product summary
Loading...
company name :
Invitrogen
other brands :
NeoMarkers, Lab Vision, Endogen, Pierce, BioSource International, Zymed Laboratories, Caltag, Molecular Probes, Research Genetics, Life Technologies, Applied Biosystems, GIBCO BRL, ABgene, Dynal, Affinity BioReagents, Nunc, Invitrogen, NatuTec, Oxoid, Richard-Allan Scientific, Arcturus, Perseptive Biosystems, Proxeon, eBioscience
product type :
antibody
product name :
SUMO1 Monoclonal Antibody (21C7)
catalog :
33-2400
quantity :
100 µg
price :
US 399.00
clonality :
monoclonal
host :
mouse
conjugate :
nonconjugated
clone name :
21C7
reactivity :
Zaisan mole vole, Northern mole vole, African green monkey, human, mouse, rat, chicken, rhesus macaque
application :
western blot, ELISA, immunohistochemistry, immunocytochemistry, immunoprecipitation, EMSA, immunohistochemistry - paraffin section, immunohistochemistry - frozen section
more info or order :
citations: 119
Published Application/Species/Sample/DilutionReference
  • western blot; human; loading ...; fig 1
Citro S, Chiocca S. Assessing the Role of Paralog-Specific Sumoylation of HDAC1. Methods Mol Biol. 2017;1510:329-337 pubmed
  • immunocytochemistry; Northern mole vole; 1:250; fig 3
  • immunocytochemistry; Zaisan mole vole; 1:250; fig 3
Matveevsky S, Bakloushinskaya I, Kolomiets O. Unique sex chromosome systems in Ellobius: How do male XX chromosomes recombine and undergo pachytene chromatin inactivation?. Sci Rep. 2016;6:29949 pubmed publisher
  • western blot; human; fig 1a
Wang T, Xu W, Qin M, Yang Y, Bao P, Shen F, et al. Pathogenic Mutations in the Valosin-containing Protein/p97(VCP) N-domain Inhibit the SUMOylation of VCP and Lead to Impaired Stress Response. J Biol Chem. 2016;291:14373-84 pubmed publisher
  • western blot; human; 1:500; fig 6
Maure J, Moser S, Jaffray E, F Alpi A, Hay R. Loss of ubiquitin E2 Ube2w rescues hypersensitivity of Rnf4 mutant cells to DNA damage. Sci Rep. 2016;6:26178 pubmed publisher
  • western blot; human; fig 1
Meng F, Qian J, Yue H, Li X, Xue K. SUMOylation of Rb enhances its binding with CDK2 and phosphorylation at early G1 phase. Cell Cycle. 2016;15:1724-32 pubmed publisher
  • immunohistochemistry - paraffin section; human; 1:500; loading ...; tbl 1
Ito M, Nakamura K, Mori F, Miki Y, Tanji K, Wakabayashi K. Novel eosinophilic neuronal cytoplasmic inclusions in the external cuneate nucleus of humans. Neuropathology. 2016;36:441-447 pubmed publisher
  • western blot; human; 1:1000; fig 4a
Yan Y, Ollila S, Wong I, Vallenius T, Palvimo J, Vaahtomeri K, et al. SUMOylation of AMPKα1 by PIAS4 specifically regulates mTORC1 signalling. Nat Commun. 2015;6:8979 pubmed publisher
  • western blot; human; 1:1000; fig 1c
Hendriks I, D Souza R, Chang J, Mann M, Vertegaal A. System-wide identification of wild-type SUMO-2 conjugation sites. Nat Commun. 2015;6:7289 pubmed publisher
  • ELISA; human
Cox E, Uzoma I, Guzzo C, Jeong J, Matunis M, Blackshaw S, et al. Identification of SUMO E3 ligase-specific substrates using the HuProt human proteome microarray. Methods Mol Biol. 2015;1295:455-63 pubmed publisher
  • immunocytochemistry; mouse; 1:100; fig s6
Pacheco S, Marcet Ortega M, Lange J, Jasin M, Keeney S, Roig I. The ATM signaling cascade promotes recombination-dependent pachytene arrest in mouse spermatocytes. PLoS Genet. 2015;11:e1005017 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:100; fig 9
Cho S, Yun S, Jo C, Lee D, Choi K, Song J, et al. SUMO1 promotes Aβ production via the modulation of autophagy. Autophagy. 2015;11:100-12 pubmed publisher
  • immunoprecipitation; rhesus macaque; fig 3
Sutinen P, Rahkama V, Rytinki M, Palvimo J. Nuclear mobility and activity of FOXA1 with androgen receptor are regulated by SUMOylation. Mol Endocrinol. 2014;28:1719-28 pubmed publisher
  • western blot; human; 1:1000
Weber A, Schuermann D, Schär P. Versatile recombinant SUMOylation system for the production of SUMO-modified protein. PLoS ONE. 2014;9:e102157 pubmed publisher
  • western blot; human; fig 3, 4, 5
Kobayashi T, Masoumi K, Massoumi R. Deubiquitinating activity of CYLD is impaired by SUMOylation in neuroblastoma cells. Oncogene. 2015;34:2251-60 pubmed publisher
  • immunohistochemistry - paraffin section; human; 1:500
Mori F, Watanabe Y, Miki Y, Tanji K, Odagiri S, Eto K, et al. Ubiquitin-negative, eosinophilic neuronal cytoplasmic inclusions associated with stress granules and autophagy: an immunohistochemical investigation of two cases. Neuropathology. 2014;34:140-7 pubmed
  • western blot; human; 1:500
Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature. 2014;510:162-6 pubmed publisher
  • immunoprecipitation; human; 1:1000; fig 2
  • western blot; human; 1:1000; fig 1
Myatt S, Kongsema M, Man C, Kelly D, Gomes A, Khongkow P, et al. SUMOylation inhibits FOXM1 activity and delays mitotic transition. Oncogene. 2014;33:4316-29 pubmed publisher
  • western blot; human
Paakinaho V, Kaikkonen S, Makkonen H, Benes V, Palvimo J. SUMOylation regulates the chromatin occupancy and anti-proliferative gene programs of glucocorticoid receptor. Nucleic Acids Res. 2014;42:1575-92 pubmed publisher
  • western blot; human; fig 1
Bueno M, Richard S. SUMOylation negatively modulates target gene occupancy of the KDM5B, a histone lysine demethylase. Epigenetics. 2013;8:1162-75 pubmed publisher
  • immunohistochemistry; mouse; 1:200; fig 1
Lu L, Xiong Y, Kuang H, Korakavi G, Yu X. Regulation of the DNA damage response on male meiotic sex chromosomes. Nat Commun. 2013;4:2105 pubmed publisher
  • western blot; human; fig 1
Kaikkonen S, Paakinaho V, Sutinen P, Levonen A, Palvimo J. Prostaglandin 15d-PGJ(2) inhibits androgen receptor signaling in prostate cancer cells. Mol Endocrinol. 2013;27:212-23 pubmed publisher
  • immunohistochemistry - paraffin section; human; 1:800
Kon T, Mori F, Tanji K, Miki Y, Kimura T, Wakabayashi K. Giant cell polymyositis and myocarditis associated with myasthenia gravis and thymoma. Neuropathology. 2013;33:281-7 pubmed publisher
  • immunohistochemistry; rat; 1:50; fig 2
Peluso J, Lodde V, Liu X. Progesterone regulation of progesterone receptor membrane component 1 (PGRMC1) sumoylation and transcriptional activity in spontaneously immortalized granulosa cells. Endocrinology. 2012;153:3929-39 pubmed publisher
  • immunohistochemistry - paraffin section; human; 1:800; fig 1
Mori F, Tanji K, Odagiri S, Hattori M, Hoshikawa Y, Kono C, et al. Ubiquitin-related proteins in neuronal and glial intranuclear inclusions in intranuclear inclusion body disease. Pathol Int. 2012;62:407-11 pubmed publisher
  • western blot; human; fig 1
Li R, Wang L, Liao G, Guzzo C, Matunis M, Zhu H, et al. SUMO binding by the Epstein-Barr virus protein kinase BGLF4 is crucial for BGLF4 function. J Virol. 2012;86:5412-21 pubmed publisher
  • immunocytochemistry; rat; 1:100; fig 10
Page J, de la Fuente R, Manterola M, Parra M, Viera A, Berríos S, et al. Inactivation or non-reactivation: what accounts better for the silence of sex chromosomes during mammalian male meiosis?. Chromosoma. 2012;121:307-26 pubmed publisher
  • immunoprecipitation; human; fig 4
Hwang J, Kalejta R. In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induced Daxx sumoylation. Methods. 2011;55:160-5 pubmed publisher
  • immunocytochemistry; human; fig 6
Kelley J, Datta S, Snow C, Chatterjee M, Ni L, Spencer A, et al. The defective nuclear lamina in Hutchinson-gilford progeria syndrome disrupts the nucleocytoplasmic Ran gradient and inhibits nuclear localization of Ubc9. Mol Cell Biol. 2011;31:3378-95 pubmed publisher
  • western blot; human; fig 1
Rytinki M, Lakso M, Pehkonen P, Aarnio V, Reisner K, PERAKYLA M, et al. Overexpression of SUMO perturbs the growth and development of Caenorhabditis elegans. Cell Mol Life Sci. 2011;68:3219-32 pubmed publisher
  • immunohistochemistry; rat; fig 7
  • western blot; human; fig 6
Palczewska M, Casafont I, Ghimire K, Rojas A, Valencia A, Lafarga M, et al. Sumoylation regulates nuclear localization of repressor DREAM. Biochim Biophys Acta. 2011;1813:1050-8 pubmed publisher
  • immunocytochemistry; human
Latonen L, Moore H, Bai B, Jäämaa S, Laiho M. Proteasome inhibitors induce nucleolar aggregation of proteasome target proteins and polyadenylated RNA by altering ubiquitin availability. Oncogene. 2011;30:790-805 pubmed publisher
  • western blot; mouse; fig 4
Delfino D, Spinicelli S, Pozzesi N, Pierangeli S, Velardi E, Bruscoli S, et al. Glucocorticoid-induced activation of caspase-8 protects the glucocorticoid-induced protein Gilz from proteasomal degradation and induces its binding to SUMO-1 in murine thymocytes. Cell Death Differ. 2011;18:183-90 pubmed publisher
  • immunohistochemistry - paraffin section; human; 1:800; fig 1
Mori F, Miki Y, Tanji K, Ogura E, Yagihashi N, Jensen P, et al. Incipient intranuclear inclusion body disease in a 78-year-old woman. Neuropathology. 2011;31:188-93 pubmed publisher
  • western blot; human; fig 5
Del Rincón S, Rogers J, Widschwendter M, Sun D, Sieburg H, Spruck C. Development and validation of a method for profiling post-translational modification activities using protein microarrays. PLoS ONE. 2010;5:e11332 pubmed publisher
  • western blot; human; fig 6
Du J, McConnell B, Yang V. A small ubiquitin-related modifier-interacting motif functions as the transcriptional activation domain of Krüppel-like factor 4. J Biol Chem. 2010;285:28298-308 pubmed publisher
  • immunohistochemistry; mouse; 1:50; fig 1
  • western blot; mouse; 1:500; fig 4
Wang Z, Ou X, Tong J, Li S, Wei L, Ouyang Y, et al. The SUMO pathway functions in mouse oocyte maturation. Cell Cycle. 2010;9:2640-6 pubmed
  • immunocytochemistry; mouse; fig 2
Gillot I, Matthews C, Puel D, Vidal F, Lopez P. Ret Finger Protein: An E3 Ubiquitin Ligase Juxtaposed to the XY Body in Meiosis. Int J Cell Biol. 2009;2009:524858 pubmed publisher
  • immunocytochemistry; chicken; 1:200
Ordinario E, Yabuki M, Larson R, Maizels N. Temporal regulation of Ig gene diversification revealed by single-cell imaging. J Immunol. 2009;183:4545-53 pubmed publisher
  • immunocytochemistry; rat; 1:50; fig s3
Manterola M, Page J, Vasco C, Berríos S, Parra M, Viera A, et al. A high incidence of meiotic silencing of unsynapsed chromatin is not associated with substantial pachytene loss in heterozygous male mice carrying multiple simple robertsonian translocations. PLoS Genet. 2009;5:e1000625 pubmed publisher
  • western blot; mouse; fig 1
Rytinki M, Palvimo J. SUMOylation attenuates the function of PGC-1alpha. J Biol Chem. 2009;284:26184-93 pubmed publisher
  • immunoprecipitation; human; fig 1
  • western blot; human; fig 1
Matafora V, D Amato A, Mori S, Blasi F, Bachi A. Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition. Mol Cell Proteomics. 2009;8:2243-55 pubmed publisher
  • western blot; human
Meinecke I, Pap G, Mendoza H, Drange S, Ender S, Strietholt S, et al. Small ubiquitin-like modifier 1 [corrected] mediates the resistance of prosthesis-loosening fibroblast-like synoviocytes against Fas-induced apoptosis. Arthritis Rheum. 2009;60:2065-70 pubmed publisher
  • western blot; human; fig 4
Spoden G, Morandell D, Ehehalt D, Fiedler M, Jansen Durr P, Hermann M, et al. The SUMO-E3 ligase PIAS3 targets pyruvate kinase M2. J Cell Biochem. 2009;107:293-302 pubmed publisher
  • immunocytochemistry; rat; 1:10; fig 2
Navascues J, Bengoechea R, Tapia O, Casafont I, Berciano M, Lafarga M. SUMO-1 transiently localizes to Cajal bodies in mammalian neurons. J Struct Biol. 2008;163:137-46 pubmed publisher
  • western blot; human
Schimmel J, Larsen K, Matic I, van Hagen M, Cox J, Mann M, et al. The ubiquitin-proteasome system is a key component of the SUMO-2/3 cycle. Mol Cell Proteomics. 2008;7:2107-22 pubmed publisher
  • western blot; human
Muller S, Dobner T. The adenovirus E1B-55K oncoprotein induces SUMO modification of p53. Cell Cycle. 2008;7:754-8 pubmed
  • western blot; human; fig 1
Roukens M, Alloul Ramdhani M, Vertegaal A, Anvarian Z, Balog C, Deelder A, et al. Identification of a new site of sumoylation on Tel (ETV6) uncovers a PIAS-dependent mode of regulating Tel function. Mol Cell Biol. 2008;28:2342-57 pubmed publisher
  • immunocytochemistry; human; 1:50
  • western blot; human
Matic I, van Hagen M, Schimmel J, Macek B, Ogg S, Tatham M, et al. In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol Cell Proteomics. 2008;7:132-44 pubmed publisher
  • immunocytochemistry; human
Navascues J, Bengoechea R, Tapia O, Vaque J, Lafarga M, Berciano M. Characterization of a new SUMO-1 nuclear body (SNB) enriched in pCREB, CBP, c-Jun in neuron-like UR61 cells. Chromosoma. 2007;116:441-51 pubmed
  • immunohistochemistry; mouse; 1:200
Kim S, Namekawa S, Niswander L, Ward J, Lee J, Bardwell V, et al. A mammal-specific Doublesex homolog associates with male sex chromatin and is required for male meiosis. PLoS Genet. 2007;3:e62 pubmed
  • western blot; human; 1:200; fig 1
Ferguson B, Dovey C, Lilley K, Wyllie A, Rich T. Nuclear phospholipase C gamma: punctate distribution and association with the promyelocytic leukemia protein. J Proteome Res. 2007;6:2027-32 pubmed
  • immunocytochemistry; human; fig 5
Zanardi A, Giorgetti L, Botrugno O, Minucci S, Milani P, Pelicci P, et al. Immunocell-array for molecular dissection of multiple signaling pathways in mammalian cells. Mol Cell Proteomics. 2007;6:939-47 pubmed
  • immunocytochemistry; African green monkey; fig 5
  • western blot; African green monkey; fig 2
Stankovic Valentin N, Deltour S, Seeler J, Pinte S, Vergoten G, Guerardel C, et al. An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity. Mol Cell Biol. 2007;27:2661-75 pubmed
  • western blot; human
Mohan R, Rao A, Gagliardi J, Tini M. SUMO-1-dependent allosteric regulation of thymine DNA glycosylase alters subnuclear localization and CBP/p300 recruitment. Mol Cell Biol. 2007;27:229-43 pubmed
  • immunocytochemistry; human; fig 5D
  • western blot; human; fig 5B
Roscic A, Möller A, Calzado M, Renner F, Wimmer V, Gresko E, et al. Phosphorylation-dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2. Mol Cell. 2006;24:77-89 pubmed
  • western blot; rat; fig 4
Nelson D, Bhaskaran V, Foster W, Lehman McKeeman L. p53-independent induction of rat hepatic Mdm2 following administration of phenobarbital and pregnenolone 16alpha-carbonitrile. Toxicol Sci. 2006;94:272-80 pubmed
  • western blot; human; fig 1
Vertegaal A, Andersen J, Ogg S, Hay R, Mann M, Lamond A. Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol Cell Proteomics. 2006;5:2298-310 pubmed
  • immunocytochemistry; human; fig S7
Dellaire G, Ching R, Dehghani H, Ren Y, Bazett Jones D. The number of PML nuclear bodies increases in early S phase by a fission mechanism. J Cell Sci. 2006;119:1026-33 pubmed
  • western blot; human; fig 1
Klenk C, Humrich J, Quitterer U, Lohse M. SUMO-1 controls the protein stability and the biological function of phosducin. J Biol Chem. 2006;281:8357-64 pubmed
  • immunocytochemistry; African green monkey
Fu L, Gao Y, Sztul E. Transcriptional repression and cell death induced by nuclear aggregates of non-polyglutamine protein. Neurobiol Dis. 2005;20:656-65 pubmed
  • western blot; human
Sadanari H, Yamada R, Ohnishi K, Matsubara K, Tanaka J. SUMO-1 modification of the major immediate-early (IE) 1 and 2 proteins of human cytomegalovirus is regulated by different mechanisms and modulates the intracellular localization of the IE1, but not IE2, protein. Arch Virol. 2005;150:1763-82 pubmed
  • western blot; human; fig 3A
Rizos H, Woodruff S, Kefford R. p14ARF interacts with the SUMO-conjugating enzyme Ubc9 and promotes the sumoylation of its binding partners. Cell Cycle. 2005;4:597-603 pubmed
  • immunoprecipitation; mouse
  • western blot; mouse
Wasylyk C, Criqui Filipe P, Wasylyk B. Sumoylation of the net inhibitory domain (NID) is stimulated by PIAS1 and has a negative effect on the transcriptional activity of Net. Oncogene. 2005;24:820-8 pubmed
  • immunoprecipitation; human; fig 2b
  • immunoprecipitation; rat; fig 2c
Smolen G, Vassileva M, Wells J, Matunis M, Haber D. SUMO-1 modification of the Wilms' tumor suppressor WT1. Cancer Res. 2004;64:7846-51 pubmed
  • western blot; human
Yamashita D, Yamaguchi T, Shimizu M, Nakata N, Hirose F, Osumi T. The transactivating function of peroxisome proliferator-activated receptor gamma is negatively regulated by SUMO conjugation in the amino-terminal domain. Genes Cells. 2004;9:1017-29 pubmed
  • western blot; human; fig 3
Spengler M, Kennett S, Moorefield K, Simmons S, Brattain M, Horowitz J. Sumoylation of internally initiated Sp3 isoforms regulates transcriptional repression via a Trichostatin A-insensitive mechanism. Cell Signal. 2005;17:153-66 pubmed
  • western blot; human
Woods Y, Xirodimas D, Prescott A, Sparks A, Lane D, Saville M. p14 Arf promotes small ubiquitin-like modifier conjugation of Werners helicase. J Biol Chem. 2004;279:50157-66 pubmed
  • western blot; human; fig 2
Nevels M, Brune W, Shenk T. SUMOylation of the human cytomegalovirus 72-kilodalton IE1 protein facilitates expression of the 86-kilodalton IE2 protein and promotes viral replication. J Virol. 2004;78:7803-12 pubmed
  • EMSA; human; fig 8
Komatsu T, Mizusaki H, Mukai T, Ogawa H, Baba D, Shirakawa M, et al. Small ubiquitin-like modifier 1 (SUMO-1) modification of the synergy control motif of Ad4 binding protein/steroidogenic factor 1 (Ad4BP/SF-1) regulates synergistic transcription between Ad4BP/SF-1 and Sox9. Mol Endocrinol. 2004;18:2451-62 pubmed
  • immunoprecipitation; human; fig 2
  • western blot; human; fig 2
Collavin L, Gostissa M, Avolio F, Secco P, Ronchi A, Santoro C, et al. Modification of the erythroid transcription factor GATA-1 by SUMO-1. Proc Natl Acad Sci U S A. 2004;101:8870-5 pubmed
  • immunohistochemistry; human; 1:500; fig 2
  • western blot; human; fig 5
Pountney D, Huang Y, Burns R, Haan E, Thompson P, Blumbergs P, et al. SUMO-1 marks the nuclear inclusions in familial neuronal intranuclear inclusion disease. Exp Neurol. 2003;184:436-46 pubmed
  • immunocytochemistry; human; 1:400
  • immunocytochemistry; mouse
Xu L, Yang L, Moitra P, Hashimoto K, Rallabhandi P, Kaul S, et al. BTBD1 and BTBD2 colocalize to cytoplasmic bodies with the RBCC/tripartite motif protein, TRIM5delta. Exp Cell Res. 2003;288:84-93 pubmed
  • immunocytochemistry; rat; fig 5a
  • western blot; human; fig 2
Endter C, Kzhyshkowska J, Stauber R, Dobner T. SUMO-1 modification required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein. Proc Natl Acad Sci U S A. 2001;98:11312-7 pubmed
  • immunocytochemistry; human; fig 4
Tse W, Tang J, Jin O, Korsgren C, John K, Kung A, et al. A new spectrin, beta IV, has a major truncated isoform that associates with promyelocytic leukemia protein nuclear bodies and the nuclear matrix. J Biol Chem. 2001;276:23974-85 pubmed
  • western blot; human; 1:1000
Kinoshita Y, Jarell A, Flaman J, Foltz G, Schuster J, Sopher B, et al. Pescadillo, a novel cell cycle regulatory protein abnormally expressed in malignant cells. J Biol Chem. 2001;276:6656-65 pubmed
  • western blot; human
Rangasamy D, Woytek K, Khan S, Wilson V. SUMO-1 modification of bovine papillomavirus E1 protein is required for intranuclear accumulation. J Biol Chem. 2000;275:37999-8004 pubmed
  • immunoprecipitation; human; 5 ug
  • western blot; human
Rangasamy D, Wilson V. Bovine papillomavirus E1 protein is sumoylated by the host cell Ubc9 protein. J Biol Chem. 2000;275:30487-95 pubmed
  • immunocytochemistry; African green monkey; fig 5
  • western blot; African green monkey; fig 2
Saitoh H, Hinchey J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem. 2000;275:6252-8 pubmed
  • western blot; human
Hofmann H, Flöss S, Stamminger T. Covalent modification of the transactivator protein IE2-p86 of human cytomegalovirus by conjugation to the ubiquitin-homologous proteins SUMO-1 and hSMT3b. J Virol. 2000;74:2510-24 pubmed
  • western blot; human
Sternsdorf T, Puccetti E, Jensen K, Hoelzer D, Will H, Ottmann O, et al. PIC-1/SUMO-1-modified PML-retinoic acid receptor alpha mediates arsenic trioxide-induced apoptosis in acute promyelocytic leukemia. Mol Cell Biol. 1999;19:5170-8 pubmed
  • western blot; human; fig 2
Desterro J, Rodriguez M, Hay R. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell. 1998;2:233-9 pubmed
Jaillard S, Bell K, Akloul L, Walton K, McElreavy K, Stocker W, et al. New insights into the genetic basis of premature ovarian insufficiency: Novel causative variants and candidate genes revealed by genomic sequencing. Maturitas. 2020;141:9-19 pubmed publisher
Sha Z, Blyszcz T, González Prieto R, Vertegaal A, Goldberg A. Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019;294:15218-15234 pubmed publisher
Zhang F, Malinen M, Mehmood A, Lehtiniemi T, Jääskeläinen T, Niskanen E, et al. Lack of androgen receptor SUMOylation results in male infertility due to epididymal dysfunction. Nat Commun. 2019;10:777 pubmed publisher
Patil H, Yoon D, Bhowmick R, Cai Y, Cho K, Ferreira P. Impairments in age-dependent ubiquitin proteostasis and structural integrity of selective neurons by uncoupling Ran GTPase from the Ran-binding domain 3 of Ranbp2 and identification of novel mitochondrial isoforms of ubiquitin-conjugating enzyme E2I . Small Gtpases. 2019;10:146-161 pubmed publisher
Gärtner A, Wagner K, Hölper S, Kunz K, Rodriguez M, Muller S. Acetylation of SUMO2 at lysine 11 favors the formation of non-canonical SUMO chains. EMBO Rep. 2018;19: pubmed publisher
Brun S, Abella N, Berciano M, Tapia O, Jaumot M, Freire R, et al. SUMO regulates p21Cip1 intracellular distribution and with p21Cip1 facilitates multiprotein complex formation in the nucleolus upon DNA damage. PLoS ONE. 2017;12:e0178925 pubmed publisher
Salsman J, Rapkin L, Margam N, Duncan R, Bazett Jones D, Dellaire G. Myogenic differentiation triggers PML nuclear body loss and DAXX relocalization to chromocentres. Cell Death Dis. 2017;8:e2724 pubmed publisher
Bian X, Chen H, Yang P, Li Y, Zhang F, Zhang J, et al. Nur77 suppresses hepatocellular carcinoma via switching glucose metabolism toward gluconeogenesis through attenuating phosphoenolpyruvate carboxykinase sumoylation. Nat Commun. 2017;8:14420 pubmed publisher
Brown J, Conn K, Wasson P, Charman M, Tong L, Grant K, et al. SUMO Ligase Protein Inhibitor of Activated STAT1 (PIAS1) Is a Constituent Promyelocytic Leukemia Nuclear Body Protein That Contributes to the Intrinsic Antiviral Immune Response to Herpes Simplex Virus 1. J Virol. 2016;90:5939-5952 pubmed publisher
Conn K, Wasson P, McFarlane S, Tong L, Brown J, Grant K, et al. Novel Role for Protein Inhibitor of Activated STAT 4 (PIAS4) in the Restriction of Herpes Simplex Virus 1 by the Cellular Intrinsic Antiviral Immune Response. J Virol. 2016;90:4807-4826 pubmed publisher
Paakinaho V, Kaikkonen S, Levonen A, Palvimo J. Electrophilic lipid mediator 15-deoxy-?12,14-prostaglandin j2 modifies glucocorticoid signaling via receptor SUMOylation. Mol Cell Biol. 2014;34:3202-13 pubmed publisher
Ma L, Aslanian A, Sun H, Jin M, Shi Y, Yates J, et al. Identification of small ubiquitin-like modifier substrates with diverse functions using the Xenopus egg extract system. Mol Cell Proteomics. 2014;13:1659-75 pubmed publisher
Datta S, Snow C, Paschal B. A pathway linking oxidative stress and the Ran GTPase system in progeria. Mol Biol Cell. 2014;25:1202-15 pubmed publisher
Schimenti K, Feuer S, Griffin L, Graham N, Bovet C, Hartford S, et al. AKAP9 is essential for spermatogenesis and sertoli cell maturation in mice. Genetics. 2013;194:447-57 pubmed publisher
Rytinki M, Kaikkonen S, Sutinen P, Paakinaho V, Rahkama V, Palvimo J. Dynamic SUMOylation is linked to the activity cycles of androgen receptor in the cell nucleus. Mol Cell Biol. 2012;32:4195-205 pubmed
González Santamaría J, Campagna M, Garcia M, Marcos Villar L, Gonzalez D, Gallego P, et al. Regulation of vaccinia virus E3 protein by small ubiquitin-like modifier proteins. J Virol. 2011;85:12890-900 pubmed publisher
Grünwald M, Bono F. Structure of Importin13-Ubc9 complex: nuclear import and release of a key regulator of sumoylation. EMBO J. 2011;30:427-38 pubmed publisher
Leitao B, Jones M, Fusi L, Higham J, Lee Y, Takano M, et al. Silencing of the JNK pathway maintains progesterone receptor activity in decidualizing human endometrial stromal cells exposed to oxidative stress signals. FASEB J. 2010;24:1541-51 pubmed publisher
Pan M, Chang T, Chang H, Su J, Wang H, Hung W. Sumoylation of Prox1 controls its ability to induce VEGFR3 expression and lymphatic phenotypes in endothelial cells. J Cell Sci. 2009;122:3358-64 pubmed publisher
Leavenworth J, Ma X, Mo Y, Pauza M. SUMO conjugation contributes to immune deviation in nonobese diabetic mice by suppressing c-Maf transactivation of IL-4. J Immunol. 2009;183:1110-9 pubmed publisher
Klein U, Haindl M, Nigg E, Muller S. RanBP2 and SENP3 function in a mitotic SUMO2/3 conjugation-deconjugation cycle on Borealin. Mol Biol Cell. 2009;20:410-8 pubmed publisher
Stielow B, Sapetschnig A, Wink C, Krüger I, Suske G. SUMO-modified Sp3 represses transcription by provoking local heterochromatic gene silencing. EMBO Rep. 2008;9:899-906 pubmed publisher
Prost S, Lu P, Caldwell H, Harrison D. E2F regulates DDB2: consequences for DNA repair in Rb-deficient cells. Oncogene. 2007;26:3572-81 pubmed
Jones M, Fusi L, Higham J, Abdel Hafiz H, Horwitz K, Lam E, et al. Regulation of the SUMO pathway sensitizes differentiating human endometrial stromal cells to progesterone. Proc Natl Acad Sci U S A. 2006;103:16272-7 pubmed
Anckar J, Hietakangas V, Denessiouk K, Thiele D, Johnson M, Sistonen L. Inhibition of DNA binding by differential sumoylation of heat shock factors. Mol Cell Biol. 2006;26:955-64 pubmed
Hietakangas V, Anckar J, Blomster H, Fujimoto M, Palvimo J, Nakai A, et al. PDSM, a motif for phosphorylation-dependent SUMO modification. Proc Natl Acad Sci U S A. 2006;103:45-50 pubmed
Kuo H, Chang C, Jeng J, Hu H, Lin D, Maul G, et al. SUMO modification negatively modulates the transcriptional activity of CREB-binding protein via the recruitment of Daxx. Proc Natl Acad Sci U S A. 2005;102:16973-8 pubmed
Shyu Y, Lee T, Ting C, Wen S, Hsieh L, Li Y, et al. Sumoylation of p45/NF-E2: nuclear positioning and transcriptional activation of the mammalian beta-like globin gene locus. Mol Cell Biol. 2005;25:10365-78 pubmed
Long J, Zuo D, Park M. Pc2-mediated sumoylation of Smad-interacting protein 1 attenuates transcriptional repression of E-cadherin. J Biol Chem. 2005;280:35477-89 pubmed
Yamaguchi T, Sharma P, Athanasiou M, Kumar A, Yamada S, Kuehn M. Mutation of SENP1/SuPr-2 reveals an essential role for desumoylation in mouse development. Mol Cell Biol. 2005;25:5171-82 pubmed
Tago K, Chiocca S, Sherr C. Sumoylation induced by the Arf tumor suppressor: a p53-independent function. Proc Natl Acad Sci U S A. 2005;102:7689-94 pubmed
Ihara M, Yamamoto H, Kikuchi A. SUMO-1 modification of PIASy, an E3 ligase, is necessary for PIASy-dependent activation of Tcf-4. Mol Cell Biol. 2005;25:3506-18 pubmed
Zoumi A, Datta S, Liaw L, Wu C, Manthripragada G, Osborne T, et al. Spatial distribution and function of sterol regulatory element-binding protein 1a and 2 homo- and heterodimers by in vivo two-photon imaging and spectroscopy fluorescence resonance energy transfer. Mol Cell Biol. 2005;25:2946-56 pubmed
Lee M, Lebedeva L, Suzawa M, Wadekar S, Desclozeaux M, Ingraham H. The DEAD-box protein DP103 (Ddx20 or Gemin-3) represses orphan nuclear receptor activity via SUMO modification. Mol Cell Biol. 2005;25:1879-90 pubmed
Boggio R, Colombo R, Hay R, Draetta G, Chiocca S. A mechanism for inhibiting the SUMO pathway. Mol Cell. 2004;16:549-61 pubmed
Eskiw C, Dellaire G, Mymryk J, Bazett Jones D. Size, position and dynamic behavior of PML nuclear bodies following cell stress as a paradigm for supramolecular trafficking and assembly. J Cell Sci. 2003;116:4455-66 pubmed
Saitoh H, Pizzi M, Wang J. Perturbation of SUMOlation enzyme Ubc9 by distinct domain within nucleoporin RanBP2/Nup358. J Biol Chem. 2002;277:4755-63 pubmed
Matunis M, Coutavas E, Blobel G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol. 1996;135:1457-70 pubmed
product information
Product Type :
Antibody
Product Name :
SUMO1 Monoclonal Antibody (21C7)
Catalog # :
33-2400
Quantity :
100 µg
Price :
US 399.00
Clonality :
Monoclonal
Purity :
protein A
Host :
Mouse
Reactivity :
Human, Mouse, Rat
Applications :
ELISA: 0.1-1.0 µg/mL, Immunohistochemistry: Assay-dependent, Western Blot: 1-3 µg/mL
Species :
Human, Mouse, Rat
Clone :
21C7
Isotype :
IgG1, kappa
Storage :
-20°C
Description :
SUMO1 is an ubiquitin-like protein that can be covalently attached to proteins as a monomer or a lysine-linked polymer. Covalent attachment, via an isopeptide bond, to its substrates requires prior activation by the E1 complex SAE1-SAE2 and linkage to the E2 enzyme UBE2I, and can be promoted by E3 ligases such as PIAS1-4, RANBP2 or CBX4. This post-translational modification on lysine residues of proteins plays a crucial role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduction. SUMO1 is involved, for instance, in targeting RANGAP1 to the nuclear pore complex protein RANBP2. Polymeric SUMO1 chains are also susceptible to polyubiquitination which functions as a signal for proteasomal degradation of modified proteins. SUMO1 may also regulate a network of genes involved in palate development. Mutations in the gene can result in non-syndromic orofacial cleft 10.
Immunogen :
Full length recombinant GMP-1
Format :
Liquid
Applications w/Dilutions :
ELISA: 0.1-1.0 µg/mL, Immunohistochemistry: Assay-dependent, Western Blot: 1-3 µg/mL
Aliases :
CG4494-PA; DAP1; GAP modifying protein 1; GAP-modifying protein 1; GMP1; LD07775p; OFC10; OK/SW-cl.43; OTTHUMP00000202403; OTTHUMP00000202404; OTTHUMP00000202405; OTTHUMP00000202406; OTTHUMP00000202409; OTTHUMP00000202410; PIC1; SENP2; sentrin; Sentrin-1; small ubiquitin-like modifier 1; small ubiquitin-related modifier 1; small ubiquitin-related modifier-1; SMT3; SMT3 homolog 3; SMT3 suppressor of mif two 3 homolog 1; SMT3 suppressor of mif two 3 homolog 1 (yeast); Smt3C; Smt3h3; SMTP3; Sumo1; SUMO-1; SUMO-1 related peptidase; Ubiquitin-homology domain protein PIC1; ubiquitin-like 1; ubiquitin-like 1 (sentrin); ubiquitin-like protein SMT3C; Ubiquitin-like protein UBL1; UBL1
more info or order :
company information
Invitrogen
Thermo Fisher Scientific
81 Wyman Street
Waltham, MA USA 02451
https://www.thermofisher.com
800-678-5599
headquarters: USA