product summary
Loading...
company name :
Invitrogen
other brands :
NeoMarkers, Lab Vision, Endogen, Pierce, BioSource International, Zymed Laboratories, Caltag, Molecular Probes, Research Genetics, Life Technologies, Applied Biosystems, GIBCO BRL, ABgene, Dynal, Affinity BioReagents, Nunc, Invitrogen, NatuTec, Oxoid, Richard-Allan Scientific, Arcturus, Perseptive Biosystems, Proxeon, eBioscience
product type :
antibody
product name :
Pan Cytokeratin Monoclonal Antibody (AE1/AE3), Alexa Fluor™ 488, eBioscience
catalog :
53-9003-82
quantity :
100 µg
price :
US 510.00
clonality :
monoclonal
host :
mouse
conjugate :
AF488
clone name :
AE1/AE3
reactivity :
human, mouse, dogs, domestic rabbit, rhesus macaque
application :
western blot, immunohistochemistry, immunocytochemistry, flow cytometry, immunohistochemistry - paraffin section, immunohistochemistry - frozen section
more info or order :
citations: 56
Published Application/Species/Sample/DilutionReference
  • immunohistochemistry - paraffin section; human; 1:100; loading ...; fig 6b
Rodriguez E, Boelaars K, Brown K, Madunić K, van Ee T, Dijk F, et al. Analysis of the glyco-code in pancreatic ductal adenocarcinoma identifies glycan-mediated immune regulatory circuits. Commun Biol. 2022;5:41 pubmed publisher
  • flow cytometry; human; loading ...
Rodriguez E, Boelaars K, Brown K, Eveline Li R, Kruijssen L, Bruijns S, et al. Sialic acids in pancreatic cancer cells drive tumour-associated macrophage differentiation via the Siglec receptors Siglec-7 and Siglec-9. Nat Commun. 2021;12:1270 pubmed publisher
  • immunocytochemistry; human; fig 4, 5
Ramani V, Lemaire C, Triboulet M, Casey K, Heirich K, Renier C, et al. Investigating circulating tumor cells and distant metastases in patient-derived orthotopic xenograft models of triple-negative breast cancer. Breast Cancer Res. 2019;21:98 pubmed publisher
  • flow cytometry; human
  • immunocytochemistry; human; 1 ul
Muhanna N, Mepham A, Mohamadi R, Chan H, Khan T, Akens M, et al. Nanoparticle-based sorting of circulating tumor cells by epithelial antigen expression during disease progression in an animal model. Nanomedicine. 2015;11:1613-20 pubmed publisher
  • immunocytochemistry; human; 1:100; fig 1
Hosokawa M, Kenmotsu H, Koh Y, Yoshino T, Yoshikawa T, Naito T, et al. Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system. PLoS ONE. 2013;8:e67466 pubmed publisher
Zhang S, Fang W, Zhou S, Zhu D, Chen R, Gao X, et al. Single cell transcriptomic analyses implicate an immunosuppressive tumor microenvironment in pancreatic cancer liver metastasis. Nat Commun. 2023;14:5123 pubmed publisher
Mart xed nez Flores R, G xf3 mez Soto B, Lozano Burgos C, Niklander S, Lopes M, Gonz xe1 lez Arriagada W. Perineural invasion predicts poor survival and cervical lymph node metastasis in oral squamous cell carcinoma. Med Oral Patol Oral Cir Bucal. 2023;28:e496-e503 pubmed publisher
Xu Y, Qiu Y, Lin Q, Huang C, Li J, Chen L, et al. miR-126-3p-loaded small extracellular vesicles secreted by urine-derived stem cells released from a phototriggered imine crosslink hydrogel could enhance vaginal epithelization after vaginoplasty. Stem Cell Res Ther. 2022;13:331 pubmed publisher
Wong Rolle A, Dong Q, Zhu Y, Divakar P, Hor J, Kedei N, et al. Spatial meta-transcriptomics reveal associations of intratumor bacteria burden with lung cancer cells showing a distinct oncogenic signature. J Immunother Cancer. 2022;10: pubmed publisher
Delalande J, Nagy N, McCann C, Natarajan D, Cooper J, Carreno G, et al. TALPID3/KIAA0586 Regulates Multiple Aspects of Neuromuscular Patterning During Gastrointestinal Development in Animal Models and Human. Front Mol Neurosci. 2021;14:757646 pubmed publisher
Chen B, Scurrah C, McKinley E, Simmons A, Ramirez Solano M, Zhu X, et al. Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps. Cell. 2021;184:6262-6280.e26 pubmed publisher
Loreth D, Schuette M, Zinke J, Mohme M, Piffko A, Schneegans S, et al. CD74 and CD44 Expression on CTCs in Cancer Patients with Brain Metastasis. Int J Mol Sci. 2021;22: pubmed publisher
Pinto F, Santos Ferreira L, Pinto M, Gomes C, Reis C. The Extracellular Small Leucine-Rich Proteoglycan Biglycan Is a Key Player in Gastric Cancer Aggressiveness. Cancers (Basel). 2021;13: pubmed publisher
Luvanda M, Posch W, Noureen A, Lafon E, Zaderer V, Lass Florl C, et al. Dexamethasone Creates a Suppressive Microenvironment and Promotes Aspergillus fumigatus Invasion in a Human 3D Epithelial/Immune Respiratory Model. J Fungi (Basel). 2021;7: pubmed publisher
Yang Y, Leonard M, Luo Z, Yeo S, Bick G, Hao M, et al. Functional cooperation between co-amplified genes promotes aggressive phenotypes of HER2-positive breast cancer. Cell Rep. 2021;34:108822 pubmed publisher
Bartkowiak K, Heidrich I, Kwiatkowski M, Gorges T, Andreas A, Geffken M, et al. Cysteine-Rich Angiogenic Inducer 61: Pro-Survival Function and Role as a Biomarker for Disseminating Breast Cancer Cells. Cancers (Basel). 2021;13: pubmed publisher
Lee H, Kim G, Park S, Kwon C, Lee M, Lee B, et al. Clinical Significance of TWIST-Positive Circulating Tumor Cells in Patients with Esophageal Squamous Cell Carcinoma. Gut Liver. 2021;15:553-561 pubmed publisher
Tahkola K, Ahtiainen M, Kellokumpu I, Mecklin J, Laukkarinen J, Laakkonen J, et al. Prognostic impact of CD73 expression and its relationship to PD-L1 in patients with radically treated pancreatic cancer. Virchows Arch. 2021;478:209-217 pubmed publisher
Massalha H, Bahar Halpern K, Abu Gazala S, Jana T, Massasa E, Moor A, et al. A single cell atlas of the human liver tumor microenvironment. Mol Syst Biol. 2020;16:e9682 pubmed publisher
Polioudaki H, Mala A, Gkimprixi E, Papadaki M, Chantziou A, Tzardi M, et al. Epithelial/Mesenchymal Characteristics and PD-L1 Co-Expression in CTCs of Metastatic Breast Cancer Patients Treated with Eribulin: Correlation with Clinical Outcome. Cancers (Basel). 2020;12: pubmed publisher
Desai N, Neyaz A, Szabolcs A, Shih A, Chen J, Thapar V, et al. Temporal and spatial heterogeneity of host response to SARS-CoV-2 pulmonary infection. Nat Commun. 2020;11:6319 pubmed publisher
Liu H, Vuppalapaty M, Wilkerson C, Renier C, Chiu M, Lemaire C, et al. Detection of EGFR Mutations in cfDNA and CTCs, and Comparison to Tumor Tissue in Non-Small-Cell-Lung-Cancer (NSCLC) Patients. Front Oncol. 2020;10:572895 pubmed publisher
Burlingame E, McDonnell M, Schau G, Thibault G, Lanciault C, Morgan T, et al. SHIFT: speedy histological-to-immunofluorescent translation of a tumor signature enabled by deep learning. Sci Rep. 2020;10:17507 pubmed publisher
Raimondi L, Raimondi F, Di Benedetto L, Cimino G, Spinelli G. PD-L1 Expression on Circulating Tumour Cells May Be Predictive of Response to Regorafenib in Patients Diagnosed with Chemorefractory Metastatic Colorectal Cancer. Int J Mol Sci. 2020;21: pubmed publisher
Desai N, Neyaz A, Szabolcs A, Shih A, Chen J, Thapar V, et al. Temporal and Spatial Heterogeneity of Host Response to SARS-CoV-2 Pulmonary Infection. medRxiv. 2020;: pubmed publisher
Zhang K, Fang X, Zhu J, Yang R, Wang Y, Zhao W, et al. Effective Reconstruction of Functional Urethra Promoted With ICG-001 Delivery Using Core-Shell Collagen/Poly(Llactide-co-caprolactone) [P(LLA-CL)] Nanoyarn-Based Scaffold: A Study in Dog Model. Front Bioeng Biotechnol. 2020;8:774 pubmed publisher
Ghauri A, Wahid M, Mirza T, Uddin J. Direct differentiation of cord blood derived mesenchymal stem cells into keratinocytes without feeder layers and cAMP inducers. Pak J Med Sci. 2020;36:946-951 pubmed publisher
Agbo K, Huang J, Ghaleb A, Williams J, Shroyer K, Bialkowska A, et al. Loss of the Krüppel-like factor 4 tumor suppressor is associated with epithelial-mesenchymal transition in colorectal cancer. J Cancer Metastasis Treat. 2019;5: pubmed publisher
Liu H, Koch C, Haller A, Joosse S, Kumar R, Vellekoop M, et al. Evaluation of Microfluidic Ceiling Designs for the Capture of Circulating Tumor Cells on a Microarray Platform. Adv Biosyst. 2020;4:e1900162 pubmed publisher
Wen J, Huang G, Liu S, Wan J, Wang X, Zhu Y, et al. Polymorphonuclear MDSCs are enriched in the stroma and expanded in metastases of prostate cancer. J Pathol Clin Res. 2020;6:171-177 pubmed publisher
Dong L, Zhang Z, Smith K, Kuczler M, Reyes D, Amend S, et al. The combination of size-based separation and selection-free technology provides higher circulating tumour cells detection sensitivity than either method alone in patients with metastatic prostate cancer. BJU Int. 2020;126:191-201 pubmed publisher
Hu Z, Artibani M, Alsaadi A, Wietek N, Morotti M, Shi T, et al. The Repertoire of Serous Ovarian Cancer Non-genetic Heterogeneity Revealed by Single-Cell Sequencing of Normal Fallopian Tube Epithelial Cells. Cancer Cell. 2020;37:226-242.e7 pubmed publisher
Rashid R, Gaglia G, Chen Y, Lin J, Du Z, Maliga Z, et al. Highly multiplexed immunofluorescence images and single-cell data of immune markers in tonsil and lung cancer. Sci Data. 2019;6:323 pubmed publisher
Janning M, Kobus F, Babayan A, Wikman H, Velthaus J, Bergmann S, et al. Determination of PD-L1 Expression in Circulating Tumor Cells of NSCLC Patients and Correlation with Response to PD-1/PD-L1 Inhibitors. Cancers (Basel). 2019;11: pubmed publisher
Agerbæk M, Bang Christensen S, Yang M, Clausen T, Pereira M, Sharma S, et al. The VAR2CSA malaria protein efficiently retrieves circulating tumor cells in an EpCAM-independent manner. Nat Commun. 2018;9:3279 pubmed publisher
Castro J, Sanchez L, Nunez M, Lu M, Castro T, Sharifi H, et al. Screening Circulating Tumor Cells as a Noninvasive Cancer Test in 3388 Individuals from High-Risk Groups (ICELLATE2). Dis Markers. 2018;2018:4653109 pubmed publisher
Waltl E, Selb R, Eckl Dorna J, Mueller C, Cabauatan C, Eiwegger T, et al. Betamethasone prevents human rhinovirus- and cigarette smoke- induced loss of respiratory epithelial barrier function. Sci Rep. 2018;8:9688 pubmed publisher
Kim E, Kim J, Smith M, Haura E, Anderson A. Cell signaling heterogeneity is modulated by both cell-intrinsic and -extrinsic mechanisms: An integrated approach to understanding targeted therapy. PLoS Biol. 2018;16:e2002930 pubmed publisher
Massie I, Spaniol K, Barbian A, Geerling G, Metzger M, Schrader S. Development of lacrimal gland spheroids for lacrimal gland tissue regeneration. J Tissue Eng Regen Med. 2018;12:e2001-e2009 pubmed publisher
Liu H, Triboulet M, Zia A, Vuppalapaty M, Kidess Sigal E, Coller J, et al. Workflow optimization of whole genome amplification and targeted panel sequencing for CTC mutation detection. NPJ Genom Med. 2017;2:34 pubmed publisher
Hur S, Che J, Di Carlo D. Microscale Laminar Vortices for High-Purity Extraction and Release of Circulating Tumor Cells. Methods Mol Biol. 2017;1634:65-79 pubmed publisher
Donnenberg V, Huber A, Basse P, Rubin J, Donnenberg A. Neither epithelial nor mesenchymal circulating tumor cells isolated from breast cancer patients are tumorigenic in NOD-scid Il2rgnull mice. NPJ Breast Cancer. 2016;2:16004 pubmed publisher
Treweek J, Chan K, Flytzanis N, Yang B, Deverman B, Greenbaum A, et al. Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nat Protoc. 2015;10:1860-1896 pubmed publisher
Huang H, Chu S, Hsu C, Chen P, Ding D, Chang M, et al. Mutagenic, surviving and tumorigenic effects of follicular fluid in the context of p53 loss: initiation of fimbria carcinogenesis. Carcinogenesis. 2015;36:1419-28 pubmed publisher
Mei K, Du L, Yan M, Zhang Z, Zhang F, Gong L, et al. Modified Leukocyte Filter Removes Tumor Cells from the Salvaged Blood. PLoS ONE. 2015;10:e0130864 pubmed publisher
Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed publisher
Yoshida T, Zhang G, Smith M, Lopez A, Bai Y, Li J, et al. Tyrosine phosphoproteomics identifies both codrivers and cotargeting strategies for T790M-related EGFR-TKI resistance in non-small cell lung cancer. Clin Cancer Res. 2014;20:4059-4074 pubmed publisher
Hillig T, Nygaard A, Nekiunaite L, Klingelhofer J, Söletormos G. In vitro validation of an ultra-sensitive scanning fluorescence microscope for analysis of circulating tumor cells. APMIS. 2014;122:545-51 pubmed publisher
Shi G, Cui W, Mukthavaram R, Liu Y, Simberg D. Binding and isolation of tumor cells in biological media with perfluorocarbon microbubbles. Methods. 2013;64:102-7 pubmed publisher
Shi G, Cui W, Benchimol M, Liu Y, Mattrey R, Mukthavaram R, et al. Isolation of rare tumor cells from blood cells with buoyant immuno-microbubbles. PLoS ONE. 2013;8:e58017 pubmed publisher
Donnenberg A, Zimmerlin L, Landreneau R, Luketich J, Donnenberg V. KIT (CD117) expression in a subset of non-small cell lung carcinoma (NSCLC) patients. PLoS ONE. 2012;7:e52885 pubmed publisher
Donnenberg V, Landreneau R, Pfeifer M, Donnenberg A. Flow cytometric determination of stem/progenitor content in epithelial tissues: an example from nonsmall lung cancer and normal lung. Cytometry A. 2013;83:141-9 pubmed publisher
Sato T, Maeda H, Suzuki A, Shibuya H, Sakata A, Shirai W. Endometrial stromal sarcoma with smooth muscle and glandular differentiation of the feline uterus. Vet Pathol. 2007;44:379-82 pubmed
Chen S, Revoltella R, Papini S, Michelini M, Fitzgerald W, Zimmerberg J, et al. Multilineage differentiation of rhesus monkey embryonic stem cells in three-dimensional culture systems. Stem Cells. 2003;21:281-95 pubmed
Woodcock Mitchell J, Eichner R, Nelson W, Sun T. Immunolocalization of keratin polypeptides in human epidermis using monoclonal antibodies. J Cell Biol. 1982;95:580-8 pubmed
Tseng S, Jarvinen M, Nelson W, Huang J, Woodcock Mitchell J, Sun T. Correlation of specific keratins with different types of epithelial differentiation: monoclonal antibody studies. Cell. 1982;30:361-72 pubmed
product information
Product Type :
Antibody
Product Name :
Pan Cytokeratin Monoclonal Antibody (AE1/AE3), Alexa Fluor™ 488, eBioscience
Catalog # :
53-9003-82
Quantity :
100 µg
Price :
US 510.00
Clonality :
Monoclonal
Purity :
Affinity chromatography
Host :
Mouse
Reactivity :
Canine, Human, Mouse, Non-human primate, Rabbit, Rhesus Monkey
Applications :
Immunocytochemistry: 1 µg/mL, Immunohistochemistry (Frozen): Assay-Dependent, Immunohistochemistry (Paraffin): 1:100, Western Blot: 1 µg/mL
Species :
Canine, Human, Mouse, Non-human primate, Rabbit, Rhesus Monkey
Clone :
AE1/AE3
Isotype :
IgG1
Storage :
4° C, store in dark, DO NOT FREEZE!
Description :
Cytokeratin pan is part of a subfamily of intermediate filament proteins that are characterized by remarkable biochemical diversity, and represented in human epithelial tissues by at least 20 different polypeptides. Cytokeratins range in molecular weight between 40 kDa- 68 kDa, and an isoelectric pH between 4.9-7.8. The individual human cytokeratins are numbered 1 to 20. The various epithelia in the human body usually express cytokeratins which are not only characteristic of the type of epithelium, but also related to the degree of maturation or differentiation within an epithelium. Cytokeratin subtype expression patterns are used to an increasing extent in the distinction of different types of epithelial malignancies. The cytokeratin antibodies are not only of assistance in the differential diagnosis of tumors using immunohistochemistry on tissue sections, but are also a useful tool in cytopathology and flow cytometric assays. The composition of cytokeratin pairs vary with the epithelial cell type, stage of differentiation, cellular growth environment, and disease state. Many studies have shown the usefulness of keratins as markers in cancer research and tumor diagnosis.
Format :
Liquid
Applications w/Dilutions :
Immunocytochemistry: 1 µg/mL, Immunohistochemistry (Frozen): Assay-Dependent, Immunohistochemistry (Paraffin): 1:100, Western Blot: 1 µg/mL
Aliases :
2310016L08Rik; 3300001P10Rik; 39.1; 40-kDa keratin intermediate filament; 47 kDa cytokeratin; 56 kDa cytokeratin; 57kd keratin; 57kDa keratin; 58 kDa cytokeratin; 60-kDa keratin; 63kDa Keratin; 65 kDa cytokeratin; 67 kDa cytokeratin; AA960620; adult keratin; AI324768; AI528832; AI626930; AI663979; AL022697; alpha keratin; AU019895; AW108092; AW146334; basic epidermal type II cytokeratin (carboxy-terminal region, clone pUF164); BB005427; BCIE; BIE; Card2; cell proliferation-inducing gene 46 protein; CK 2e; CK1; CK-1; CK10; CK-10; CK13; CK-13; CK14; CK-14; CK15; CK-15; CK16; CK-16; CK-17; CK18; CK-18; CK19; CK-19; CK-1B; CK-2e; CK3; CK-3; CK4; CK-4; CK5; CK-5; ck55; CK6A; CK-6A; CK6C; CK-6C; CK6D; CK-6D; CK-6E; CK7; CK-7; CK8; CK-8; CYK18; CYK4; CYK8; CYKER; cytokeratin 1; cytokeratin 10; cytokeratin 13; cytokeratin 14; cytokeratin 15; cytokeratin 16; cytokeratin 18; cytokeratin 19; cytokeratin 3; cytokeratin 4; cytokeratin 5; cytokeratin 6A; cytokeratin 6C; cytokeratin 6D; cytokeratin 7; cytokeratin 8; cytokeratin 8 (370 AA); cytokeratin endo A; Cytokeratin endo B; cytokeratin otokeratin; cytokeratin type II; cytokeratin type II, component Ib/c; cytokeratin type II, component III; cytokeratin VIB; cytokeratin VII; cytokeratin-1; Cytokeratin-10; cytokeratin-13; Cytokeratin-14; cytokeratin-15; Cytokeratin-16; cytokeratin-17; Cytokeratin-18; cytokeratin-19; Cytokeratin-1B; Cytokeratin-2e; cytokeratin-3; Cytokeratin-4; cytokeratin-5; Cytokeratin-6A; cytokeratin-6B; cytokeratin-6C; Cytokeratin-6D; cytokeratin-6E; cytokeratin-7; Cytokeratin-8; cytokeratin-A; Cytoskeletal 57 kDa keratin; D130054E02Rik; D15Wsu77e; DDD; DDD1; ear specific cytokeratin; EBS2; ebs3; ebs4; EGK_03684; EGK_03685; EHK; EHK1; Endo B; EndoA; EndoC; epidermal keratin 10; epidermal keratin VII; epidermolysis bullosa simplex 2 Dowling-Meara/Kobner/Weber-Cockayne types; epidermolysis bullosa simplex, Dowling-Meara, Koebner; epidermolytic hyperkeratosis 1; epidermolytic hyperkeratosis; keratosis palmaris et plantaris; epithelial keratin 1; epithelial keratin 10; epithelial keratin 2e; Epithelial keratin-1; Epithelial keratin-2e; EPPK; fgk; fin and gill keratin; FNEPPK; focal non-epidermolytic palmoplantar keratoderma; GK-19; Hair alpha protein; HMWCK; Hom s 5; I79_019823; I79_021074; I79_023185; I79_024335; intermediate filament protein; K1; K10; K13; K14; K15; K16; K17; K18; K19; K1B; K1C1; K1CO; K1CP; K1CS; K2C7; K2C8; K2e; K3; K3 keratin; K4; K5; K6A; K6a keratin; K6C; K6D; K7; K77; K8; Ka10; Ka13; Ka14; Ka15; Ka16; Ka17; Ka19; kamp-keratin derived antimicrobial peptide; Kb1; Kb2; Kb4; Kb7; KDAMP; KER1; Ker10; Ker2; KERA; keratin; keratin 1; keratin 1 (epidermolytic hyperkeratosis); keratin 1, type II; keratin 10; keratin 10 (epidermolytic hyperkeratosis); keratin 10 (epidermolytic hyperkeratosis; keratosis palmaris et plantaris); keratin 10, type I; keratin 10, type I L homeolog; keratin 10, type I S homeolog; keratin 12, gene 2 S homeolog; keratin 13; keratin 13, type I; keratin 13, type I S homeolog; keratin 14; keratin 14 (epidermolysis bullosa simplex, Dowling-Meara, Koebner); keratin 14, type I; keratin 14, type I L homeolog; keratin 15; keratin 15, gene 1 S homeolog; keratin 15, type I; keratin 16; keratin 16 (focal non-epidermolytic palmoplantar keratoderma); keratin 16, type I; keratin 16, type I S homeolog; keratin 17; keratin 17 L homeolog; keratin 17, type I; keratin 17, type I L homeolog; keratin 18; keratin 18, type I; keratin 19; keratin 19 S homeolog; keratin 19 S homeolog; keratin 19; keratin 19, type I; Keratin 1B; keratin 2; keratin 2 (epidermal ichthyosis bullosa of Siemens); keratin 2 epidermis; keratin 2, type II; keratin 24; keratin 2A; keratin 2A (epidermal ichthyosis bullosa of Siemens); keratin 3; keratin 3, type II; keratin 4; keratin 4, type II; keratin 5; keratin 5 (epidermolysis bullosa simplex Dowling-Meara/Kobner/Weber-Cockayne types); keratin 5 (epidermolysis bullosa simplex, Dowling-Meara/Kobner/Weber-Cockayne types)
more info or order :
company information
Invitrogen
Thermo Fisher Scientific
81 Wyman Street
Waltham, MA USA 02451
https://www.thermofisher.com
800-678-5599
headquarters: USA