product summary
Loading...
company name :
Invitrogen
other brands :
NeoMarkers, Lab Vision, Endogen, Pierce, BioSource International, Zymed Laboratories, Caltag, Molecular Probes, Research Genetics, Life Technologies, Applied Biosystems, GIBCO BRL, ABgene, Dynal, Affinity BioReagents, Nunc, Invitrogen, NatuTec, Oxoid, Richard-Allan Scientific, Arcturus, Perseptive Biosystems, Proxeon, eBioscience
product type :
antibody
product name :
Phospho-ERK1/ERK2 (Thr185, Tyr187) Polyclonal Antibody
catalog :
44-680G
quantity :
100 µL
price :
US 500.00
clonality :
polyclonal
host :
domestic rabbit
conjugate :
nonconjugated
antigen modification :
phosphorylated
reactivity :
human, mouse, rat, chicken, bovine, fruit fly , Xenopus laevis, roundworm
application :
western blot, immunohistochemistry, immunohistochemistry - paraffin section
more info or order :
citations: 41
Published Application/Species/Sample/DilutionReference
  • western blot; human; loading ...; fig 1d
Roversi F, Pericole F, Machado Neto J, da Silva Santos Duarte A, Longhini A, Corrocher F, et al. Hematopoietic cell kinase (HCK) is a potential therapeutic target for dysplastic and leukemic cells due to integration of erythropoietin/PI3K pathway and regulation of erythropoiesis: HCK in erythropoietin/PI3K pathway. Biochim Biophys Acta Mol Basis Dis. 2017;1863:450-461 pubmed publisher
  • western blot; human; loading ...; fig 1b
Caporali S, Alvino E, Lacal P, Levati L, Giurato G, Memoli D, et al. Targeting the PI3K/AKT/mTOR pathway overcomes the stimulating effect of dabrafenib on the invasive behavior of melanoma cells with acquired resistance to the BRAF inhibitor. Int J Oncol. 2016;49:1164-74 pubmed publisher
  • western blot; human; loading ...; fig s3b
  • western blot; mouse; loading ...; fig 5e
Köchl R, Thelen F, Vanes L, Brazão T, Fountain K, Xie J, et al. WNK1 kinase balances T cell adhesion versus migration in vivo. Nat Immunol. 2016;17:1075-83 pubmed publisher
  • western blot; human; fig 4
Kabe Y, Nakane T, Koike I, Yamamoto T, Sugiura Y, Harada E, et al. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nat Commun. 2016;7:11030 pubmed publisher
  • immunohistochemistry - paraffin section; human; fig 3
  • western blot; human; fig 1
Wang J, Goetsch L, Tucker L, Zhang Q, Gonzalez A, Vaidya K, et al. Anti-c-Met monoclonal antibody ABT-700 breaks oncogene addiction in tumors with MET amplification. BMC Cancer. 2016;16:105 pubmed publisher
  • western blot; rat; fig 5
Fan S, Numata Y, Numata M. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration. Mol Biol Cell. 2016;27:702-15 pubmed publisher
  • western blot; human; fig 1
Salas E, Roy S, Marsh T, Rubin B, Debnath J. Oxidative pentose phosphate pathway inhibition is a key determinant of antimalarial induced cancer cell death. Oncogene. 2016;35:2913-22 pubmed publisher
Ortiz D, Kim M, Lee H, Botanas C, Custodio R, Sayson L, et al. 4-F-PCP, a Novel PCP Analog Ameliorates the Depressive-Like Behavior of Chronic Social Defeat Stress Mice via NMDA Receptor Antagonism. Biomol Ther (Seoul). 2023;31:227-239 pubmed publisher
Ming D, Ma J. EphA3 targeted by miR-3666 contributes to melanoma malignancy via activating ERK1/2 and p38 MAPK pathways. Open Med (Wars). 2022;17:2098-2108 pubmed publisher
Qi Y, Zou H, Zhao X, Kapeleris J, Monteiro M, Li F, et al. Inhibition of colon cancer K-RasG13D mutation reduces cancer cell proliferation but promotes stemness and inflammation via RAS/ERK pathway. Front Pharmacol. 2022;13:996053 pubmed publisher
Lee J, Ng H, Lin Y, Lin T, Kao C, Shie M. The Synergistic Effect of Cyclic Tensile Force and Periodontal Ligament Cell-Laden Calcium Silicate/Gelatin Methacrylate Auxetic Hydrogel Scaffolds for Bone Regeneration. Cells. 2022;11: pubmed publisher
Liu P, Wang J, Peng S, Zhang D, Zhuang L, Liu C, et al. Suppression of phosphodiesterase IV enzyme by roflumilast ameliorates cognitive dysfunction in aged rats after sevoflurane anaesthesia via PKA-CREB and MEK/ERK pathways. Eur J Neurosci. 2022;56:4317-4332 pubmed publisher
Dou C, Zhen G, Dan Y, Wan M, Limjunyawong N, Cao X. Sialylation of TLR2 initiates osteoclast fusion. Bone Res. 2022;10:24 pubmed publisher
Hern xe1 ndez Bule M, Mart xed nez M, Trillo M, Mart xed nez L, Toledano Mac xed as E, xda beda A. Response of human cancer cells to simultaneous treatment with sorafenib and radiofrequency current. Oncol Lett. 2021;22:807 pubmed publisher
Roversi F, Bueno M, Pericole F, Saad S. Hematopoietic Cell Kinase (HCK) Is a Player of the Crosstalk Between Hematopoietic Cells and Bone Marrow Niche Through CXCL12/CXCR4 Axis. Front Cell Dev Biol. 2021;9:634044 pubmed publisher
Ruiz Heiland G, Yong J, von Bremen J, Ruf S. Leptin reduces in vitro cementoblast mineralization and survival as well as induces PGE2 release by ERK1/2 commitment. Clin Oral Investig. 2021;25:1933-1944 pubmed publisher
Yong J, von Bremen J, Ruiz Heiland G, Ruf S. Adiponectin Interacts In-Vitro With Cementoblasts Influencing Cell Migration, Proliferation and Cementogenesis Partly Through the MAPK Signaling Pathway. Front Pharmacol. 2020;11:585346 pubmed publisher
Guo C, Davies M, Hawkins C. Role of thiocyanate in the modulation of myeloperoxidase-derived oxidant induced damage to macrophages. Redox Biol. 2020;36:101666 pubmed publisher
Abdel Latif G, Elwahab A, Hasan R, ElMongy N, Ramzy M, Louka M, et al. A novel protective role of sacubitril/valsartan in cyclophosphamide induced lung injury in rats: impact of miRNA-150-3p on NF-κB/MAPK signaling trajectories. Sci Rep. 2020;10:13045 pubmed publisher
Dong G, Huang X, Jiang S, Ni L, Chen S. Simvastatin Mitigates Apoptosis and Transforming Growth Factor-Beta Upregulation in Stretch-Induced Endothelial Cells. Oxid Med Cell Longev. 2019;2019:6026051 pubmed publisher
Xuan Z, Wang Y, Xie J. ANO6 promotes cell proliferation and invasion in glioma through regulating the ERK signaling pathway. Onco Targets Ther. 2019;12:6721-6731 pubmed publisher
Hernández Bule M, Medel E, Colastra C, Roldan R, Ubeda A. Response of neuroblastoma cells to RF currents as a function of the signal frequency. BMC Cancer. 2019;19:889 pubmed publisher
Dong G, Lin X, Liu H, Gao D, Cui J, Ren Z, et al. Intermittent hypoxia alleviates increased VEGF and pro-angiogenic potential in liver cancer cells. Oncol Lett. 2019;18:1831-1839 pubmed publisher
Kleinschmidt E, Miller N, Ozmadenci D, Tancioni I, Osterman C, Barrie A, et al. Rgnef promotes ovarian tumor progression and confers protection from oxidative stress. Oncogene. 2019;38:6323-6337 pubmed publisher
Castany S, Codony X, Zamanillo D, Merlos M, Verdú E, Boadas Vaello P. Repeated Sigma-1 Receptor Antagonist MR309 Administration Modulates Central Neuropathic Pain Development After Spinal Cord Injury in Mice. Front Pharmacol. 2019;10:222 pubmed publisher
Martínez M, Ubeda A, Trillo M. Involvement of the EGF Receptor in MAPK Signaling Activation by a 50 Hz Magnetic Field in Human Neuroblastoma Cells. Cell Physiol Biochem. 2019;52:893-907 pubmed publisher
Förster S, Koziol U, Schäfer T, Duvoisin R, Cailliau K, Vanderstraete M, et al. The role of fibroblast growth factor signalling in Echinococcus multilocularis development and host-parasite interaction. PLoS Negl Trop Dis. 2019;13:e0006959 pubmed publisher
Bagati A, Moparthy S, Fink E, Bianchi Smiraglia A, Yun D, Kolesnikova M, et al. KLF9-dependent ROS regulate melanoma progression in stage-specific manner. Oncogene. 2019;38:3585-3597 pubmed publisher
Walker S, Selfors L, Margolis B, Brugge J. CRB3 and the FERM protein EPB41L4B regulate proliferation of mammary epithelial cells through the release of amphiregulin. PLoS ONE. 2018;13:e0207470 pubmed publisher
Bilal S, Jaggi S, Janosevic D, Shah N, Teymour S, Voronina A, et al. ZO-1 protein is required for hydrogen peroxide to increase MDCK cell paracellular permeability in an ERK 1/2-dependent manner. Am J Physiol Cell Physiol. 2018;315:C422-C431 pubmed publisher
Chen M, Hale C, Stanislaus S, Xu J, Véniant M. FGF21 acts as a negative regulator of bile acid synthesis. J Endocrinol. 2018;237:139-152 pubmed publisher
Castany S, Gris G, Vela J, Verdú E, Boadas Vaello P. Critical role of sigma-1 receptors in central neuropathic pain-related behaviours after mild spinal cord injury in mice. Sci Rep. 2018;8:3873 pubmed publisher
Moschos S, Sullivan R, Hwu W, Ramanathan R, Adjei A, Fong P, et al. Development of MK-8353, an orally administered ERK1/2 inhibitor, in patients with advanced solid tumors. JCI Insight. 2018;3: pubmed publisher
Muranen T, Selfors L, Hwang J, Gallegos L, Coloff J, Thoreen C, et al. ERK and p38 MAPK Activities Determine Sensitivity to PI3K/mTOR Inhibition via Regulation of MYC and YAP. Cancer Res. 2016;76:7168-7180 pubmed
Martínez M, Ubeda A, Moreno J, Trillo M. Power Frequency Magnetic Fields Affect the p38 MAPK-Mediated Regulation of NB69 Cell Proliferation Implication of Free Radicals. Int J Mol Sci. 2016;17:510 pubmed publisher
Shih M, Pan K, Cherng J. Possible Mechanisms of Di(2-ethylhexyl) Phthalate-Induced MMP-2 and MMP-9 Expression in A7r5 Rat Vascular Smooth Muscle Cells. Int J Mol Sci. 2015;16:28800-11 pubmed publisher
Quintero Barceinas R, García Regalado A, Aréchaga Ocampo E, Villegas Sepúlveda N, González De la Rosa C. All-Trans Retinoic Acid Induces Proliferation, Survival, and Migration in A549 Lung Cancer Cells by Activating the ERK Signaling Pathway through a Transcription-Independent Mechanism. Biomed Res Int. 2015;2015:404368 pubmed publisher
Graziani G, Artuso S, De Luca A, Muzi A, Rotili D, Scimeca M, et al. A new water soluble MAPK activator exerts antitumor activity in melanoma cells resistant to the BRAF inhibitor vemurafenib. Biochem Pharmacol. 2015;95:16-27 pubmed publisher
Cheng Z, Liu F, Zhu S, Tian H, Wang L, Wang Y. A rapid and convenient method for fluorescence analysis of in vitro cultivated metacestode vesicles from Echinococcus multilocularis. PLoS ONE. 2015;10:e0118215 pubmed publisher
Murrow L, Malhotra R, Debnath J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol. 2015;17:300-10 pubmed publisher
Cheng Y, Chen P, Chiang H, Suen C, Hwang M, Lin T, et al. Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT. Cell Death Dis. 2015;6:e1584 pubmed publisher
product information
Product Type :
Antibody
Product Name :
Phospho-ERK1/ERK2 (Thr185, Tyr187) Polyclonal Antibody
Catalog # :
44-680G
Quantity :
100 µL
Price :
US 500.00
Clonality :
Polyclonal
Purity :
Antigen affinity chromatography
Host :
Rabbit
Reactivity :
Bovine, C. elegans, Chicken, Drosophila, Human, Mouse, Rat, Xenopus laevis
Applications :
Immunohistochemistry (Paraffin): 1:10-1:100, Western Blot: 1:1,000
Species :
Bovine, C. elegans, Chicken, Drosophila, Human, Mouse, Rat, Xenopus laevis
Isotype :
IgG
Storage :
-20°C
Description :
ERK1 and ERK2 are widely expressed and are involved in the regulation of meiosis, mitosis, and postmitotic functions in differentiated cells. Many different stimuli, including growth factors, cytokines, virus infection, ligands for heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors and transforming agents, activate the ERK1 and ERK2 pathways. When growth factors bind to the receptor tyrosine kinase, Ras interacts with Raf, the serine/threonine protein kinase and activates it as well. Once actived, Raf phosphorylates serine residue in 2 further kinases, MEK1/2, which in turn phosphorylates tyrosine/threonine in extracellular-signal regulated kinase (ERK) 1/2. Upon activation, the ERKs either phosphorylate a number of cytoplasmic targets or migrate to the nucleus, where they phosphorylate and activate a number of transcription factors such as c-Fos and Elk-1.
Immunogen :
The antiserum was produced against a chemically synthesized phosphopeptide derived from the region of human ERK1&2 that contains threonine 202/185 and tyrosine 204/187. This region is conserved among many species including rat, mouse, cow, frog, snail, nematode, and fruit fly.
Format :
Liquid
Applications w/Dilutions :
Immunohistochemistry (Paraffin): 1:10-1:100, Western Blot: 1:1,000
Aliases :
12559; 9030612K14Rik; AA407128; AU018647; BcDNA:RE08694; C78273; CG12559; CG12559-PA; CG12559-PC; CG12559-PD; CG12559-PE; CG12559-PG; CG12559-PH; CG12559-PI; CG18732; CT34260; CT39192; DERK; D-ERK; DERK-A; Diphospho-ERK; dm-dpERK; Dmel CG12559; Dmel_CG12559; DmErk; DmERKA; DmERK-A; DmMAPK; dpERK; dp-ERK; dpERK1; dpMAPK; drosophila ERK; Dsor2; E(sina)7; EC2-1; EK2-1; enhancer of seven in absentia 7; ERK; Erk MAP kinase; Erk/Map kinase; ERK/rolled; Erk1; Erk-1; erk1 erk2; Erk1/2; ERK1b; ERK2; ERK-2; ERKA; ERK-A; ERT1; ERT2; Esrk1; extracellular signal-regulated kinase; extracellular signal-regulated kinase (ERK2); extracellular signal-regulated kinase 1; Extracellular signal-regulated kinase 2; extracellular signal-regulated kinase A; extracellular signal-regulated kinase-1; extracellular signal-regulated kinase-2; extracellular signal-related kinase 1; Extracellular-regulated kinase A; extracellular-signal-regulated kinase 2; Extracellular-signal-related kinase A; EY2-2; fi06b09; GroupII; HS44KDAP; HUMKER1A; I79_009500; I79_018350; insulin-stimulated MAP2 kinase; l(2)41Ac; l(2R)EMS45-39; M phase MAP kinase; MAP kinase; MAP kinase 1; MAP kinase 2; MAP kinase 3; MAP kinase isoform p42; MAP kinase isoform p44; MapK; MAP-k; MAPK 1; MAPK 2; MAPK 3; MAPK1; mapk1.S; mapk1a; mapk1-a; mapk1-b; mapk2; mapk3; MAP-kinase; MBP kinase; Microtubule-associated protein 2 kinase; mitogen activated protein kinase; mitogen activated protein kinase 1; mitogen activated protein kinase 3; mitogen-activated 3; mitogen-activated protein kinase; mitogen-activated protein kinase 1; mitogen-activated protein kinase 1 S homeolog; mitogen-activated protein kinase 1a; mitogen-activated protein kinase 2; Mitogen-activated protein kinase 3; Mitogen-activated protein kinase ERK-A; MNK1; mpk1; Mtap2k; Myelin basic protein kinase; Myelin xP42 protein kinase; p38; p40; p41; p41mapk; p42; p42 MAP Kinase; P42MAPK; p42-MAPK; p44; p44 MAP kinase; p44erk1; p44-ERK1; p44mapk; p44-MAPK; pERK; p-ERK; phospho-ERK; pMapK; pp42/MAP kinase; Prkm1; PRKM2; Prkm3; protein kinase; Protein rolled; protein tyrosine kinase ERK2; RE08694p; RL; rl/ERK; rl/MAPK; rll; rl-PA; rl-PC; rl-PD; rl-PE; rl-PG; rl-PH; rl-PI; roll; rolled; sem; sevenmaker; SR2-1; Su(Raf)2B; wu:fi06b09; XELAEV_18010534mg; xp42; zERK1; zERK2
more info or order :
company information
Invitrogen
Thermo Fisher Scientific
81 Wyman Street
Waltham, MA USA 02451
https://www.thermofisher.com
800-678-5599
headquarters: USA