model of tau hyperphosphorylation. Br J Pharmacol. 2007;152:959-79 pubmed
  • immunohistochemistry - frozen section; human; 1:500
  • western blot; human; 1:500
Bai Q, Garver J, Hukriede N, Burton E. Generation of a transgenic zebrafish model of Tauopathy using a novel promoter element derived from the zebrafish eno2 gene. Nucleic Acids Res. 2007;35:6501-16 pubmed
  • western blot; mouse; fig 4
Jossin Y, Goffinet A. Reelin signals through phosphatidylinositol 3-kinase and Akt to control cortical development and through mTor to regulate dendritic growth. Mol Cell Biol. 2007;27:7113-24 pubmed
  • western blot; rat; 1:1000; fig 3
Park S, Tournell C, Sinjoanu R, Ferreira A. Caspase-3- and calpain-mediated tau cleavage are differentially prevented by estrogen and testosterone in beta-amyloid-treated hippocampal neurons. Neuroscience. 2007;144:119-27 pubmed
  • immunohistochemistry - paraffin section; human; 1:10,000; tbl 1
  • western blot; human; 1:10,000; tbl 1
Schindowski K, Bretteville A, Leroy K, Bégard S, Brion J, Hamdane M, et al. Alzheimer's disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am J Pathol. 2006;169:599-616 pubmed
  • western blot; mouse
Yoshida S, Maeda M, Kaku S, Ikeya H, Yamada K, Nakaike S. Lithium inhibits stress-induced changes in tau phosphorylation in the mouse hippocampus. J Neural Transm (Vienna). 2006;113:1803-14 pubmed
  • western blot; mouse; 1:1000
Lobsiger C, Garcia M, Ward C, Cleveland D. Altered axonal architecture by removal of the heavily phosphorylated neurofilament tail domains strongly slows superoxide dismutase 1 mutant-mediated ALS. Proc Natl Acad Sci U S A. 2005;102:10351-6 pubmed
  • western blot; rat
Kerokoski P, Suuronen T, Salminen A, Soininen H, Pirttila T. Cleavage of the cyclin-dependent kinase 5 activator p35 to p25 does not induce tau hyperphosphorylation. Biochem Biophys Res Commun. 2002;298:693-8 pubmed
Kubota H, Kunisawa K, Wulaer B, Hasegawa M, Kurahashi H, Sakata T, et al. High salt induces cognitive impairment via the interaction of the angiotensin II-AT1 and prostaglandin E2-EP1 systems. Br J Pharmacol. 2023;180:2393-2411 pubmed publisher
Riba M, del Valle J, Romera C, Alsina R, Molina Porcel L, Pelegr xed C, et al. Uncovering tau in wasteosomes (corpora amylacea) of Alzheimer's disease patients. Front Aging Neurosci. 2023;15:1110425 pubmed publisher
Car xfa s Cadavieco M, Berenguer L xf3 pez I, Montoro Canelo A, Serrano Lope M, Gonz xe1 lez de la Fuente S, Aguado B, et al. Cognitive decline in diabetic mice predisposed to Alzheimer's disease is greater than in wild type. Life Sci Alliance. 2023;6: pubmed publisher
Williams D, Yan B, Wang H, Negm L, Sackmann C, Verkuyl C, et al. Somatostatin slows Aβ plaque deposition in aged APPNL-F/NL-F mice by blocking Aβ aggregation. Sci Rep. 2023;13:2337 pubmed publisher
Korde D, Humpel C. Spreading of P301S Aggregated Tau Investigated in Organotypic Mouse Brain Slice Cultures. Biomolecules. 2022;12: pubmed publisher
Mai M, Guo X, Huang Y, Zhang W, Xu Y, Zhang Y, et al. DHCR24 Knockdown Induces Tau Hyperphosphorylation at Thr181, Ser199, Ser262, and Ser396 Sites via Activation of the Lipid Raft-Dependent Ras/MEK/ERK Signaling Pathway in C8D1A Astrocytes. Mol Neurobiol. 2022;59:5856-5873 pubmed publisher
Tabassum Z, Tseng J, Isemann C, Tian X, Chen Y, Herring L, et al. Identification of a reciprocal negative feedback loop between tau-modifying proteins MARK2 kinase and CBP acetyltransferase. J Biol Chem. 2022;298:101977 pubmed publisher
de Oliveira P, Cella C, Locker N, Ravindran K, Mendis A, Wafford K, et al. Improved Sleep, Memory, and Cellular Pathological Features of Tauopathy, Including the NLRP3 Inflammasome, after Chronic Administration of Trazodone in rTg4510 Mice. J Neurosci. 2022;42:3494-3509 pubmed publisher
Choi M, Kim T, Ahn J, Lee J, Jung B, An S, et al. Conformation-specific Antibodies Targeting Aggregated Forms of α-synuclein Block the Propagation of Synucleinopathy. Exp Neurobiol. 2022;31:29-41 pubmed publisher
Almansa D, Peinado H, Garcia Rodriguez R, Casadomé Perales Á, Dotti C, Guix F. Extracellular Vesicles Derived from Young Neural Cultures Attenuate Astrocytic Reactivity In Vitro. Int J Mol Sci. 2022;23: pubmed publisher
Wang X, Qi L, Cheng Y, Ji X, Chi T, Liu P, et al. PINK1 overexpression prevents forskolin-induced tau hyperphosphorylation and oxidative stress in a rat model of Alzheimer's disease. Acta Pharmacol Sin. 2022;43:1916-1927 pubmed publisher
Saroja S, Sharma A, Hof P, Pereira A. Differential expression of tau species and the association with cognitive decline and synaptic loss in Alzheimer's disease. Alzheimers Dement. 2022;18:1602-1615 pubmed publisher
Lyons C, Zhou X, Razzoli M, Chen M, Xia W, Ashe K, et al. Lifelong chronic psychosocial stress induces a proteomic signature of Alzheimer's disease in wildtype mice. Eur J Neurosci. 2022;55:2971-2985 pubmed publisher
Caroux E, Redeker V, Madiona K, Melki R. Structural mapping techniques distinguish the surfaces of fibrillar 1N3R and 1N4R human tau. J Biol Chem. 2021;297:101252 pubmed publisher
Hashem J, Hu M, Zhang J, Gao F, Chen C. Inhibition of 2-Arachidonoylglycerol Metabolism Alleviates Neuropathology and Improves Cognitive Function in a Tau Mouse Model of Alzheimer's Disease. Mol Neurobiol. 2021;58:4122-4133 pubmed publisher
Ye T, Duan Y, Tsang H, Xu H, Chen Y, Cao H, et al. Efficient manipulation of gene dosage in human iPSCs using CRISPR/Cas9 nickases. Commun Biol. 2021;4:195 pubmed publisher
Zhao D, Zhou Y, Huo Y, Meng J, Xiao X, Han L, et al. RPS23RG1 modulates tau phosphorylation and axon outgrowth through regulating p35 proteasomal degradation. Cell Death Differ. 2021;28:337-348 pubmed publisher
Krishnan V, Thanigaiarasu L, White R, Crew R, Larcher T, Le Guiner C, et al. Dystrophic Dmdmdx rats show early neuronal changes (increased S100β and Tau5) at 8 months, supporting severe dystropathology in this rodent model of Duchenne muscular dystrophy. Mol Cell Neurosci. 2020;108:103549 pubmed publisher
Mankhong S, Kim S, Moon S, Lee K, Jeon H, Hwang B, et al. Effects of Aerobic Exercise on Tau and Related Proteins in Rats with the Middle Cerebral Artery Occlusion. Int J Mol Sci. 2020;21: pubmed publisher
Briner A, Götz J, Polanco J. Fyn Kinase Controls Tau Aggregation In Vivo. Cell Rep. 2020;32:108045 pubmed publisher
Landa J, Gaig C, Plagum xe0 J, Saiz A, Antonell A, Sanchez Valle R, et al. Effects of IgLON5 Antibodies on Neuronal Cytoskeleton: A Link between Autoimmunity and Neurodegeneration. Ann Neurol. 2020;88:1023-1027 pubmed publisher
Adhikari R, Yang M, Saikia N, Dutta C, Alharbi W, Shan Z, et al. Acetylation of Aβ42 at Lysine 16 Disrupts Amyloid Formation. ACS Chem Neurosci. 2020;11:1178-1191 pubmed publisher
Tai C, Chang C, Yu G, Lopez I, Yu X, Wang X, et al. Tau Reduction Prevents Key Features of Autism in Mouse Models. Neuron. 2020;106:421-437.e11 pubmed publisher
Hou T, Zhou Y, Zhu L, Wang X, Pang P, Wang D, et al. Correcting abnormalities in miR-124/PTPN1 signaling rescues tau pathology in Alzheimer's disease. J Neurochem. 2020;154:441-457 pubmed publisher
Lo C, Lim C, Ding Z, Wickramasinghe S, Braun A, Ashe K, et al. Targeting the ensemble of heterogeneous tau oligomers in cells: A novel small molecule screening platform for tauopathies. Alzheimers Dement. 2019;15:1489-1502 pubmed publisher
Martorell A, Paulson A, Suk H, Abdurrob F, Drummond G, Guan W, et al. Multi-sensory Gamma Stimulation Ameliorates Alzheimer's-Associated Pathology and Improves Cognition. Cell. 2019;177:256-271.e22 pubmed publisher
Meyer K, Feldman H, Lu T, Drake D, Lim E, Ling K, et al. REST and Neural Gene Network Dysregulation in iPSC Models of Alzheimer's Disease. Cell Rep. 2019;26:1112-1127.e9 pubmed publisher
Zheng Y, Liu A, Wang Z, Cao Q, Wang W, Lin L, et al. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer's disease. Brain. 2019;142:787-807 pubmed publisher
Borin M, Saraceno C, Catania M, Lorenzetto E, Pontelli V, Paterlini A, et al. Rac1 activation links tau hyperphosphorylation and Aβ dysmetabolism in Alzheimer's disease. Acta Neuropathol Commun. 2018;6:61 pubmed publisher
Herrera J, Ordóñez Gutiérrez L, Fabrias G, Casas J, Morales A, Hernández G, et al. Ovarian Function Modulates the Effects of Long-Chain Polyunsaturated Fatty Acids on the Mouse Cerebral Cortex. Front Cell Neurosci. 2018;12:103 pubmed publisher
Foidl B, Humpel C. Differential Hyperphosphorylation of Tau-S199, -T231 and -S396 in Organotypic Brain Slices of Alzheimer Mice. A Model to Study Early Tau Hyperphosphorylation Using Okadaic Acid. Front Aging Neurosci. 2018;10:113 pubmed publisher
Hashimoto S, Ishii A, Kamano N, Watamura N, Saito T, Ohshima T, et al. Endoplasmic reticulum stress responses in mouse models of Alzheimer's disease: Overexpression paradigm versus knockin paradigm. J Biol Chem. 2018;293:3118-3125 pubmed publisher
Boselli M, Lee B, Robert J, Prado M, Min S, Cheng C, et al. An inhibitor of the proteasomal deubiquitinating enzyme USP14 induces tau elimination in cultured neurons. J Biol Chem. 2017;292:19209-19225 pubmed publisher
Wang Y, Hall R, Lee M, Kamgar Parsi A, Bi X, Baudry M. The tyrosine phosphatase PTPN13/FAP-1 links calpain-2, TBI and tau tyrosine phosphorylation. Sci Rep. 2017;7:11771 pubmed publisher
O Hare Doig R, Chiha W, Giacci M, Yates N, Bartlett C, Smith N, et al. Specific ion channels contribute to key elements of pathology during secondary degeneration following neurotrauma. BMC Neurosci. 2017;18:62 pubmed publisher
Mohamed N, Desjardins A, Leclerc N. Tau secretion is correlated to an increase of Golgi dynamics. PLoS ONE. 2017;12:e0178288 pubmed publisher
Bodea L, Evans H, Van der Jeugd A, Ittner L, Delerue F, Kril J, et al. Accelerated aging exacerbates a pre-existing pathology in a tau transgenic mouse model. Aging Cell. 2017;16:377-386 pubmed publisher
Park T, Ryu Y, Park H, Kim J, Go J, Noh J, et al. Humulus japonicus inhibits the progression of Alzheimer's disease in a APP/PS1 transgenic mouse model. Int J Mol Med. 2017;39:21-30 pubmed publisher
Iaccarino H, Singer A, Martorell A, Rudenko A, Gao F, Gillingham T, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature. 2016;540:230-235 pubmed publisher
Guo J, Narasimhan S, Changolkar L, He Z, Stieber A, Zhang B, et al. Unique pathological tau conformers from Alzheimer's brains transmit tau pathology in nontransgenic mice. J Exp Med. 2016;213:2635-2654 pubmed
Fujii H, Takahashi T, Mukai T, Tanaka S, Hosomi N, Maruyama H, et al. Modifications of tau protein after cerebral ischemia and reperfusion in rats are similar to those occurring in Alzheimer's disease - Hyperphosphorylation and cleavage of 4- and 3-repeat tau. J Cereb Blood Flow Metab. 2017;37:2441-2457 pubmed publisher
Jiang Y, Lee J, Lee J, Lee J, Kim J, Choi W, et al. The arginylation branch of the N-end rule pathway positively regulates cellular autophagic flux and clearance of proteotoxic proteins. Autophagy. 2016;12:2197-2212 pubmed
Vintilescu C, Afreen S, Rubino A, Ferreira A. The Neurotoxic TAU45-230 Fragment Accumulates in Upper and Lower Motor Neurons in Amyotrophic Lateral Sclerosis Subjects. Mol Med. 2016;22:477-486 pubmed publisher
Chen X, Wagener J, Ghribi O, Geiger J. Role of Endolysosomes in Skeletal Muscle Pathology Observed in a Cholesterol-Fed Rabbit Model of Alzheimer's Disease. Front Aging Neurosci. 2016;8:129 pubmed publisher
Tiernan C, Combs B, Cox K, Morfini G, Brady S, Counts S, et al. Pseudophosphorylation of tau at S422 enhances SDS-stable dimer formation and impairs both anterograde and retrograde fast axonal transport. Exp Neurol. 2016;283:318-29 pubmed publisher
Tracy T, Sohn P, Minami S, Wang C, Min S, Li Y, et al. Acetylated Tau Obstructs KIBRA-Mediated Signaling in Synaptic Plasticity and Promotes Tauopathy-Related Memory Loss. Neuron. 2016;90:245-60 pubmed publisher
Wang Y, Ren Q, Gong W, Wu D, Tang X, Li X, et al. Escitalopram attenuates β-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway. Oncotarget. 2016;7:13328-39 pubmed publisher
Maeda S, Djukic B, Taneja P, Yu G, Lo I, Davis A, et al. Expression of A152T human tau causes age-dependent neuronal dysfunction and loss in transgenic mice. EMBO Rep. 2016;17:530-51 pubmed publisher
Sottejeau Y, Bretteville A, Cantrelle F, Malmanche N, Demiaute F, Mendes T, et al. Tau phosphorylation regulates the interaction between BIN1's SH3 domain and Tau's proline-rich domain. Acta Neuropathol Commun. 2015;3:58 pubmed publisher
Lane Donovan C, Philips G, Wasser C, Durakoglugil M, Masiulis I, Upadhaya A, et al. Reelin protects against amyloid β toxicity in vivo. Sci Signal. 2015;8:ra67 pubmed publisher
Lee J, Shin S, Jiang Y, Choi W, Hong C, Kim D, et al. Facilitated Tau Degradation by USP14 Aptamers via Enhanced Proteasome Activity. Sci Rep. 2015;5:10757 pubmed publisher
Sepúlveda Díaz J, Alavi Naini S, Huynh M, Ouidja M, Yanicostas C, Chantepie S, et al. HS3ST2 expression is critical for the abnormal phosphorylation of tau in Alzheimer's disease-related tau pathology. Brain. 2015;138:1339-54 pubmed publisher
Maphis N, Xu G, Kokiko Cochran O, Jiang S, Cardona A, Ransohoff R, et al. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain. 2015;138:1738-55 pubmed publisher
Sato T, Ishikawa M, Mochizuki M, Ohta M, Ohkura M, Nakai J, et al. JSAP1/JIP3 and JLP regulate kinesin-1-dependent axonal transport to prevent neuronal degeneration. Cell Death Differ. 2015;22:1260-74 pubmed publisher
Ittner A, Bertz J, Suh L, Stevens C, Götz J, Ittner L. Tau-targeting passive immunization modulates aspects of pathology in tau transgenic mice. J Neurochem. 2015;132:135-45 pubmed publisher
Kimura T, Whitcomb D, Jo J, Regan P, Piers T, Heo S, et al. Microtubule-associated protein tau is essential for long-term depression in the hippocampus. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130144 pubmed publisher
Oz S, Ivashko Pachima Y, Gozes I. The ADNP derived peptide, NAP modulates the tubulin pool: implication for neurotrophic and neuroprotective activities. PLoS ONE. 2012;7:e51458 pubmed publisher
Herzig M, Bidinosti M, Schweizer T, Hafner T, Stemmelen C, Weiss A, et al. High LRRK2 levels fail to induce or exacerbate neuronal alpha-synucleinopathy in mouse brain. PLoS ONE. 2012;7:e36581 pubmed publisher
Zhang Q, Gao T, Luo Y, Chen X, Gao G, Gao X, et al. Transient focal cerebral ischemia/reperfusion induces early and chronic axonal changes in rats: its importance for the risk of Alzheimer's disease. PLoS ONE. 2012;7:e33722 pubmed publisher
Le Freche H, Brouillette J, Fernandez Gomez F, Patin P, Caillierez R, Zommer N, et al. Tau phosphorylation and sevoflurane anesthesia: an association to postoperative cognitive impairment. Anesthesiology. 2012;116:779-87 pubmed publisher
Wills J, Credle J, Oaks A, Duka V, Lee J, Jones J, et al. Paraquat, but not maneb, induces synucleinopathy and tauopathy in striata of mice through inhibition of proteasomal and autophagic pathways. PLoS ONE. 2012;7:e30745 pubmed publisher
Fujimura M, Usuki F. Differing effects of toxicants (methylmercury, inorganic mercury, lead, amyloid ?, and rotenone) on cultured rat cerebrocortical neurons: differential expression of rho proteins associated with neurotoxicity. Toxicol Sci. 2012;126:506-14 pubmed publisher
Papagiannakopoulos T, Friedmann Morvinski D, Neveu P, Dugas J, Gill R, Huillard E, et al. Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases. Oncogene. 2012;31:1884-95 pubmed publisher
Shi M, Sui Y, Peskind E, Li G, Hwang H, Devic I, et al. Salivary tau species are potential biomarkers of Alzheimer's disease. J Alzheimers Dis. 2011;27:299-305 pubmed publisher
Falzone T, Gunawardena S, McCleary D, Reis G, Goldstein L. Kinesin-1 transport reductions enhance human tau hyperphosphorylation, aggregation and neurodegeneration in animal models of tauopathies. Hum Mol Genet. 2010;19:4399-408 pubmed publisher
Qiang L, Yu W, Liu M, Solowska J, Baas P. Basic fibroblast growth factor elicits formation of interstitial axonal branches via enhanced severing of microtubules. Mol Biol Cell. 2010;21:334-44 pubmed publisher
Miao Y, Chen J, Zhang Q, Sun A. Deletion of tau attenuates heat shock-induced injury in cultured cortical neurons. J Neurosci Res. 2010;88:102-10 pubmed publisher
Meyer D, Richer E, Benkovic S, Hayashi K, Kansy J, Hale C, et al. Striatal dysregulation of Cdk5 alters locomotor responses to cocaine, motor learning, and dendritic morphology. Proc Natl Acad Sci U S A. 2008;105:18561-6 pubmed publisher
Saturno G, Pesenti M, Cavazzoli C, Rossi A, Giusti A, Gierke B, et al. Expression of serine/threonine protein-kinases and related factors in normal monkey and human retinas: the mechanistic understanding of a CDK2 inhibitor induced retinal toxicity. Toxicol Pathol. 2007;35:972-83 pubmed
Bergstrom R, Sinjoanu R, Ferreira A. Agrin induced morphological and structural changes in growth cones of cultured hippocampal neurons. Neuroscience. 2007;149:527-36 pubmed
Melov S, Adlard P, Morten K, Johnson F, Golden T, Hinerfeld D, et al. Mitochondrial oxidative stress causes hyperphosphorylation of tau. PLoS ONE. 2007;2:e536 pubmed
Zhou L, Jossin Y, Goffinet A. Identification of small molecules that interfere with radial neuronal migration and early cortical plate development. Cereb Cortex. 2007;17:211-20 pubmed
Ahn J, Radhakrishnan M, Mapelli M, Choi S, Tidor B, Cuny G, et al. Defining Cdk5 ligand chemical space with small molecule inhibitors of tau phosphorylation. Chem Biol. 2005;12:811-23 pubmed
Paganoni S, Ferreira A. Neurite extension in central neurons: a novel role for the receptor tyrosine kinases Ror1 and Ror2. J Cell Sci. 2005;118:433-46 pubmed
Zheng Y, Kesavapany S, Gravell M, Hamilton R, Schubert M, Amin N, et al. A Cdk5 inhibitory peptide reduces tau hyperphosphorylation and apoptosis in neurons. EMBO J. 2005;24:209-20 pubmed
Liu S, Zhang J, Li H, Fang Z, Wang Q, Deng H, et al. Tau becomes a more favorable substrate for GSK-3 when it is prephosphorylated by PKA in rat brain. J Biol Chem. 2004;279:50078-88 pubmed
Bunker J, Wilson L, Jordan M, Feinstein S. Modulation of microtubule dynamics by tau in living cells: implications for development and neurodegeneration. Mol Biol Cell. 2004;15:2720-8 pubmed
Ahn J, Musacchio A, Mapelli M, Ni J, Scinto L, Stein R, et al. Development of an assay to screen for inhibitors of tau phosphorylation by cdk5. J Biomol Screen. 2004;9:122-31 pubmed
Takahashi S, Saito T, Hisanaga S, Pant H, Kulkarni A. Tau phosphorylation by cyclin-dependent kinase 5/p39 during brain development reduces its affinity for microtubules. J Biol Chem. 2003;278:10506-15 pubmed
Forno L, Langston J, Herrick M, Wilson J, Murayama S. Ubiquitin-positive neuronal and tau 2-positive glial inclusions in frontotemporal dementia of motor neuron type. Acta Neuropathol. 2002;103:599-606 pubmed
product information
Product Type :
Antibody
Product Name :
Tau Monoclonal Antibody (TAU-5)
Catalog # :
AHB0042
Quantity :
100 µg
Price :
US 450.00
Clonality :
Monoclonal
Purity :
purified
Host :
Mouse
Reactivity :
Bovine, Human, Mouse, Ovine, Rat
Applications :
Immunocytochemistry: Assay-dependent, Immunohistochemistry (Frozen): 1:500, Immunohistochemistry (Paraffin): 1:20-1:200, Immunoprecipitation: Assay-dependent, Western Blot: 1:500
Species :
Bovine, Human, Mouse, Ovine, Rat
Clone :
TAU-5
Isotype :
IgG1
Storage :
-20°C
Description :
Tau is a neuronal microtubule-associated protein found predominantly on axons. The function of Tau is to promote tubulin polymerization and stabilize microtubules. The C-terminus binds axonal microtubules while the N- terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both. Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton while the longer isoforms may preferentially play a role in its stabilization. In its hyper-phosphorylated form, Tau is the major component of paired helical filaments (PHF), the building block of neurofibrillary lesions in Alzheimer's diseases (AD) brain. Hyper-phosphorylation impairs the microtubule binding function of Tau, resulting in the destabilization of microtubules in AD brains, ultimately leading to the degeneration of the affected neurons. Numerous serine/threonine kinases phosphorylate Tau, including GSK-3beta, protein kinase A (PKA), cyclin-dependent kinase 5 (cdk5) and casein kinase II. Hyper-phosphorylated Tau is found in neurofibrillary lesions in a range and other central nervous system disorders such as Pick's disease, frontotemporal dementia, cortico-basal degeneration and progressive supranuclear palsy.
Immunogen :
Purified bovine microtubule-associated proteins.
Format :
Liquid
Applications w/Dilutions :
Immunocytochemistry: Assay-dependent, Immunohistochemistry (Frozen): 1:500, Immunohistochemistry (Paraffin): 1:20-1:200, Immunoprecipitation: Assay-dependent, Western Blot: 1:500
Aliases :
AI413597; AW045860; DDPAC; FLJ31424; FTDP17; FTDP-17; G protein beta1/gamma2 subunit-interacting factor 1; map tau; Mapt; MAPTL; MGC138549; microtubule associated protein tau; microtubule-associated protein tau; microtubule-associated protein tau, isoform 4; microtubules; MSTD; Mtapt; MTBT1; MTBT2; Neurofibrillary tangle protein; neurofibrillary tangles; Neuronal Marker; paired helical filament-tau; PHFtau; PHF-tau; PPND; PPP1R103; protein phosphatase 1, regulatory subunit 103; pTau; RNPTAU; Tau; Tau microtubule-associated protein; tau protein; Tau-4; Tau5; Unknown (protein for MGC:134287)
more info or order :
company information
Invitrogen
Thermo Fisher Scientific
81 Wyman Street
Waltham, MA USA 02451
https://www.thermofisher.com
800-678-5599
headquarters: USA