product summary
Loading...
company name :
Invitrogen
other brands :
NeoMarkers, Lab Vision, Endogen, Pierce, BioSource International, Zymed Laboratories, Caltag, Molecular Probes, Research Genetics, Life Technologies, Applied Biosystems, GIBCO BRL, ABgene, Dynal, Affinity BioReagents, Nunc, Invitrogen, NatuTec, Oxoid, Richard-Allan Scientific, Arcturus, Perseptive Biosystems, Proxeon, eBioscience
product type :
antibody
product name :
Connexin 26 Monoclonal Antibody (CX-1E8)
catalog :
33-5800
quantity :
100 ug
price :
US 502.00
clonality :
monoclonal
host :
mouse
conjugate :
nonconjugated
clone name :
CX-1E8
reactivity :
guinea pig, human, mouse, rat, chicken
application :
western blot, ELISA, immunohistochemistry, immunocytochemistry, flow cytometry, immunohistochemistry - paraffin section, immunohistochemistry - frozen section, other
more info or order :
citations: 65
Published Application/Species/Sample/DilutionReference
  • flow cytometry; mouse; 1:150; fig 3d
  • immunocytochemistry; mouse; 1:150; fig 2a
Fukunaga I, Oe Y, Chen C, Danzaki K, Ohta S, Koike A, et al. Activin/Nodal/TGF-β Pathway Inhibitor Accelerates BMP4-Induced Cochlear Gap Junction Formation During in vitro Differentiation of Embryonic Stem Cells. Front Cell Dev Biol. 2021;9:602197 pubmed publisher
  • western blot; mouse; loading ...; fig s4a
Gentile G, Paciello F, Zorzi V, Spampinato A, Guarnaccia M, Crispino G, et al. miRNA and mRNA Profiling Links Connexin Deficiency to Deafness via Early Oxidative Damage in the Mouse Stria Vascularis. Front Cell Dev Biol. 2020;8:616878 pubmed publisher
  • immunohistochemistry; mouse; loading ...; fig 2a
Fukunaga I, Fujimoto A, Hatakeyama K, Aoki T, Nishikawa A, Noda T, et al. In Vitro Models of GJB2-Related Hearing Loss Recapitulate Ca2+ Transients via a Gap Junction Characteristic of Developing Cochlea. Stem Cell Reports. 2016;7:1023-1036 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:75
  • western blot; mouse; 1:500; fig 3
Dianati E, Poiraud J, Weber Ouellette A, Plante I. Connexins, E-cadherin, Claudin-7 and ?-catenin transiently form junctional nexuses during the post-natal mammary gland development. Dev Biol. 2016;416:52-68 pubmed publisher
  • immunocytochemistry; human; 1:400; fig 1
Zong L, Zhu Y, Liang R, Zhao H. Gap junction mediated miRNA intercellular transfer and gene regulation: A novel mechanism for intercellular genetic communication. Sci Rep. 2016;6:19884 pubmed publisher
  • immunohistochemistry; mouse; 1:400; fig 1
Zhu Y, Zong L, Mei L, Zhao H. Connexin26 gap junction mediates miRNA intercellular genetic communication in the cochlea and is required for inner ear development. Sci Rep. 2015;5:15647 pubmed publisher
  • immunohistochemistry; mouse; 1:400; fig s2.a
Chen J, Zhu Y, Liang C, Chen J, Zhao H. Pannexin1 channels dominate ATP release in the cochlea ensuring endocochlear potential and auditory receptor potential generation and hearing. Sci Rep. 2015;5:10762 pubmed publisher
  • immunohistochemistry - paraffin section; mouse
  • western blot; mouse; 1:1000
Mroue R, INMAN J, Mott J, Budunova I, Bissell M. Asymmetric expression of connexins between luminal epithelial- and myoepithelial- cells is essential for contractile function of the mammary gland. Dev Biol. 2015;399:15-26 pubmed publisher
  • immunohistochemistry; rat
Zhu Y, Liang C, Zong L, Chen J, Jones R, Zhao H. Connexin26 (GJB2) deficiency reduces active cochlear amplification leading to late-onset hearing loss. Neuroscience. 2015;284:719-29 pubmed publisher
  • immunocytochemistry; chicken; 1:200
Jagger D, Nickel R, Forge A. Gap junctional coupling is essential for epithelial repair in the avian cochlea. J Neurosci. 2014;34:15851-60 pubmed publisher
  • immunohistochemistry; human; 1:500
Teleki I, Szasz A, Maros M, Gyorffy B, Kulka J, Meggyeshazi N, et al. Correlations of differentially expressed gap junction connexins Cx26, Cx30, Cx32, Cx43 and Cx46 with breast cancer progression and prognosis. PLoS ONE. 2014;9:e112541 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:400
  • immunohistochemistry; mouse; 1:400
Chen J, Chen J, Zhu Y, Liang C, Zhao H. Deafness induced by Connexin 26 (GJB2) deficiency is not determined by endocochlear potential (EP) reduction but is associated with cochlear developmental disorders. Biochem Biophys Res Commun. 2014;448:28-32 pubmed publisher
  • western blot; mouse; 1:500
Bejarano E, Yuste A, Patel B, Stout R, Spray D, Cuervo A. Connexins modulate autophagosome biogenesis. Nat Cell Biol. 2014;16:401-14 pubmed publisher
  • immunocytochemistry; mouse
  • immunocytochemistry; rat
Bautista W, Rash J, Vanderpool K, Yasumura T, Nagy J. Re-evaluation of connexins associated with motoneurons in rodent spinal cord, sexually dimorphic motor nuclei and trigeminal motor nucleus. Eur J Neurosci. 2014;39:757-70 pubmed publisher
  • western blot; human
Olsen J, Oyan A, Rostad K, Hellem M, Liu J, Li L, et al. p63 attenuates epithelial to mesenchymal potential in an experimental prostate cell model. PLoS ONE. 2013;8:e62547 pubmed publisher
  • immunohistochemistry; mouse; fig 1
Zhu Y, Liang C, Chen J, Zong L, Chen G, Zhao H. Active cochlear amplification is dependent on supporting cell gap junctions. Nat Commun. 2013;4:1786 pubmed publisher
  • immunohistochemistry - frozen section; mouse; fig 1
Forge A, Jagger D, Kelly J, Taylor R. Connexin30-mediated intercellular communication plays an essential role in epithelial repair in the cochlea. J Cell Sci. 2013;126:1703-12 pubmed publisher
  • western blot; human; 1:1000
Bijnsdorp I, Rozendaal L, Van Moorselaar R, Geldof A. A predictive role for noncancerous prostate cells: low connexin-26 expression in radical prostatectomy tissues predicts metastasis. Br J Cancer. 2012;107:1963-8 pubmed publisher
  • immunohistochemistry - frozen section; human; 1:60; fig 5
  • western blot; human; 1:1000; fig 5
Ghule V, Gray C, Galimberti A, Anumba D. Prostaglandin-induced cervical remodelling in humans in the first trimester is associated with increased expression of specific tight junction, but not gap junction proteins. J Transl Med. 2012;10:40 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 2 ug/ml
Lynn B, Tress O, May D, Willecke K, Nagy J. Ablation of connexin30 in transgenic mice alters expression patterns of connexin26 and connexin32 in glial cells and leptomeninges. Eur J Neurosci. 2011;34:1783-93 pubmed publisher
  • western blot; mouse; fig 1
Nagy J, Lynn B, Tress O, Willecke K, Rash J. Connexin26 expression in brain parenchymal cells demonstrated by targeted connexin ablation in transgenic mice. Eur J Neurosci. 2011;34:263-71 pubmed publisher
  • immunohistochemistry - paraffin section; human; fig 6
Garcia Rodríguez L, Pérez Torras S, Carrio M, Cascante A, Garcia Ribas I, Mazo A, et al. Connexin-26 is a key factor mediating gemcitabine bystander effect. Mol Cancer Ther. 2011;10:505-17 pubmed publisher
  • western blot; rat; fig 2
Zhang J, Grindstaff R, Thai S, Murray S, Kohan M, Blackman C. Chloral hydrate decreases gap junction communication in rat liver epithelial cells. Cell Biol Toxicol. 2011;27:207-16 pubmed publisher
  • western blot; rat; fig 5
Azarashvili T, Baburina Y, Grachev D, Krestinina O, Evtodienko Y, Stricker R, et al. Calcium-induced permeability transition in rat brain mitochondria is promoted by carbenoxolone through targeting connexin43. Am J Physiol Cell Physiol. 2011;300:C707-20 pubmed publisher
  • immunocytochemistry; human; 1:100; fig 3
Magnotti L, Goodenough D, Paul D. Functional heterotypic interactions between astrocyte and oligodendrocyte connexins. Glia. 2011;59:26-34 pubmed publisher
  • immunocytochemistry; human; 1:500; fig 1
  • western blot; human; 1:500
Zhang J, Scherer S, Yum S. Dominant Cx26 mutants associated with hearing loss have dominant-negative effects on wild type Cx26. Mol Cell Neurosci. 2011;47:71-8 pubmed publisher
  • immunocytochemistry; human; 1:500; fig 1
Yum S, Zhang J, Scherer S. Dominant connexin26 mutants associated with human hearing loss have trans-dominant effects on connexin30. Neurobiol Dis. 2010;38:226-36 pubmed publisher
  • immunohistochemistry - frozen section; human; 1:50; fig 1
Liu W, Bostrom M, Kinnefors A, Rask Andersen H. Unique expression of connexins in the human cochlea. Hear Res. 2009;250:55-62 pubmed publisher
  • immunocytochemistry; guinea pig; 1:400; fig 2
Liu Y, Zhao H. Cellular characterization of Connexin26 and Connnexin30 expression in the cochlear lateral wall. Cell Tissue Res. 2008;333:395-403 pubmed publisher
  • immunohistochemistry - paraffin section; human
Harris L, De La Cerda J, Tuziak T, Rosen D, Xiao L, Shen Y, et al. Analysis of the expression of biomarkers in urinary bladder cancer using a tissue microarray. Mol Carcinog. 2008;47:678-85 pubmed publisher
  • other; rat; 10 ug/ml; fig 5D
  • immunohistochemistry; rat; 2 ug/ml; fig 3D2
  • other; mouse; fig 6B
Rash J, Olson C, Davidson K, Yasumura T, Kamasawa N, Nagy J. Identification of connexin36 in gap junctions between neurons in rodent locus coeruleus. Neuroscience. 2007;147:938-56 pubmed
  • immunohistochemistry - paraffin section; mouse; 1:50
  • western blot; mouse; 1:500
Nelson R, Glenn K, Zhang Y, Wen H, Knutson T, Gouvion C, et al. Selective cochlear degeneration in mice lacking the F-box protein, Fbx2, a glycoprotein-specific ubiquitin ligase subunit. J Neurosci. 2007;27:5163-71 pubmed
  • immunocytochemistry; guinea pig; fig 5
Zhao H, Yu N. Distinct and gradient distributions of connexin26 and connexin30 in the cochlear sensory epithelium of guinea pigs. J Comp Neurol. 2006;499:506-18 pubmed
  • immunohistochemistry; guinea pig; 1:400; fig 9B
Zhao H. Connexin26 is responsible for anionic molecule permeability in the cochlea for intercellular signalling and metabolic communications. Eur J Neurosci. 2005;21:1859-68 pubmed
  • immunohistochemistry; human; fig 3
Richard G, Brown N, Ishida Yamamoto A, Krol A. Expanding the phenotypic spectrum of Cx26 disorders: Bart-Pumphrey syndrome is caused by a novel missense mutation in GJB2. J Invest Dermatol. 2004;123:856-63 pubmed
  • immunohistochemistry - frozen section; mouse; 1:100
Altevogt B, Paul D. Four classes of intercellular channels between glial cells in the CNS. J Neurosci. 2004;24:4313-23 pubmed
  • immunohistochemistry - frozen section; mouse; 1:200
Nagy J, Ionescu A, Lynn B, Rash J. Coupling of astrocyte connexins Cx26, Cx30, Cx43 to oligodendrocyte Cx29, Cx32, Cx47: Implications from normal and connexin32 knockout mice. Glia. 2003;44:205-18 pubmed
  • immunocytochemistry; human; fig 3
Aasen T, Hodgins M, Edward M, Graham S. The relationship between connexins, gap junctions, tissue architecture and tumour invasion, as studied in a novel in vitro model of HPV-16-associated cervical cancer progression. Oncogene. 2003;22:7969-80 pubmed
  • immunohistochemistry - frozen section; mouse
Bakirtzis G, Choudhry R, Aasen T, Shore L, Brown K, Bryson S, et al. Targeted epidermal expression of mutant Connexin 26(D66H) mimics true Vohwinkel syndrome and provides a model for the pathogenesis of dominant connexin disorders. Hum Mol Genet. 2003;12:1737-44 pubmed
  • immunohistochemistry - frozen section; human
Richard G, Rouan F, Willoughby C, Brown N, Chung P, Ryynanen M, et al. Missense mutations in GJB2 encoding connexin-26 cause the ectodermal dysplasia keratitis-ichthyosis-deafness syndrome. Am J Hum Genet. 2002;70:1341-8 pubmed
  • western blot; mouse; fig 2
Nagy J, Li X, Rempel J, Stelmack G, Patel D, Staines W, et al. Connexin26 in adult rodent central nervous system: demonstration at astrocytic gap junctions and colocalization with connexin30 and connexin43. J Comp Neurol. 2001;441:302-23 pubmed
  • immunohistochemistry; human
Rouan F, White T, Brown N, Taylor A, Lucke T, Paul D, et al. trans-dominant inhibition of connexin-43 by mutant connexin-26: implications for dominant connexin disorders affecting epidermal differentiation. J Cell Sci. 2001;114:2105-13 pubmed
Liu L, Liang C, Chen J, Fang S, Zhao H. Cx26 heterozygous mutations cause hyperacusis-like hearing oversensitivity and increase susceptibility to noise. Sci Adv. 2023;9:eadf4144 pubmed publisher
Paciello F, Zorzi V, Raspa M, Scavizzi F, Grassi C, Mammano F, et al. Connexin 30 deletion exacerbates cochlear senescence and age-related hearing loss. Front Cell Dev Biol. 2022;10:950837 pubmed publisher
Chen J, Chen P, He B, Gong T, Li Y, Zhang J, et al. Connexin30-Deficiency Causes Mild Hearing Loss With the Reduction of Endocochlear Potential and ATP Release. Front Cell Neurosci. 2021;15:819194 pubmed publisher
Abitbol J, Beach R, Barr K, Esseltine J, Allman B, LAIRD D. Cisplatin-induced ototoxicity in organotypic cochlear cultures occurs independent of gap junctional intercellular communication. Cell Death Dis. 2020;11:342 pubmed publisher
Tajima S, Danzaki K, Ikeda K, Kamiya K. Degradation and modification of cochlear gap junction proteins in the early development of age-related hearing loss. Exp Mol Med. 2020;52:166-175 pubmed publisher
Fukunaga I, Fujimoto A, Hatakeyama K, Kurebayashi N, Ikeda K, Kamiya K. Generation of Functional CX26-Gap-Junction-Plaque-Forming Cells with Spontaneous Ca2+ Transients via a Gap Junction Characteristic of Developing Cochlea. Curr Protoc Stem Cell Biol. 2019;51:e100 pubmed publisher
Lin X, Li G, Zhang Y, Zhao J, Lu J, Gao Y, et al. Hearing consequences in Gjb2 knock-in mice: implications for human p.V37I mutation. Aging (Albany NY). 2019;11:7416-7441 pubmed publisher
Zeng S, Lin X, Liu J, Zhou J. Hypoxia‑induced internalization of connexin 26 and connexin 43 in pulmonary epithelial cells is involved in the occurrence of non‑small cell lung cancer via the P53/MDM2 signaling pathway. Int J Oncol. 2019;55:845-859 pubmed publisher
Bage T, Edymann T, Metcalfe A, Dheansa B, Mbundi L. Ex vivo culture of keratinocytes on papillary and reticular dermal layers remodels skin explants differently: towards improved wound care. Arch Dermatol Res. 2019;: pubmed publisher
Fetoni A, Zorzi V, Paciello F, Ziraldo G, Peres C, Raspa M, et al. Cx26 partial loss causes accelerated presbycusis by redox imbalance and dysregulation of Nfr2 pathway. Redox Biol. 2018;19:301-317 pubmed publisher
Chen J, Liang C, Zong L, Zhu Y, Zhao H. Knockout of Pannexin-1 Induces Hearing Loss. Int J Mol Sci. 2018;19: pubmed publisher
Zorzi V, Paciello F, Ziraldo G, Peres C, Mazzarda F, Nardin C, et al. Mouse Panx1 Is Dispensable for Hearing Acquisition and Auditory Function. Front Mol Neurosci. 2017;10:379 pubmed publisher
Xu L, Carrer A, Zonta F, Qu Z, Ma P, Li S, et al. Design and Characterization of a Human Monoclonal Antibody that Modulates Mutant Connexin 26 Hemichannels Implicated in Deafness and Skin Disorders. Front Mol Neurosci. 2017;10:298 pubmed publisher
Liu W, Schrott Fischer A, Glueckert R, Benav H, Rask Andersen H. The Human "Cochlear Battery" - Claudin-11 Barrier and Ion Transport Proteins in the Lateral Wall of the Cochlea. Front Mol Neurosci. 2017;10:239 pubmed publisher
Mei L, Chen J, Zong L, Zhu Y, Liang C, Jones R, et al. A deafness mechanism of digenic Cx26 (GJB2) and Cx30 (GJB6) mutations: Reduction of endocochlear potential by impairment of heterogeneous gap junctional function in the cochlear lateral wall. Neurobiol Dis. 2017;108:195-203 pubmed publisher
Lukashkina V, Yamashita T, Zuo J, Lukashkin A, Russell I. Amplification mode differs along the length of the mouse cochlea as revealed by connexin 26 deletion from specific gap junctions. Sci Rep. 2017;7:5185 pubmed publisher
Zong L, Chen J, Zhu Y, Zhao H. Progressive age-dependence and frequency difference in the effect of gap junctions on active cochlear amplification and hearing. Biochem Biophys Res Commun. 2017;489:223-227 pubmed publisher
Liu W, Li H, Edin F, Brannstrom J, Glueckert R, Schrott Fischer A, et al. Molecular composition and distribution of gap junctions in the sensory epithelium of the human cochlea-a super-resolution structured illumination microscopy (SR-SIM) study. Ups J Med Sci. 2017;122:160-170 pubmed publisher
Tsao D, Wang S, Lynn B, Nagy J. Immunofluorescence reveals unusual patterns of labelling for connexin43 localized to calbindin-D28K-positive interstitial cells in the pineal gland. Eur J Neurosci. 2017;45:1553-1569 pubmed publisher
Kamiya K, Yum S, Kurebayashi N, Muraki M, Ogawa K, Karasawa K, et al. Assembly of the cochlear gap junction macromolecular complex requires connexin 26. J Clin Invest. 2014;124:1598-607 pubmed publisher
Yum S, Zhang J, Valiunas V, Kanaporis G, Brink P, White T, et al. Human connexin26 and connexin30 form functional heteromeric and heterotypic channels. Am J Physiol Cell Physiol. 2007;293:C1032-48 pubmed
Shurman D, Glazewski L, Gumpert A, Zieske J, Richard G. In vivo and in vitro expression of connexins in the human corneal epithelium. Invest Ophthalmol Vis Sci. 2005;46:1957-65 pubmed
Solomon I, Halat T, El Maghrabi M, O Neal M. Localization of connexin26 and connexin32 in putative CO(2)-chemosensitive brainstem regions in rat. Respir Physiol. 2001;129:101-21 pubmed
product information
Product Type :
Antibody
Product Name :
Connexin 26 Monoclonal Antibody (CX-1E8)
Catalog # :
33-5800
Quantity :
100 ug
Price :
US 502.00
Clonality :
Monoclonal
Purity :
protein A
Host :
Mouse
Reactivity :
Mouse, Rat
Applications :
ELISA: Assay-dependent, Immunohistochemistry (Frozen): Assay-dependent, Western Blot: 2 ug/mL
Species :
Mouse, Rat
Clone :
CX-1E8
Isotype :
IgG2a, kappa
Storage :
-20 C
Description :
Gap junctions are conduits that allow the direct cell-to-cell passage of small cytoplasmic molecules, including ions, metabolic intermediates, and second messengers, and thereby mediate intercellular metabolic and electrical communication. Gap junction channels consist of connexin protein subunits, which are encoded by a multigene family. GJBs (gap-junction proteins or connexins) play crucial functional roles associated with these channels. Defects in GJB3 have been linked to erythrokeratodermia variables (EKV) is an autosomal dominant genodermatosis characterized by transient figurate red patches or hyperkeratosis. Mutations in GJB2 have also been associated with genetically derived hearing impairments, including autosomal recessive nonsyndromic deafness.
Immunogen :
A 13 amino acid synthetic peptide derived from the C-terminus of the mouse Connexin 26 protein.
Format :
Liquid
Applications w/Dilutions :
ELISA: Assay-dependent, Immunohistochemistry (Frozen): Assay-dependent, Western Blot: 2 ug/mL
Aliases :
AI325222; Cnx26; connexin 26; connexin-26; CX26; CXN-26; DFNA3; DFNA3A; DFNB1; DFNB1A; Gap junction beta-2 protein; gap junction channel protein connexin 26; gap junction membrane channel protein beta 2; gap junction protein beta 2; gap junction protein, beta 2; gap junction protein, beta 2, 26kDa; GJB2; Gjb-2; HID; KID; mutant gap junction protein beta 2; NSRD1; PPK
more info or order :
company information
Invitrogen
Thermo Fisher Scientific
81 Wyman Street
Waltham, MA USA 02451
https://www.thermofisher.com
800-678-5599
headquarters: USA