Reference |
---|
Gicobi J, Mao Z, DeFranco G, Hirdler J, Li Y, Vianzon V, et al. Salvage therapy expands highly cytotoxic and metabolically fit resilient CD8+ T cells via ME1 up-regulation. Sci Adv. 2023;9:eadi2414 pubmed publisher
|
Wei H, Li Y, Guo Z, Ma X, Li Y, Wei X, et al. Comparison of dynamic changes in the peripheral CD8+ T cells function and differentiation in ESCC patients treated with radiotherapy combined with anti-PD-1 antibody or concurrent chemoradiotherapy. Front Immunol. 2022;13:1060695 pubmed publisher
|
Wildner N, Walker A, Brauneck F, Ditt V, Peine S, Huber S, et al. Transcriptional Pattern Analysis of Virus-Specific CD8+ T Cells in Hepatitis C Infection: Increased Expression of TOX and Eomesodermin During and After Persistent Antigen Recognition. Front Immunol. 2022;13:886646 pubmed publisher
|
Kourtis N, Wang Q, Wang B, Oswald E, Adler C, Cherravuru S, et al. A single-cell map of dynamic chromatin landscapes of immune cells in renal cell carcinoma. Nat Cancer. 2022;3:885-898 pubmed publisher
|
McMurray J, von Borstel A, Taher T, Syrimi E, Taylor G, Sharif M, et al. Transcriptional profiling of human Vδ1 T cells reveals a pathogen-driven adaptive differentiation program. Cell Rep. 2022;39:110858 pubmed publisher
|
Lutter L, Roosenboom B, Brand E, Ter Linde J, Oldenburg B, Van Lochem E, et al. Homeostatic Function and Inflammatory Activation of Ileal CD8+ Tissue-Resident T Cells Is Dependent on Mucosal Location. Cell Mol Gastroenterol Hepatol. 2021;12:1567-1581 pubmed publisher
|
Sia W, Hey Y, Foo R, Wang L, Leeansyah E. Culture, expansion, and flow-cytometry-based functional analysis of pteropid bat MR1-restricted unconventional T cells. STAR Protoc. 2021;2:100487 pubmed publisher
|
Pattekar A, Mayer L, Lau C, Liu C, Palko O, Bewtra M, et al. Norovirus-Specific CD8+ T Cell Responses in Human Blood and Tissues. Cell Mol Gastroenterol Hepatol. 2021;11:1267-1289 pubmed publisher
|
Song M, Pebworth M, Yang X, Abnousi A, Fan C, Wen J, et al. Cell-type-specific 3D epigenomes in the developing human cortex. Nature. 2020;587:644-649 pubmed publisher
|
Tao L, Farooq M, Gao Y, Zhang L, Niu C, Ajmal I, et al. CD19-CAR-T Cells Bearing a KIR/PD-1-Based Inhibitory CAR Eradicate CD19+HLA-C1- Malignant B Cells While Sparing CD19+HLA-C1+ Healthy B Cells. Cancers (Basel). 2020;12: pubmed publisher
|
Bhattacharya P, Ellegård R, Khalid M, Svanberg C, Govender M, Keita A, et al. Complement opsonization of HIV affects primary infection of human colorectal mucosa and subsequent activation of T cells. elife. 2020;9: pubmed publisher
|
Papagno L, Kuse N, Lissina A, Gostick E, Price D, Appay V, et al. The TLR9 ligand CpG ODN 2006 is a poor adjuvant for the induction of de novo CD8+ T-cell responses in vitro. Sci Rep. 2020;10:11620 pubmed publisher
|
Bennstein S, Weinhold S, Manser A, Scherenschlich N, Noll A, Raba K, et al. Umbilical cord blood-derived ILC1-like cells constitute a novel precursor for mature KIR+NKG2A- NK cells. elife. 2020;9: pubmed publisher
|
Wragg K, Tan H, Kristensen A, Nguyen Robertson C, Kelleher A, Parsons M, et al. High CD26 and Low CD94 Expression Identifies an IL-23 Responsive Vδ2+ T Cell Subset with a MAIT Cell-like Transcriptional Profile. Cell Rep. 2020;31:107773 pubmed publisher
|
Beltra J, Manne S, Abdel Hakeem M, Kurachi M, Giles J, Chen Z, et al. Developmental Relationships of Four Exhausted CD8+ T Cell Subsets Reveals Underlying Transcriptional and Epigenetic Landscape Control Mechanisms. Immunity. 2020;52:825-841.e8 pubmed publisher
|
Yoshida T, Ichikawa J, Giuroiu I, Laino A, Hao Y, Krogsgaard M, et al. C reactive protein impairs adaptive immunity in immune cells of patients with melanoma. J Immunother Cancer. 2020;8: pubmed publisher
|
Katsuyama E, Suárez Fueyo A, Bradley S, Mizui M, Marin A, Mulki L, et al. The CD38/NAD/SIRTUIN1/EZH2 Axis Mitigates Cytotoxic CD8 T Cell Function and Identifies Patients with SLE Prone to Infections. Cell Rep. 2020;30:112-123.e4 pubmed publisher
|
Cuff A, Sillito F, Dertschnig S, Hall A, Luong T, Chakraverty R, et al. The Obese Liver Environment Mediates Conversion of NK Cells to a Less Cytotoxic ILC1-Like Phenotype. Front Immunol. 2019;10:2180 pubmed publisher
|
Marquardt N, Kekäläinen E, Chen P, Lourda M, Wilson J, Scharenberg M, et al. Unique transcriptional and protein-expression signature in human lung tissue-resident NK cells. Nat Commun. 2019;10:3841 pubmed publisher
|
Sagebiel A, Steinert F, Lunemann S, Korner C, Schreurs R, Altfeld M, et al. Tissue-resident Eomes+ NK cells are the major innate lymphoid cell population in human infant intestine. Nat Commun. 2019;10:975 pubmed publisher
|
Sponaas A, Yang R, Rustad E, Standal T, Thoresen A, Dao Vo C, et al. PD1 is expressed on exhausted T cells as well as virus specific memory CD8+ T cells in the bone marrow of myeloma patients. Oncotarget. 2018;9:32024-32035 pubmed publisher
|
Kiniry B, Li S, Ganesh A, Hunt P, Somsouk M, Skinner P, et al. Detection of HIV-1-specific gastrointestinal tissue resident CD8+ T-cells in chronic infection. Mucosal Immunol. 2017;: pubmed publisher
|
Collins A, Rothman N, Liu K, Reiner S. Eomesodermin and T-bet mark developmentally distinct human natural killer cells. JCI Insight. 2017;2:e90063 pubmed publisher
|
Kiniry B, Ganesh A, Critchfield J, Hunt P, Hecht F, Somsouk M, et al. Predominance of weakly cytotoxic, T-betLowEomesNeg CD8+ T-cells in human gastrointestinal mucosa: implications for HIV infection. Mucosal Immunol. 2017;10:1008-1020 pubmed publisher
|
Cuff A, Robertson F, Stegmann K, Pallett L, Maini M, Davidson B, et al. Eomeshi NK Cells in Human Liver Are Long-Lived and Do Not Recirculate but Can Be Replenished from the Circulation. J Immunol. 2016;197:4283-4291 pubmed
|
Soh K, Tario J, Colligan S, Maguire O, Pan D, Minderman H, et al. Simultaneous, Single-Cell Measurement of Messenger RNA, Cell Surface Proteins, and Intracellular Proteins. Curr Protoc Cytom. 2016;75:7.45.1-7.45.33 pubmed publisher
|
Narayanan S, Silva R, Peruzzi G, Alvarez Y, Simhadri V, DeBell K, et al. Human Th1 cells that express CD300a are polyfunctional and after stimulation up-regulate the T-box transcription factor eomesodermin. PLoS ONE. 2010;5:e10636 pubmed publisher
|
Intlekofer A, Banerjee A, Takemoto N, Gordon S, Dejong C, Shin H, et al. Anomalous type 17 response to viral infection by CD8+ T cells lacking T-bet and eomesodermin. Science. 2008;321:408-11 pubmed publisher
|
Intlekofer A, Takemoto N, Wherry E, Longworth S, Northrup J, Palanivel V, et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat Immunol. 2005;6:1236-44 pubmed
|
Pearce E, Mullen A, Martins G, Krawczyk C, Hutchins A, Zediak V, et al. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science. 2003;302:1041-3 pubmed
|
Russ A, Wattler S, Colledge W, Aparicio S, Carlton M, Pearce J, et al. Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature. 2000;404:95-9 pubmed
|
Hancock S, Agulnik S, Silver L, Papaioannou V. Mapping and expression analysis of the mouse ortholog of Xenopus Eomesodermin. Mech Dev. 1999;81:205-8 pubmed
|
Ciruna B, Rossant J. Expression of the T-box gene Eomesodermin during early mouse development. Mech Dev. 1999;81:199-203 pubmed
|
Ryan K, Garrett N, Mitchell A, Gurdon J. Eomesodermin, a key early gene in Xenopus mesoderm differentiation. Cell. 1996;87:989-1000 pubmed
|